B-C-N Nanotubes and Related Nanostructures pp 195-221 | Cite as
Carbon Nitride and Boron Carbon Nitride Nanostructures
- 1 Citations
- 1k Downloads
Abstract
This chapter is devoted to carbon nitride and boron carbon nitride nanostructures, an important and indispensable member in the family of nanomaterials for various applications, especially in nanoelectronics. It covers all the main aspects of the current research on the carbon nitride and boron carbonitride nanostructures. The attention is mainly focused on the one-dimensional carbon nitride and boron carbon nitride nanotubes. The most critical issues were addressed from the perspectives of synthesis, composition, structure, property, and application. Due to the presence of multielements in graphite-like layers, the carbon nitride and boron carbon nitride nanotubes display much richer diversities than their carbon counterparts in structure and property. The carbon nitride nanotubes behave always as metallic wires, and the boron carbon nitride nanotubes exhibit semiconducting properties tailorable in a large range depending only on compositions. The properties of electrical conducting, electron field emission, photoluminescence, hydrogen storage, and lithium storage are also presented in this chapter based on the current knowledge.
Keywords
High Resolution Transmission Electron Microscopy Catalyst Particle Superhard Material Electron Energy Loss Spectroscopy Graphitic LayerNotes
Acknowledgments
The work was partly supported by NSFC, MOST, and CAS of China. We also thank Xuedong Bai, Xucun Ma, Dingyong Zhong, Chunyi Zhi, Wenlong Wang, Zhi Xu, Kaihui Liu, and Guangyu Zhang for their contribution, and W. Zhou at St. Andrews, Ningsheng Xu at Zhongshan University, Hongjie Dai at Stanford, Zhonglin Wang at GIT, D. Golberg and Y. Bando at NIMS for helpful discussion during the course.
References
- 1.A. Catellani, M. Posternak, and A. Baldereschi, Bulk and surface electronic structure of hexagonal boron nitride, Phys. Rev. B 36, 6105–6111 (1987).CrossRefGoogle Scholar
- 2.C. Tarrio and S. E. Schnatterly, Interband transitions, plasmons, and dispersion in hexagonal boron nitride, Phys. Rev. B 40, 7852–7859 (1989).CrossRefGoogle Scholar
- 3.C. A. Taylor II, S. W. Brown, V. Subramaniam, S. Kidner, S. C. Rand, and R. Clarke, Observation of near-band-gap luminescence from boron nitride films, Appl. Phys. Lett. 65, 1251–1253 (1994).CrossRefGoogle Scholar
- 4.K. Watanabe, T. Taniguchi, and H. Kanada, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3, 404–409 (2004).CrossRefGoogle Scholar
- 5.Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, Chiral tubules of hexagonal BC2N, Phys. Rev. B 50, 4976–4979 (1994).CrossRefGoogle Scholar
- 6.A. Ribio, J. L. Corkill, and M. L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B 49, 5081–5084 (1994).CrossRefGoogle Scholar
- 7.Y. H. Kim, K. J. Chang, and S. G. Louie, Electronic structure of radially deformed BN and BC3 nanotubes, Phys. Rev. B 63, 205408–1-5 (2001).CrossRefGoogle Scholar
- 8.M. L. Cohen, Calculation of bulk moduli of diamond and zinc blende solids, Phys. Rev. B 32, 7988–7991 (1985).CrossRefGoogle Scholar
- 9.9. E. G. Wang, Research on carbon nitrides, Prog. Mater. Sci. 41, 24–298 (1997).CrossRefGoogle Scholar
- 10.E. G. Wang, New development in covalently bonded carbon-nitride and related materials, Adv. Mater. 11, 1129–1133 (1999).CrossRefGoogle Scholar
- 11.V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D. C. Rubie, Synthesis of superhard cubic BC2N, Appl. Phys. Lett. 78, 1385–1387 (2001).CrossRefGoogle Scholar
- 12.V. L. Solozhenko, S. N. Dub, and N. V. Novikov, Mechanical properties of cubic BC2N, a new superhard phase, Diam. Relat. Mater. 10, 2228–2231 (2001).CrossRefGoogle Scholar
- 13.E.G. Wang, Nitride-related nanomaterials by chemical vapor deposition: Structure and property, J. Am. Ceram. Soc. 85, 105–108 (2002).CrossRefGoogle Scholar
- 14.S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991).CrossRefGoogle Scholar
- 15.N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Boron-nitride nanotubes, Science 269, 966–967 (1995).CrossRefGoogle Scholar
- 16.W. Han, Y. Bando, K. Kurashima, and T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction, Appl. Phys. Lett. 73, 3085–3087 (1998).CrossRefGoogle Scholar
- 17.T. Laude, Y. Matsui, A. Marraud, and B. Jouffrey, Long ropes of boron nitride nanotubes grown by a continuous laser heating, Appl. Phys. Lett. 76, 3239–3241 (2000).CrossRefGoogle Scholar
- 18.O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, and W. E. Buhro, CVD growth of boron nitride nanotubes, Chem. Mater. 12, 1808–1810 (2000).CrossRefGoogle Scholar
- 19.R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, G. Raina, J. P Zhang, A. K. Cheetham, and C. N. R. Rao, B–C–N, C–N and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts, Chem. Phys. Lett. 287, 671–676 (1998).CrossRefGoogle Scholar
- 20.M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, C. L. Reeves, A. K. Cheetham, M. Ruhle, H. W. Kroto, and D. R. M. Walton, Carbon nitride nanocomposites: Formation of maligned CxNy nanofibers, Adv. Mater. 11, 655–658 (1999).CrossRefGoogle Scholar
- 21.S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H. C. Shih, Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition, Appl. Phys. Lett. 74, 197–199 (1999).CrossRefGoogle Scholar
- 22.D. Y. Zhong, S. Liu, G. Y. Zhang, and E. G. Wang, Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission, J. Appl. Phys. 89, 5939–5943 (2001).CrossRefGoogle Scholar
- 23.O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683–1685 (1994).CrossRefGoogle Scholar
- 24.Z. Weng-Sieh, K. Cherry, N. G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, A. Zettl, and R. Gronsy, Synthesis of BxCyNz nanotubules, Phys. Rev. B 51, 11229–11232 (1995).CrossRefGoogle Scholar
- 25.P. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, M. Ruhle, B–C–N nanotubes and boron doping of carbon nanotubes, Chem. Phys. Lett. 260, 465–470 (1996).CrossRefGoogle Scholar
- 26.J. Yu, J. Ahn, S. F. Yoon, Q. Zhang, Rusli, B. Gan, K. Chew, M. B. Yu, X. D. Bai, and E. G. Wang, Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers, Appl. Phys. Lett. 77, 1949–1951 (2000).CrossRefGoogle Scholar
- 27.X. C. Ma and E. G. Wang, Polymerized carbon nanobells and their field-emission properties, Appl. Phys. Lett. 75, 3105–3107 (1999).CrossRefGoogle Scholar
- 28.X. Ma, E. G. Wang, R. D. Tilley, D. A. Jefferson, and W. Zhou, Size-controlled short nanobells: Growth and formation mechanism, Appl. Phys. Lett. 77, 4136–4138 (2000).CrossRefGoogle Scholar
- 29.G. Y. Zhang, X. Jiang, and E. G. Wang, Tubular graphite cones, Science 300, 472–474 (2003).CrossRefGoogle Scholar
- 30.E. G. Wang, Nitrogen-induced carbon nanobells and their properties, J. Mater. Res. 21, 2726–2773 (2006).CrossRefGoogle Scholar
- 31.N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992).CrossRefGoogle Scholar
- 32.A. Hassanien, M. Tokumoto, Y. Humazawa, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature, Appl. Phys. Lett. 73, 3839–3841 (1998).CrossRefGoogle Scholar
- 33.A. Hassanien, M. Tokumoto, S. Ohshima, Y. Kuriki, F. Ikazaki, K. Uchida, and M. Yumura, Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes, Appl. Phys. Lett. 75, 2755–2757 (1999).CrossRefGoogle Scholar
- 34.A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge, Phys. Rev. Lett. 76, 4737–4740 (1996).CrossRefGoogle Scholar
- 35.M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Ramos, J. P. Hare, R Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Metal particle catalysed production of nanoscale BN structures, Chem. Phys. Lett. 259, 568–573 (1996).CrossRefGoogle Scholar
- 36.X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Stability and band-gap constancy of boron-nitride nanotubes, Europhys. Lett. 28, 335–340 (1994).CrossRefGoogle Scholar
- 37.X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B 51, 6868–6875 (1995).CrossRefGoogle Scholar
- 38.Y. Miyamoto, M. L. Cohen, and S. G. Louie, Theoretical investigation of graphitic carbon nitride and possible tubule forms, Solid State Commun. 102, 605–608 (1997).CrossRefGoogle Scholar
- 39.W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett. 75, 3129–3131 (1999).CrossRefGoogle Scholar
- 40.X. D. Bai, D. Y. Zhong, G. Y. Zhang, X. C. Ma, S. Liu, E. G. Wang, Y. Chen, and D. T. Shaw, Hydrogen storage in carbon nitride nanobells, Appl. Phys. Lett. 79, 1552–1554 (2001).CrossRefGoogle Scholar
- 41.D. Y. Zhong, G. Y. Zhang, S. Liu, E. G. Wang, Q. Wang, H. Li, and X. J. Huang, Lithium storage in polymerized carbon nitride nanobells, Appl. Phys. Lett. 79, 3500–3502 (2001).CrossRefGoogle Scholar
- 42.A. Y. Liu and M. L. Cohen, Science 245, 841–842 (1989).CrossRefGoogle Scholar
- 43.D. M. Teter and R. J. Hemley, Low-compressibility carbon nitrides, Science 271, 53–55 (1996).CrossRefGoogle Scholar
- 44.M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Controlled production of aligned-nanotube bundles, Nature 388, 52–55 (1997).CrossRefGoogle Scholar
- 45.R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, M. K. Renganathan, and C. N. R. Rao, Nitrogen-containing carbon nanotubes, J. Mater. Chem. 7, 2335–2337 (1997).CrossRefGoogle Scholar
- 46.G. Y. Zhang, X. C. Ma, D. Y. Zhong, and E. G. Wang, Polymerized carbon nitride nanobells, J. Appl. Phys. 91, 9324–9332 (2002).CrossRefGoogle Scholar
- 47.X. C. Ma and E. G. Wang, CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition, Appl. Phys. Lett. 78, 978–980 (2001).CrossRefGoogle Scholar
- 48.Y. Chai, X. L. Zhou, P. J. Li, W. J. Zhang, Q. F. Zhang, and J. L. Wu, Nanodiode based on a multiwall CNx/carbon nanotube intramolecular junction, Nanotechnology 16, 2134–2137 (2005).CrossRefGoogle Scholar
- 49.K. Xiao, Y. Q. Liu, P. A. Hu, G. Yu, W. P. Hu, D. B. Zhu, X. Y. Liu, H. M. Liu, and D. X. Wu, Appl. Phys. A 83, 53–56 (2006).CrossRefGoogle Scholar
- 50.M. Glerup, J. Steinmetz, D. Samaille, O. Stephan, S. Enouz, A. Loiseau, S. Roth, and P. Bernier, Synthesis of N-doped SWNT using the arc-discharge procedure, Chem. Phys. Lett. 387, 193–197 (2004).CrossRefGoogle Scholar
- 51.S. Y. Kim, J. Y. Lee, C. W. Na, J. Park, K. Seo, and B. Kim, N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition, Chem. Phys. Lett. 413, 300–305 (2005).CrossRefGoogle Scholar
- 52.J. L. Zimmerman, R. Williams, V. N. Khabashesku, and J. L. Margrave, Synthesis of spherical carbon nitride nanostructures, Nano Lett. 1, 731–734 (2001).CrossRefGoogle Scholar
- 53.C. H. Cao, F. L. Huang, C. T. Cao, J. Li, and H. Zhu, Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route, Chem. Mater. 16, 5213–5215 (2004).CrossRefGoogle Scholar
- 54.Q. X. Guo, Y. Xie, X. J. Wang, S. Y. Zhang, T. Hou, and S. C. Lv, Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures, Chem. Commun. 1, 26–27 (2004).CrossRefGoogle Scholar
- 55.K. Suenaga, M. Yudasak, C. Colliex, and S. Iijima, Radially modulated nitrogen distribution in CN nanotubular structures prepared by CVD using Ni phthalocyanine, Chem. Phys. Lett. 316, 365–372 (2000).CrossRefGoogle Scholar
- 56.H. Chen, Y. Yang, Z. Hu, K. F. Huo, Y. W. Ma, Y. Chen, X. S. Wang, and Y. O. Lu, Synergism of C5N six-membered ring and vapor–liquid–solid growth of CNx nanotubes with pyridine precursor, J. Phys. Chem. B 110, 16422–16427 (2006).CrossRefGoogle Scholar
- 57.J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-Mateos, Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials, J. Am. Chem. Soc. 188, 8071–8076 (1996).CrossRefGoogle Scholar
- 58.I. Shimoyama, G. H. Wu, T. Sekiguchi, and Y. Baba, Evidence for the existence of nitrogen-substituted graphite structure by polarization dependence of near-edge x-ray-absorption fine structure, Phys. Rev. B 62, R6053–R6056 (2000).CrossRefGoogle Scholar
- 59.M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. Seeger, and H. Terrones, N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties, Appl. Phys. A 74, 355–361 (2002).CrossRefGoogle Scholar
- 60.M. Nath, B. C. Satishkumar, A. Govindaraj, C. P. Vinod, and C. N. R. Rao, Production of bundles of aligned carbon and carbon–nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts, Chem. Phys. Lett. 322, 333–340 (2000).CrossRefGoogle Scholar
- 61.H. C. Choi, S. Y. Bae, W. S. Jang, J. Park, H. J. Song, H. J. Shin, H. Jung, and J. P. Ahn, Release of N-2 from the carbon nanotubes via high-temperature annealing, J. Phys. Chem. B 109, 1683–1688 (2005).CrossRefGoogle Scholar
- 62.I. Shimoyama, G. Wu, T. Sekiguchi, and Y. Baba, Study of electronic structure of graphite-like carbon nitride, J. Electron Spectrosc. 114, 841–848 (2001).CrossRefGoogle Scholar
- 63.R. Kurt and A. Karimi, Influence of nitrogen on the growth mechanism of decorated C:N nanotubes, ChemPhysChem 6, 388–392 (2001).CrossRefGoogle Scholar
- 64.K. Suenaga, M. P. Johansson, N. Hellgren, E. Broitman, L. R. Wallenberg, C. Colliex, J.E. Sundgren, and L. Hultman, Carbon nitride nanotubulite - densely-packed and well-aligned tubular nanostructures, Chem. Phys. Lett. 300, 695–700 (1999).CrossRefGoogle Scholar
- 65.N. Takada, K. Arai, S. Nitta, and S. Nonomura, Preparation and properties of reactive-sputtered amorphous CNx films, Appl. Surf. Sci. 114, 274–277 (1997).CrossRefGoogle Scholar
- 66.W. Q. Han, P. Kohler-Redlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W. K. Hsu, B. H. Chang, Y. Q. Zhu, H. W. Kroto, D. R. M. Walton, M. Terrones, and H. Terrones, Aligned CNx nanotubes by pyrolysis of ferrocene/C60 under NH3 atmosphere, Appl. Phys. Lett. 77, 1807–1809 (2000).CrossRefGoogle Scholar
- 67.D. Golberg, P. S. Ddorozhkin, Y. Bando, Z.C. Dong, C. C. Tang, Y. Uemura, N. Grobert, M. Reyes-reyes, H. Terrones, and M. Terrones, Structure, transport, and field-emission properties of compound nanotubes: CNx vs. BNCx (x < 0.1), Appl. Phys. A 76, 499–507 (2003).CrossRefGoogle Scholar
- 68.S. Stafstrom, Reactivity of curved and planar carbon-nitride structures, Appl. Phys. Lett. 77, 3941–3943 (2000).CrossRefGoogle Scholar
- 69.R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Ruhle, and D. L. Carroll, Identification of electron donor states in N-doped carbon nanotubes, Nano Lett. 1, 457–460 (2001).CrossRefGoogle Scholar
- 70.S. Y. Kim, H. S. Kim, S. Augustine, and J. K. Kang, Nanopores in carbon nitride nanotubes: Reversible hydrogen storage sites, Appl. Phys. Lett. 89, 253119-1-3 (2006).Google Scholar
- 71.M. Terrones, R. Kamalakaran, T. Seeger, and M. Rühle, Novel nanoscale gas containers: Encapsulation of N2 in CNx nanotubes, Chem. Commun. 23, 2335–2336 (2000).CrossRefGoogle Scholar
- 72.J. H. Yang, D. H. Lee, M. H. Yum, Y. S. Shin, E. J. Kim, C. Park, M. H. Kwon, C. W. Yang, J. B. Yoo, H. J. Song, H. J. Shin, Y. W. Jin, J. M. Kim, Encapsulation mechanism of N2 molecules into the central hollow of carbon nitride multiwalled nanofibers, Carbon 44, 2219–2223 (2006).CrossRefGoogle Scholar
- 73.J. Kouvetakis, R. B. Kaner, M. L. Sattler, and N. Bartlett, A novel graphite-like material of composition BC3 and nitrogen–carbon graphites. J. Chem. Soc. Chem. Commun. 1758–1759 (1986).Google Scholar
- 74.R.B. Kaner, J. Kouvetakis, C. E. Warble, M. L. Sattler, and N. Bartlett, Boron–carbon–nitrogen materials of graphite-like structure, Mat. Res. Bull. 22, 399–404 (1987)CrossRefGoogle Scholar
- 75.M. O. Watanabe, S. Itoh, T. Sasaki, and K. Mizushima, Visible-light-emitting layered BCN semiconductor, Phys. Rev. Lett. 77, 187–190 (1996).CrossRefGoogle Scholar
- 76.W. L. Wang, X. D. Bai, K. H. Liu, Z. Xu, D. Golberg, Y. Bando, and E. G. Wang, Direct synthesis of B–C–N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition, J. Am. Chem. Soc. 128, 6530–6531 (2006).CrossRefGoogle Scholar
- 77.D. Golberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction, Chem. Phys. Lett. 308, 337–342 (1999).CrossRefGoogle Scholar
- 78.D. Golberg, Y. Bando, L. Bourgeois, and T. Sato, Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon 38, 2017–2027 (2000).CrossRefGoogle Scholar
- 79.D. Golberg, P. Dorozhkin, Y. Bando, M. Hasegawa, and Z.C. Dong, Semiconducting B–C–N nanotubes with few layers, Chem. Phys. Lett. 359, 220–228 (2002).CrossRefGoogle Scholar
- 80.D. Golberg, P. S. Dorozhkin, Y. Bando, and Z.C. Dong, Cables of BN-insulated B-C-N nanotubes, Appl. Phys. Lett. 82, 1275–1277 (2003).CrossRefGoogle Scholar
- 81.M. Terrones, D. Golberg, N. Grobert, T. Seeger, M. Reyes-Reyes, M. Mayne, R. Kamalakarn, P. Dorozhkin, Z. C. Dong, H. Terrones, M. Ruhle, and Y. Bando, Production and state-of-the-art characterization of aligned nanotubes with homogeneous BCxN (1 ≤ x ≤ 5) compositions, Adv. Mater. 15, 1899–1903 (2003).CrossRefGoogle Scholar
- 82.M. Terrones, A. M. Benito, C. Manteca-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K Prassides, H. W. Kroto, and D. R. M., Walton, Pyrolytically grown BxCyNz nanomaterials: Nanofibres and nanotubes, Chem. Phys. Lett. 257, 576–82 (1996).CrossRefGoogle Scholar
- 83.P. Kohler-Redlich, M. Terrones, C. Manteca-Diego, W. K. Hsu, H. Terrones, M. Ruhle, H. W. Kroto, and D.R.M. Walton, Stable BxCyNz nanostructures: Low-temperature production of segregated C/BN layered materials, Chem. Phys. Lett. 310, 459–465 (1999).CrossRefGoogle Scholar
- 84.X. D. Bai, J. D. Guo, J. Yu, E. G. Wang, J. Yuan, and W. Z. Zhou, Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers, Appl. Phys. Lett. 76, 2624–2626 (2000).CrossRefGoogle Scholar
- 85.X. D. Bai, E. G. Wang, and J. Yu, Blue-violet photoluminescence from large-scale highly aligned boron carbonitride nanofibers, Appl. Phys. Lett. 77, 67–69 (2000).CrossRefGoogle Scholar
- 86.W. Q. Han, J. Cumings, and A. Zettl, Pyrolytically grown arrays of highly aligned BxCyNz nanotubes, Appl. Phys. Lett. 78, 2769–2771 (2001).CrossRefGoogle Scholar
- 87.Y. Zhang, H. Gu, K. Suenaga, and S. Iijima, Heterogeneous growth of B–C–N nanotubes by laser ablation. Chem. Phys. Lett. 279, 264–269 (1997).CrossRefGoogle Scholar
- 88.J. D. Guo, C. Y. Zhi, X. D. Bai, and E. G. Wang, Boron carbonitride nanojunctions, Appl. Phys. Lett. 80, 124–126 (2002).CrossRefGoogle Scholar
- 89.C. Y. Zhi, J. D. Guo, X. D. Bai, and E. G. Wang, Adjustable boron carbonitride nanotubes, J. Appl. Phys. 91, 5325–5333 (2002).CrossRefGoogle Scholar
- 90.H. Sjostrom, S. Stafstrom, M. Boman, and J. E. Sundergren, Superhard and elastic carbon nitride thin-films having fullerene-like microstructure, Phys. Rev. Lett. 75, 1336–1339 (1995).CrossRefGoogle Scholar
- 91.C. Y. Zhi, X. D. Bai, and E. G. Wang, Raman characterization of boron carbonitride nanotubes, Appl. Phys. Lett. 80, 3590–3592 (2002).CrossRefGoogle Scholar
- 92.R. M. Wang and H. Z. Zhang, Analytical TEM investigations on boron carbonitride nanotubes grown via chemical vapour deposition, New J. Phys. 6, 78 (2004)CrossRefGoogle Scholar
- 93.D. Golberg, Y. Bando, M. Mitome, K. Kurashima, T. Sato, N. Grobert, M. Reyes-Reyes, H. Terrones, M. Terrones, Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM, Phys. B 323, 60–66 (2002).CrossRefGoogle Scholar
- 94.D. Golberg, P. S. Dorozhkin, Y. Bando, M. Mitome, C. C. Tang, Discrimination of B–C–N nanotubes through energy-filtering electron microscopy, Diam. Relat. Mater. 14, 1857–1866 (2005).CrossRefGoogle Scholar
- 95.A. Y. Liu, R. M. Wetzcovitch, and M. L. Cohen, Atomic arrangement and electronic structure of BC2N, Phys. Rev. B 39, 1760–1765 (1988).CrossRefGoogle Scholar
- 96.H.Y. Zhu, D. J. Klein, N. H. March, and A. Rubio, Small band-gap graphitic CBN layers, J. Phys. Chem. Sol. 59, 1303–1308 (1998).CrossRefGoogle Scholar
- 97.L.W. Yin, Y. Bando, D. Golberg, A. Gloter, M. S. Li, X. L. Yuan, and T. Sekiguchi, Porous BCN nanotubular fibers: Growth and spatially resolved cathodoluminescence, J. Am. Chem. Soc. 127, 16354–16355 (2005).CrossRefGoogle Scholar