Advertisement

Carbon Nitride and Boron Carbon Nitride Nanostructures

  • Jie Yu
  • E.G. Wang
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 6)

Abstract

This chapter is devoted to carbon nitride and boron carbon nitride nanostructures, an important and indispensable member in the family of nanomaterials for various applications, especially in nanoelectronics. It covers all the main aspects of the current research on the carbon nitride and boron carbonitride nanostructures. The attention is mainly focused on the one-dimensional carbon nitride and boron carbon nitride nanotubes. The most critical issues were addressed from the perspectives of synthesis, composition, structure, property, and application. Due to the presence of multielements in graphite-like layers, the carbon nitride and boron carbon nitride nanotubes display much richer diversities than their carbon counterparts in structure and property. The carbon nitride nanotubes behave always as metallic wires, and the boron carbon nitride nanotubes exhibit semiconducting properties tailorable in a large range depending only on compositions. The properties of electrical conducting, electron field emission, photoluminescence, hydrogen storage, and lithium storage are also presented in this chapter based on the current knowledge.

Keywords

High Resolution Transmission Electron Microscopy Catalyst Particle Superhard Material Electron Energy Loss Spectroscopy Graphitic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was partly supported by NSFC, MOST, and CAS of China. We also thank Xuedong Bai, Xucun Ma, Dingyong Zhong, Chunyi Zhi, Wenlong Wang, Zhi Xu, Kaihui Liu, and Guangyu Zhang for their contribution, and W. Zhou at St. Andrews, Ningsheng Xu at Zhongshan University, Hongjie Dai at Stanford, Zhonglin Wang at GIT, D. Golberg and Y. Bando at NIMS for helpful discussion during the course.

References

  1. 1.
    A. Catellani, M. Posternak, and A. Baldereschi, Bulk and surface electronic structure of hexagonal boron nitride, Phys. Rev. B 36, 6105–6111 (1987).CrossRefGoogle Scholar
  2. 2.
    C. Tarrio and S. E. Schnatterly, Interband transitions, plasmons, and dispersion in hexagonal boron nitride, Phys. Rev. B 40, 7852–7859 (1989).CrossRefGoogle Scholar
  3. 3.
    C. A. Taylor II, S. W. Brown, V. Subramaniam, S. Kidner, S. C. Rand, and R. Clarke, Observation of near-band-gap luminescence from boron nitride films, Appl. Phys. Lett. 65, 1251–1253 (1994).CrossRefGoogle Scholar
  4. 4.
    K. Watanabe, T. Taniguchi, and H. Kanada, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3, 404–409 (2004).CrossRefGoogle Scholar
  5. 5.
    Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, Chiral tubules of hexagonal BC2N, Phys. Rev. B 50, 4976–4979 (1994).CrossRefGoogle Scholar
  6. 6.
    A. Ribio, J. L. Corkill, and M. L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B 49, 5081–5084 (1994).CrossRefGoogle Scholar
  7. 7.
    Y. H. Kim, K. J. Chang, and S. G. Louie, Electronic structure of radially deformed BN and BC3 nanotubes, Phys. Rev. B 63, 205408–1-5 (2001).CrossRefGoogle Scholar
  8. 8.
    M. L. Cohen, Calculation of bulk moduli of diamond and zinc blende solids, Phys. Rev. B 32, 7988–7991 (1985).CrossRefGoogle Scholar
  9.  9.
     9. E. G. Wang, Research on carbon nitrides, Prog. Mater. Sci. 41, 24–298 (1997).CrossRefGoogle Scholar
  10. 10.
    E. G. Wang, New development in covalently bonded carbon-nitride and related materials, Adv. Mater. 11, 1129–1133 (1999).CrossRefGoogle Scholar
  11. 11.
    V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D. C. Rubie, Synthesis of superhard cubic BC2N, Appl. Phys. Lett. 78, 1385–1387 (2001).CrossRefGoogle Scholar
  12. 12.
    V. L. Solozhenko, S. N. Dub, and N. V. Novikov, Mechanical properties of cubic BC2N, a new superhard phase, Diam. Relat. Mater. 10, 2228–2231 (2001).CrossRefGoogle Scholar
  13. 13.
    E.G. Wang, Nitride-related nanomaterials by chemical vapor deposition: Structure and property, J. Am. Ceram. Soc. 85, 105–108 (2002).CrossRefGoogle Scholar
  14. 14.
    S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991).CrossRefGoogle Scholar
  15. 15.
    N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Boron-nitride nanotubes, Science 269, 966–967 (1995).CrossRefGoogle Scholar
  16. 16.
    W. Han, Y. Bando, K. Kurashima, and T. Sato, Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction, Appl. Phys. Lett. 73, 3085–3087 (1998).CrossRefGoogle Scholar
  17. 17.
    T. Laude, Y. Matsui, A. Marraud, and B. Jouffrey, Long ropes of boron nitride nanotubes grown by a continuous laser heating, Appl. Phys. Lett. 76, 3239–3241 (2000).CrossRefGoogle Scholar
  18. 18.
    O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, and W. E. Buhro, CVD growth of boron nitride nanotubes, Chem. Mater. 12, 1808–1810 (2000).CrossRefGoogle Scholar
  19. 19.
    R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, G. Raina, J. P Zhang, A. K. Cheetham, and C. N. R. Rao, B–C–N, C–N and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts, Chem. Phys. Lett. 287, 671–676 (1998).CrossRefGoogle Scholar
  20. 20.
    M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu, H. Terrones, Y. Q. Zhu, J. P. Hare, C. L. Reeves, A. K. Cheetham, M. Ruhle, H. W. Kroto, and D. R. M. Walton, Carbon nitride nanocomposites: Formation of maligned CxNy nanofibers, Adv. Mater. 11, 655–658 (1999).CrossRefGoogle Scholar
  21. 21.
    S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H. C. Shih, Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition, Appl. Phys. Lett. 74, 197–199 (1999).CrossRefGoogle Scholar
  22. 22.
    D. Y. Zhong, S. Liu, G. Y. Zhang, and E. G. Wang, Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission, J. Appl. Phys. 89, 5939–5943 (2001).CrossRefGoogle Scholar
  23. 23.
    O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin, Doping graphitic and carbon nanotube structures with boron and nitrogen, Science 266, 1683–1685 (1994).CrossRefGoogle Scholar
  24. 24.
    Z. Weng-Sieh, K. Cherry, N. G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, A. Zettl, and R. Gronsy, Synthesis of BxCyNz nanotubules, Phys. Rev. B 51, 11229–11232 (1995).CrossRefGoogle Scholar
  25. 25.
    P. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, M. Ruhle, B–C–N nanotubes and boron doping of carbon nanotubes, Chem. Phys. Lett. 260, 465–470 (1996).CrossRefGoogle Scholar
  26. 26.
    J. Yu, J. Ahn, S. F. Yoon, Q. Zhang, Rusli, B. Gan, K. Chew, M. B. Yu, X. D. Bai, and E. G. Wang, Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers, Appl. Phys. Lett. 77, 1949–1951 (2000).CrossRefGoogle Scholar
  27. 27.
    X. C. Ma and E. G. Wang, Polymerized carbon nanobells and their field-emission properties, Appl. Phys. Lett. 75, 3105–3107 (1999).CrossRefGoogle Scholar
  28. 28.
    X. Ma, E. G. Wang, R. D. Tilley, D. A. Jefferson, and W. Zhou, Size-controlled short nanobells: Growth and formation mechanism, Appl. Phys. Lett. 77, 4136–4138 (2000).CrossRefGoogle Scholar
  29. 29.
    G. Y. Zhang, X. Jiang, and E. G. Wang, Tubular graphite cones, Science 300, 472–474 (2003).CrossRefGoogle Scholar
  30. 30.
    E. G. Wang, Nitrogen-induced carbon nanobells and their properties, J. Mater. Res. 21, 2726–2773 (2006).CrossRefGoogle Scholar
  31. 31.
    N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992).CrossRefGoogle Scholar
  32. 32.
    A. Hassanien, M. Tokumoto, Y. Humazawa, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature, Appl. Phys. Lett. 73, 3839–3841 (1998).CrossRefGoogle Scholar
  33. 33.
    A. Hassanien, M. Tokumoto, S. Ohshima, Y. Kuriki, F. Ikazaki, K. Uchida, and M. Yumura, Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes, Appl. Phys. Lett. 75, 2755–2757 (1999).CrossRefGoogle Scholar
  34. 34.
    A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge, Phys. Rev. Lett. 76, 4737–4740 (1996).CrossRefGoogle Scholar
  35. 35.
    M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Ramos, J. P. Hare, R Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Metal particle catalysed production of nanoscale BN structures, Chem. Phys. Lett. 259, 568–573 (1996).CrossRefGoogle Scholar
  36. 36.
    X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Stability and band-gap constancy of boron-nitride nanotubes, Europhys. Lett. 28, 335–340 (1994).CrossRefGoogle Scholar
  37. 37.
    X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B 51, 6868–6875 (1995).CrossRefGoogle Scholar
  38. 38.
    Y. Miyamoto, M. L. Cohen, and S. G. Louie, Theoretical investigation of graphitic carbon nitride and possible tubule forms, Solid State Commun. 102, 605–608 (1997).CrossRefGoogle Scholar
  39. 39.
    W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display, Appl. Phys. Lett. 75, 3129–3131 (1999).CrossRefGoogle Scholar
  40. 40.
    X. D. Bai, D. Y. Zhong, G. Y. Zhang, X. C. Ma, S. Liu, E. G. Wang, Y. Chen, and D. T. Shaw, Hydrogen storage in carbon nitride nanobells, Appl. Phys. Lett. 79, 1552–1554 (2001).CrossRefGoogle Scholar
  41. 41.
    D. Y. Zhong, G. Y. Zhang, S. Liu, E. G. Wang, Q. Wang, H. Li, and X. J. Huang, Lithium storage in polymerized carbon nitride nanobells, Appl. Phys. Lett. 79, 3500–3502 (2001).CrossRefGoogle Scholar
  42. 42.
    A. Y. Liu and M. L. Cohen, Science 245, 841–842 (1989).CrossRefGoogle Scholar
  43. 43.
    D. M. Teter and R. J. Hemley, Low-compressibility carbon nitrides, Science 271, 53–55 (1996).CrossRefGoogle Scholar
  44. 44.
    M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Controlled production of aligned-nanotube bundles, Nature 388, 52–55 (1997).CrossRefGoogle Scholar
  45. 45.
    R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, M. K. Renganathan, and C. N. R. Rao, Nitrogen-containing carbon nanotubes, J. Mater. Chem. 7, 2335–2337 (1997).CrossRefGoogle Scholar
  46. 46.
    G. Y. Zhang, X. C. Ma, D. Y. Zhong, and E. G. Wang, Polymerized carbon nitride nanobells, J. Appl. Phys. 91, 9324–9332 (2002).CrossRefGoogle Scholar
  47. 47.
    X. C. Ma and E. G. Wang, CNx/carbon nanotube junctions synthesized by microwave chemical vapor deposition, Appl. Phys. Lett. 78, 978–980 (2001).CrossRefGoogle Scholar
  48. 48.
    Y. Chai, X. L. Zhou, P. J. Li, W. J. Zhang, Q. F. Zhang, and J. L. Wu, Nanodiode based on a multiwall CNx/carbon nanotube intramolecular junction, Nanotechnology 16, 2134–2137 (2005).CrossRefGoogle Scholar
  49. 49.
    K. Xiao, Y. Q. Liu, P. A. Hu, G. Yu, W. P. Hu, D. B. Zhu, X. Y. Liu, H. M. Liu, and D. X. Wu, Appl. Phys. A 83, 53–56 (2006).CrossRefGoogle Scholar
  50. 50.
    M. Glerup, J. Steinmetz, D. Samaille, O. Stephan, S. Enouz, A. Loiseau, S. Roth, and P. Bernier, Synthesis of N-doped SWNT using the arc-discharge procedure, Chem. Phys. Lett. 387, 193–197 (2004).CrossRefGoogle Scholar
  51. 51.
    S. Y. Kim, J. Y. Lee, C. W. Na, J. Park, K. Seo, and B. Kim, N-doped double-walled carbon nanotubes synthesized by chemical vapor deposition, Chem. Phys. Lett. 413, 300–305 (2005).CrossRefGoogle Scholar
  52. 52.
    J. L. Zimmerman, R. Williams, V. N. Khabashesku, and J. L. Margrave, Synthesis of spherical carbon nitride nanostructures, Nano Lett. 1, 731–734 (2001).CrossRefGoogle Scholar
  53. 53.
    C. H. Cao, F. L. Huang, C. T. Cao, J. Li, and H. Zhu, Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route, Chem. Mater. 16, 5213–5215 (2004).CrossRefGoogle Scholar
  54. 54.
    Q. X. Guo, Y. Xie, X. J. Wang, S. Y. Zhang, T. Hou, and S. C. Lv, Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures, Chem. Commun. 1, 26–27 (2004).CrossRefGoogle Scholar
  55. 55.
    K. Suenaga, M. Yudasak, C. Colliex, and S. Iijima, Radially modulated nitrogen distribution in CN nanotubular structures prepared by CVD using Ni phthalocyanine, Chem. Phys. Lett. 316, 365–372 (2000).CrossRefGoogle Scholar
  56. 56.
    H. Chen, Y. Yang, Z. Hu, K. F. Huo, Y. W. Ma, Y. Chen, X. S. Wang, and Y. O. Lu, Synergism of C5N six-membered ring and vapor–liquid–solid growth of CNx nanotubes with pyridine precursor, J. Phys. Chem. B 110, 16422–16427 (2006).CrossRefGoogle Scholar
  57. 57.
    J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-Mateos, Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials, J. Am. Chem. Soc. 188, 8071–8076 (1996).CrossRefGoogle Scholar
  58. 58.
    I. Shimoyama, G. H. Wu, T. Sekiguchi, and Y. Baba, Evidence for the existence of nitrogen-substituted graphite structure by polarization dependence of near-edge x-ray-absorption fine structure, Phys. Rev. B 62, R6053–R6056 (2000).CrossRefGoogle Scholar
  59. 59.
    M. Terrones, P. M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. Seeger, and H. Terrones, N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties, Appl. Phys. A 74, 355–361 (2002).CrossRefGoogle Scholar
  60. 60.
    M. Nath, B. C. Satishkumar, A. Govindaraj, C. P. Vinod, and C. N. R. Rao, Production of bundles of aligned carbon and carbon–nitrogen nanotubes by the pyrolysis of precursors on silica-supported iron and cobalt catalysts, Chem. Phys. Lett. 322, 333–340 (2000).CrossRefGoogle Scholar
  61. 61.
    H. C. Choi, S. Y. Bae, W. S. Jang, J. Park, H. J. Song, H. J. Shin, H. Jung, and J. P. Ahn, Release of N-2 from the carbon nanotubes via high-temperature annealing, J. Phys. Chem. B 109, 1683–1688 (2005).CrossRefGoogle Scholar
  62. 62.
    I. Shimoyama, G. Wu, T. Sekiguchi, and Y. Baba, Study of electronic structure of graphite-like carbon nitride, J. Electron Spectrosc. 114, 841–848 (2001).CrossRefGoogle Scholar
  63. 63.
    R. Kurt and A. Karimi, Influence of nitrogen on the growth mechanism of decorated C:N nanotubes, ChemPhysChem 6, 388–392 (2001).CrossRefGoogle Scholar
  64. 64.
    K. Suenaga, M. P. Johansson, N. Hellgren, E. Broitman, L. R. Wallenberg, C. Colliex, J.E. Sundgren, and L. Hultman, Carbon nitride nanotubulite - densely-packed and well-aligned tubular nanostructures, Chem. Phys. Lett. 300, 695–700 (1999).CrossRefGoogle Scholar
  65. 65.
    N. Takada, K. Arai, S. Nitta, and S. Nonomura, Preparation and properties of reactive-sputtered amorphous CNx films, Appl. Surf. Sci. 114, 274–277 (1997).CrossRefGoogle Scholar
  66. 66.
    W. Q. Han, P. Kohler-Redlich, T. Seeger, F. Ernst, M. Ruhle, N. Grobert, W. K. Hsu, B. H. Chang, Y. Q. Zhu, H. W. Kroto, D. R. M. Walton, M. Terrones, and H. Terrones, Aligned CNx nanotubes by pyrolysis of ferrocene/C60 under NH3 atmosphere, Appl. Phys. Lett. 77, 1807–1809 (2000).CrossRefGoogle Scholar
  67. 67.
    D. Golberg, P. S. Ddorozhkin, Y. Bando, Z.C. Dong, C. C. Tang, Y. Uemura, N. Grobert, M. Reyes-reyes, H. Terrones, and M. Terrones, Structure, transport, and field-emission properties of compound nanotubes: CNx vs. BNCx (x < 0.1), Appl. Phys. A 76, 499–507 (2003).CrossRefGoogle Scholar
  68. 68.
    S. Stafstrom, Reactivity of curved and planar carbon-nitride structures, Appl. Phys. Lett. 77, 3941–3943 (2000).CrossRefGoogle Scholar
  69. 69.
    R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Ruhle, and D. L. Carroll, Identification of electron donor states in N-doped carbon nanotubes, Nano Lett. 1, 457–460 (2001).CrossRefGoogle Scholar
  70. 70.
    S. Y. Kim, H. S. Kim, S. Augustine, and J. K. Kang, Nanopores in carbon nitride nanotubes: Reversible hydrogen storage sites, Appl. Phys. Lett. 89, 253119-1-3 (2006).Google Scholar
  71. 71.
    M. Terrones, R. Kamalakaran, T. Seeger, and M. Rühle, Novel nanoscale gas containers: Encapsulation of N2 in CNx nanotubes, Chem. Commun. 23, 2335–2336 (2000).CrossRefGoogle Scholar
  72. 72.
    J. H. Yang, D. H. Lee, M. H. Yum, Y. S. Shin, E. J. Kim, C. Park, M. H. Kwon, C. W. Yang, J. B. Yoo, H. J. Song, H. J. Shin, Y. W. Jin, J. M. Kim, Encapsulation mechanism of N2 molecules into the central hollow of carbon nitride multiwalled nanofibers, Carbon 44, 2219–2223 (2006).CrossRefGoogle Scholar
  73. 73.
    J. Kouvetakis, R. B. Kaner, M. L. Sattler, and N. Bartlett, A novel graphite-like material of composition BC3 and nitrogen–carbon graphites. J. Chem. Soc. Chem. Commun. 1758–1759 (1986).Google Scholar
  74. 74.
    R.B. Kaner, J. Kouvetakis, C. E. Warble, M. L. Sattler, and N. Bartlett, Boron–carbon–nitrogen materials of graphite-like structure, Mat. Res. Bull. 22, 399–404 (1987)CrossRefGoogle Scholar
  75. 75.
    M. O. Watanabe, S. Itoh, T. Sasaki, and K. Mizushima, Visible-light-emitting layered BCN semiconductor, Phys. Rev. Lett. 77, 187–190 (1996).CrossRefGoogle Scholar
  76. 76.
    W. L. Wang, X. D. Bai, K. H. Liu, Z. Xu, D. Golberg, Y. Bando, and E. G. Wang, Direct synthesis of B–C–N single-walled nanotubes by bias-assisted hot filament chemical vapor deposition, J. Am. Chem. Soc. 128, 6530–6531 (2006).CrossRefGoogle Scholar
  77. 77.
    D. Golberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction, Chem. Phys. Lett. 308, 337–342 (1999).CrossRefGoogle Scholar
  78. 78.
    D. Golberg, Y. Bando, L. Bourgeois, and T. Sato, Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon 38, 2017–2027 (2000).CrossRefGoogle Scholar
  79. 79.
    D. Golberg, P. Dorozhkin, Y. Bando, M. Hasegawa, and Z.C. Dong, Semiconducting B–C–N nanotubes with few layers, Chem. Phys. Lett. 359, 220–228 (2002).CrossRefGoogle Scholar
  80. 80.
    D. Golberg, P. S. Dorozhkin, Y. Bando, and Z.C. Dong, Cables of BN-insulated B-C-N nanotubes, Appl. Phys. Lett. 82, 1275–1277 (2003).CrossRefGoogle Scholar
  81. 81.
    M. Terrones, D. Golberg, N. Grobert, T. Seeger, M. Reyes-Reyes, M. Mayne, R. Kamalakarn, P. Dorozhkin, Z. C. Dong, H. Terrones, M. Ruhle, and Y. Bando, Production and state-of-the-art characterization of aligned nanotubes with homogeneous BCxN (1 ≤ x ≤ 5) compositions, Adv. Mater. 15, 1899–1903 (2003).CrossRefGoogle Scholar
  82. 82.
    M. Terrones, A. M. Benito, C. Manteca-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K Prassides, H. W. Kroto, and D. R. M., Walton, Pyrolytically grown BxCyNz nanomaterials: Nanofibres and nanotubes, Chem. Phys. Lett. 257, 576–82 (1996).CrossRefGoogle Scholar
  83. 83.
    P. Kohler-Redlich, M. Terrones, C. Manteca-Diego, W. K. Hsu, H. Terrones, M. Ruhle, H. W. Kroto, and D.R.M. Walton, Stable BxCyNz nanostructures: Low-temperature production of segregated C/BN layered materials, Chem. Phys. Lett. 310, 459–465 (1999).CrossRefGoogle Scholar
  84. 84.
    X. D. Bai, J. D. Guo, J. Yu, E. G. Wang, J. Yuan, and W. Z. Zhou, Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers, Appl. Phys. Lett. 76, 2624–2626 (2000).CrossRefGoogle Scholar
  85. 85.
    X. D. Bai, E. G. Wang, and J. Yu, Blue-violet photoluminescence from large-scale highly aligned boron carbonitride nanofibers, Appl. Phys. Lett. 77, 67–69 (2000).CrossRefGoogle Scholar
  86. 86.
    W. Q. Han, J. Cumings, and A. Zettl, Pyrolytically grown arrays of highly aligned BxCyNz nanotubes, Appl. Phys. Lett. 78, 2769–2771 (2001).CrossRefGoogle Scholar
  87. 87.
    Y. Zhang, H. Gu, K. Suenaga, and S. Iijima, Heterogeneous growth of B–C–N nanotubes by laser ablation. Chem. Phys. Lett. 279, 264–269 (1997).CrossRefGoogle Scholar
  88. 88.
    J. D. Guo, C. Y. Zhi, X. D. Bai, and E. G. Wang, Boron carbonitride nanojunctions, Appl. Phys. Lett. 80, 124–126 (2002).CrossRefGoogle Scholar
  89. 89.
    C. Y. Zhi, J. D. Guo, X. D. Bai, and E. G. Wang, Adjustable boron carbonitride nanotubes, J. Appl. Phys. 91, 5325–5333 (2002).CrossRefGoogle Scholar
  90. 90.
    H. Sjostrom, S. Stafstrom, M. Boman, and J. E. Sundergren, Superhard and elastic carbon nitride thin-films having fullerene-like microstructure, Phys. Rev. Lett. 75, 1336–1339 (1995).CrossRefGoogle Scholar
  91. 91.
    C. Y. Zhi, X. D. Bai, and E. G. Wang, Raman characterization of boron carbonitride nanotubes, Appl. Phys. Lett. 80, 3590–3592 (2002).CrossRefGoogle Scholar
  92. 92.
    R. M. Wang and H. Z. Zhang, Analytical TEM investigations on boron carbonitride nanotubes grown via chemical vapour deposition, New J. Phys. 6, 78 (2004)CrossRefGoogle Scholar
  93. 93.
    D. Golberg, Y. Bando, M. Mitome, K. Kurashima, T. Sato, N. Grobert, M. Reyes-Reyes, H. Terrones, M. Terrones, Preparation of aligned multi-walled BN and B/C/N nanotubular arrays and their characterization using HRTEM, EELS and energy-filtered TEM, Phys. B 323, 60–66 (2002).CrossRefGoogle Scholar
  94. 94.
    D. Golberg, P. S. Dorozhkin, Y. Bando, M. Mitome, C. C. Tang, Discrimination of B–C–N nanotubes through energy-filtering electron microscopy, Diam. Relat. Mater. 14, 1857–1866 (2005).CrossRefGoogle Scholar
  95. 95.
    A. Y. Liu, R. M. Wetzcovitch, and M. L. Cohen, Atomic arrangement and electronic structure of BC2N, Phys. Rev. B 39, 1760–1765 (1988).CrossRefGoogle Scholar
  96. 96.
    H.Y. Zhu, D. J. Klein, N. H. March, and A. Rubio, Small band-gap graphitic CBN layers, J. Phys. Chem. Sol. 59, 1303–1308 (1998).CrossRefGoogle Scholar
  97. 97.
    L.W. Yin, Y. Bando, D. Golberg, A. Gloter, M. S. Li, X. L. Yuan, and T. Sekiguchi, Porous BCN nanotubular fibers: Growth and spatially resolved cathodoluminescence, J. Am. Chem. Soc. 127, 16354–16355 (2005).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Jie Yu
    • 1
  • E.G. Wang
    • 1
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations