Advertisement

Boron Nitride Nanocage Clusters, Nanotubes, Nanohorns, Nanoparticles, and Nanocapsules

  • Takeo OkuEmail author
  • Ichihito Narita
  • Naruhiro Koi
  • Atsushi Nishiwaki
  • Katsuaki Suganuma
  • Masahiro Inoue
  • Kenji Hiraga
  • Toshitsugu Matsuda
  • Makoto Hirabayashi
  • Hisato Tokoro
  • Shigeo Fujii
  • Makoto Gonda
  • Masahiko Nishijima
  • Toshio Hirai
  • Rodion V. Belosludov
  • Yoshiyuki Kawazoe
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 6)

Abstract

Various types of boron nitride (BN) nanostructured materials such as nanocage clusters, nanotubes, nanohorns, nanoparticles, and nanocapsules were synthesized by arc melting, thermal annealing, and chemical vapor deposition methods, which were characterized by high-resolution electron microscopy and molecular orbital calculations, and their properties were discussed. The BN clusters consisted of 4-, 6-, 8- and 10-membered BN rings satisfying the isolated tetragonal rule, which was optimized by molecular orbital calculations. Total energy calculation showed that some elements stabilize and expand the B36N36 structure. Bandgap energies of the B36N36 clusters were found to be reduced by introducing a metal atom inside the cluster, which indicates controllability of the energy gap. Chiralities of BN nanotubes with zigzag- and armchair-type structures were directly determined from high-resolution images, and structure models are proposed. Total energies of BN nanotubes with a zigzag-type structure were lower than those of armchair-type structure, and these results agreed well with the experimental data. Cup-stacked BN nanotubes and Fe-filled BN nanotubes were also produced, and the atomic structures, structural stability, and electronic property were investigated and discussed. BN nanohorns were synthesized, and multiwalled BN nanohorns would be stabilized by stacking of BN nanohorns. Formation and structures of multiply twinned nanoparticles with fivefold symmetry in chemical vapor-deposited BN were also investigated. A new process for Fe or Co nanoparticles coated with BN layers in large quantity was developed, and they exhibited a soft magnetic characteristic and good oxidation resistances. These unique structures would be suitable materials for nanoelectronics devices, magnetic recording media, and biological sensors with excellent protection against oxidation and wear. Possibility of hydrogen gas storage in BN clusters was also investigated by molecular orbital calculations, which indicated possibility of hydrogen storage of ~5 wt%. The new BN nanostructured materials would be expected as future nanocale devices.

Keywords

Boron Nitride Molecular Orbital Calculation Boron Nitride Nanotubes HREM Image Yttrium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1.  1.
     1. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie and A. Zettl, Science 269, 966 (1995).Google Scholar
  2. 2.
    A. Loiseau, F. Willaime, N. Demoncy, G. Hug and H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).Google Scholar
  3. 3.
    M. Terrones, W.K. Hsu, H. Terrones, J.P. Zhang, S. Ramos, J.P. Hare, R. Castillo, K. Prassides, A.K. Cheetham, H.W. Kroto and D.R.M. Walton, Chem. Phys. Lett. 259, 568 (1996).Google Scholar
  4. 4.
    A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, G. Hug, C. Colliex and H. Pascard, Carbon 36, 743 (1998).Google Scholar
  5. 5.
    D. Golberg, Y. Bando, K. Kurashima and T. Sato, Chem. Phys. Lett. 323, 185 (2000).Google Scholar
  6. 6.
    J. Cumings and A. Zettl, Chem. Phys. Lett. 316, 211 (2000).Google Scholar
  7. 7.
    T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara and K. Suganuma, Mater. Sci. Eng. B 74, 206 (2000).Google Scholar
  8. 8.
    C.C. Tang, M.L. de la Chapell, P. Li, Y.M. Liu, H.Y. Dang and S.S. Fan, Chem. Phys. Lett. 342, 492 (2001).Google Scholar
  9. 9.
    C. Tang, Y. Bando and T. Sato, Chem. Phys. Lett. 362, 185 (2002).Google Scholar
  10. 10.
    D. Goldberg, F.-F. Xu and Y. Bando, Appl. Phys. A 76, 479 (2003).Google Scholar
  11. 11.
    W. Mickelson, S. Aloni, W.-Q. Han, J. Cumings and A. Zettl, Science 300, 467 (2003).Google Scholar
  12. 12.
    D. Goldberg, Y. Bando, M. Mitome, K. Kurashima, T. Sato, N. Grobert, M. Reyes-Reyes, H. Terrones and M. Terrones, Phys. B 323, 60 (2002).Google Scholar
  13. 13.
    T. Oku, I. Narita and A. Nishiwaki, Mater. Manuf. Process. 19, 1215 (2004).Google Scholar
  14. 14.
    L. Bourgeois, Y. Bando, W.Q. Han and T. Sato, Phys. Rev. B 61, 7686 (2000).Google Scholar
  15. 15.
    M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino and K. Kimura, Chem. Phys. Lett. 324, 359 (2000).Google Scholar
  16. 16.
    M. Machado, R. Mota, and P. Piquini, Electronic properties of BN nanocones under electric fields, Microelectron. J. 34, 545 (2003).Google Scholar
  17. 17.
    A. Nishiwaki, T. Oku and I. Narita, Sci. Technol. Adv. Mater. 5, 629 (2004).Google Scholar
  18. 18.
    T. Oku, I. Narita, A. Nishiwaki, N. Koi, Defects Diffus. Forum 226-228, 113 (2004).Google Scholar
  19. 19.
    C. Zhi, Y. Bando, C. Tang and D. Golberg, Phys. Rev. B 72, 245419 (2005).Google Scholar
  20. 20.
    C. Zhi, Y. Bando, C. Tang, D. Golberg, R. Xie and T. Sekiguchi, Appl. Phys. Lett. 87, 063107 (2005).Google Scholar
  21. 21.
    A. Nishiwaki and T. Oku, Diam. Relat. Mater. 14, 1183 (2005).Google Scholar
  22. 22.
    T. Oku, T. Kusunose, K. Niihara and K. Suganuma, J. Mater. Chem. 10, 255 (2000).Google Scholar
  23. 23.
    J.F. Li, L.Z. Yao, C.H. Ye, C.M. Mo, W.L. Cai, Y. Zhang and L.D. Zhang, J. Cryst. Growth 223, 535 (2001).Google Scholar
  24. 24.
    H. Kitahara, T. Oku, T. Hirano and K. Suganuma, Diam. Relat. Mater. 10, 1210 (2001).Google Scholar
  25. 25.
    I. Narita and T. Oku, Diam. Relat. Mater. 11, 949 (2002).Google Scholar
  26. 26.
    G. Xing, G. Chen, X. Song, X. Yuan, W. Yao and H. Yan, Microelectron. Eng. 66, 70 (2003).Google Scholar
  27. 27.
    Y.-C. Zhu, Y. Bando, L.-W. Yin and D. Golberg, Chem. Eur. J. 10, 3667 (2004).Google Scholar
  28. 28.
    E. Borowiak-Palen, M.H. Rummeli, M. Knupfer, G. Behr, K. Biedermann, T. Gemming, R.J. Kalenczuk, T. Pichler, Carbon 43, 615 (2005).Google Scholar
  29. 29.
    T. Oku and K. Hiraga, Diam. Relat. Mater. 10, 1398 (2001).Google Scholar
  30. 30.
    T. Oku, K. Hiraga, T. Matsuda, T. Hirai and M. Hirabayashi, Diam. Relat. Mater. 12, 1138 (2003).Google Scholar
  31. 31.
    F. Banhart, M. Zwanger and H.-J. Muhr, Chem. Phys. Lett. 231, 98 (1994).Google Scholar
  32. 32.
    T. Oku, A. Nishiwaki, I. Narita and M. Gonda, Chem. Phys. Lett. 380, 620 (2003).Google Scholar
  33. 33.
    T. Oku, A. Nishiwaki and I. Narita, Sci. Technol. Adv. Mater. 5, 635 (2004).Google Scholar
  34. 34.
    D. Golberg, Y. Bando, O. Stéphan, and K. Kurashima, Appl. Phys. Lett. 73, 2441 (1998).Google Scholar
  35. 35.
    O. Stéphan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya and T. Sato, Appl. Phys. A 67, 107 (1998).Google Scholar
  36. 36.
    T. Oku, M. Kuno, H. Kitahara and I. Narita, Int. J. Inorg. Mater. 3, 597 (2001).Google Scholar
  37. 37.
    T. Oku, M. Kuno and I. Narita, Diam. Relat. Mater. 11, 940 (2002).Google Scholar
  38. 38.
    S. Kokado and K. Harigaya, Synthetic Met. 135-136,745 (2003).Google Scholar
  39. 39.
    M. Radosavljević, J. Appenzeller, V. Derycke, R. Martel, Ph. Avouris, A. Loiseau, J.-L. Cochon and D. Pigache, Appl. Phys. Lett. 82, 4131 (2003).Google Scholar
  40. 40.
    Y. Bando, K. Ogawa and D. Golberg, Chem. Phys. Lett. 347, 349 (2001).Google Scholar
  41. 41.
    C.C. Tang, Y. Bando and T. Sato, Appl. Phys. A 75, 681 (2002).Google Scholar
  42. 42.
    H. Tokoro, S. Fujii and T. Oku, IEEE Trans. Mag. 39, 2761 (2003).Google Scholar
  43. 43.
    H. Tokoro, S. Fujii and T. Oku, J. Mater. Chem. 14, 253 (2004).Google Scholar
  44. 44.
    R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu, J. Am. Chem. Soc. 124, 7672 (2002).Google Scholar
  45. 45.
    T. Oku, M. Kuno and I. Narita, J. Phys. Chem. Solids 65, 549 (2004).Google Scholar
  46. 46.
    X. Chen, X.P. Gao, H. Zhang, Z. Zhou, W.K. Hu, G.L. Pan, H.Y. Zhu, T.Y. Yan, and D.Y. Song, J. Phys. Chem. B 109, 11525 (2005).Google Scholar
  47. 47.
    S.H. Lim, J. Luo, W. Ji and J. Lin, Catal. Today 120, 346 (2007).Google Scholar
  48. 48.
    K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004).Google Scholar
  49. 49.
    Y. Kubota, K. Watanabe, O. Tsuda and T. Taniguchi, Science 317, 932 (2007).Google Scholar
  50. 50.
    A. Rubio, J.L. Corkill and M.L. Cohen, Phys. Rev. B 49, 5081 (1994).Google Scholar
  51. 51.
    J.-Ch. Charlier, X. Blase, A. De Vita and R. Car, Appl. Phys. A 68, 267 (1999).Google Scholar
  52. 52.
    Y.-H. Kim, K.J. Chang and S.G. Louie, Phys. Rev. B 63, 205408 (2001).Google Scholar
  53. 53.
    Ş. Erkoç, J. Mol. Struct. (Theochem) 542, 89 (2001).Google Scholar
  54. 54.
    S. Okada, S. Saito and A. Oshiyama, Phys. B 323, 224 (2002).Google Scholar
  55. 55.
    Z. Peralta-Inga, P. Lane, J.S. Murray, S. Boyd, M.E. Grice, C.J. O’Connor and P. Politzer, Nano Lett. 3, 21 (2003).Google Scholar
  56. 56.
    V.V. Ivanovskaya, A.A. Sofronov and A.L. Ivanovskii, Phys. Lett. A 297, 436 (2002).Google Scholar
  57. 57.
    W. Song, M. Ni, J. Lu, Z. Gao, S. Nagase, D. Yu, H. Ye, X. Zhang, J. Mol. Struct. (Theochem) 730, 121 (2005).Google Scholar
  58. 58.
    X. Li, W. Yang and B. Liu, Nano Lett. 7, 3709 (2007).Google Scholar
  59. 59.
    N. Thamwattana and J.M. Hill, J. Phys. Condens. Matter 19, 406209 (2007).Google Scholar
  60. 60.
    F. Jensen and H. Toflund, Chem. Phys. Lett. 201, 89 (1993).Google Scholar
  61. 61.
    M.E. Zandler, E.C. Behrman, M.B. Arrasmith, J.R. Myers and T.V. Smith, J. Mol. Struct. (Theochem) 362, 215 (1996).Google Scholar
  62. 62.
    G. Seifert, R.W. Fowler, D. Mitchell, D. Porezag and Th. Frauenheim, Chem. Phys. Lett. 268, 352 (1997).Google Scholar
  63. 63.
    Z. Slanina, M.-L. Sun and S.-L. Lee, Nanostruct. Mater. 8, 623 (1997).Google Scholar
  64. 64.
    H.-Y. Zhu, T.G. Schmalz and D.J. Klein, Int. J. Quant. Chem. 63, 393 (1997).Google Scholar
  65. 65.
    S.S. Alexandre, M.S.C. Mazzoni and H. Chacham, Appl. Phys. Lett. 75, 61 (1999).Google Scholar
  66. 66.
    P.W. Fowler, K.M. Rogers, G. Seifert, M. Terrones and H. Terrones, Chem. Phys. Lett. 299, 359 (1999).Google Scholar
  67. 67.
    K.M. Rogers, P.W. Fowler and G. Seifert, Chem. Phys. Lett. 332, 43 (2000).Google Scholar
  68. 68.
    G. Will and P.G. Perkins, Diam. Relat. Mater. 10, 2010 (2001).Google Scholar
  69. 69.
    S.S. Alexandre, H. Chacham and R.W. Nunes, Phys. Rev. B 63, 085406 (2001).Google Scholar
  70. 70.
    H.-S. Wu and H. Jiao, Chem. Phys. Lett. 386, 369 (2004).Google Scholar
  71. 71.
    R.R. Zope, B.I. Dunlap, Chem. Phys. Lett. 386, 403 (2004).Google Scholar
  72. 72.
    R.R. Zope, T. Baruah, M.R. Pederson and B.I. Dunlap, Phys. Rev. A 71, 025201 (2005).Google Scholar
  73. 73.
    V.V. Pokropivny and V.L. Bekenev, Semiconductors 40, 636 (2006).Google Scholar
  74. 74.
    V. Barone, A. Koller and G.E. Scuseria, J. Phys. Chem. A 110, 10844 (2006).Google Scholar
  75. 75.
    H.-S. Wu, and H. Jiao, J. Mol. Model 12, 537 (2006).Google Scholar
  76. 76.
    L. Koponen, L. Tunturivuori, M.J. Puska and Risto M. Nieminen, J. Chem. Phys. 126, 214306 (2007).Google Scholar
  77. 77.
    Q. Wang, Q. Sun, T. Oku and Y. Kawazoe, Phys. B 339, 105 (2003).Google Scholar
  78. 78.
    A. Nishiwaki, T. Oku and K. Suganuma, Phys. B 349, 254 (2004).Google Scholar
  79. 79.
    R.J.C. Batista, M.S.C. Mazzoni and H. Chacham, Phys. Rev. B 75, 035417 (2007).Google Scholar
  80. 80.
    V.V. Pokropivny, V.V. Skorokhod, G.S. Oleinik, A.V. Kurdyumov, T.S. Bartnitskaya, A.V. Pokropivny, A.G. Sisonyuk, D.M. Sheichenko, J. Solid State Chem. 154, 214 (2000).Google Scholar
  81. 81.
    D.L. Strout, J. Phys. Chem. A 104, 3364 (2000).Google Scholar
  82. 82.
    S.S. Alexandre, R.W. Nunes and H. Chacham, Phys. Rev. B 66, 085406 (2002).Google Scholar
  83. 83.
    S. Azevedo, M.S.C. Mazzoni, R.W. Nunes and H. Chacham, Phys. Rev. B 70, 205412 (2004).Google Scholar
  84. 84.
    W. An, X. Wu and X.C. Zeng, J. Phys. Chem. B 110, 16346 (2006).Google Scholar
  85. 85.
    T. Oku and I. Narita, Phys. B 323, 216 (2002).Google Scholar
  86. 86.
    I. Narita and T. Oku, Diam. Relat. Mater. 11, 945 (2002).Google Scholar
  87. 87.
    S.S. Han, J. Ku Kang, H.M. Lee, A.C.T. van Duin and W.A. Goddard III, J. Phys. Chem. 123, 114703 (2005).Google Scholar
  88. 88.
    S.-H. Jhi, Phys. Rev. B 74, 155424 (2006).Google Scholar
  89. 89.
    G. Mpourmpakis, G.E. Froudakis, Catal. Today 120, 341 (2007).Google Scholar
  90. 90.
    Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Appl. Phys. Lett. 84, 2430 (2004).Google Scholar
  91. 91.
    T. Oku, I. Narita, A. Nishiwaki, N. Koi, K. Suganuma, R. Hatakeyama, T. Hirata, H. Tokoro, S. Fujii, Top. Appl. Phys. 100, 187 (2006).Google Scholar
  92. 92.
    Y. Saito, M. Okuda, M. Tomita and T. Hayashi, Chem. Phys. Lett. 236, 419 (1995).Google Scholar
  93. 93.
    T. Oku, A. Nishiwaki and I. Narita, Phys. B 351, 184 (2004).Google Scholar
  94. 94.
    I. Narita and T. Oku, Solid State Commun. 122, 465 (2002).Google Scholar
  95. 95.
    I. Narita and T. Oku, Diam. Relat. Mater. 12, 1146 (2003).Google Scholar
  96. 96.
    K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida and T. Yoshida, Rapid Commun. Mass Spectrom. 2, 151 (1988).Google Scholar
  97. 97.
    H. Ajie, M.M. Alvarez, S.J. Anz, R.D. Beck, F. Diederich, K. Fostiropoulos, D.R. Huffman, W. Krätschmer, Y. Rubin, K.E. Schriver, D. Sensharma and R.L. Whetten, J. Phys. Chem. 94, 8630 (1990).Google Scholar
  98. 98.
    T. Oku, A. Carlsson, L.R. Wallenberg, J.-O. Malm, J.-O. Bovin, I. Higashi, T. Tanaka and Y. Ishizawa, J. Solid State Chem. 135, 182 (1998).Google Scholar
  99. 99.
    T. Oku, J. Ceram. Soc. Jpn 109, S17 (2001).Google Scholar
  100. 100.
    P.W. Stephens, G. Bortel, G. Faigel, M. Tegze, A. Jánossy, S. Pekker, G. Oszlanyi and L. Forró, Nature 370, 636 (1994).Google Scholar
  101. 101.
    M. Takata, B. Umeda, E. Nishibori, M. Sakata, Y. Saito, M. Ohno and H. Shinohara, Nature 377, 46 (1995).Google Scholar
  102. 102.
    H. Shinohara, Rep. Prog. Phys. 63, 843 (2000).Google Scholar
  103. 103.
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Nature 347, 354 (1990).Google Scholar
  104. 104.
    E. Bengu and L.D. Marks, Phys. Rev. Lett. 86, 2385 (2001).Google Scholar
  105. 105.
    D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima and T. Sato, Appl. Phys. Lett. 77, 1979 (2000).Google Scholar
  106. 106.
    B.G. Demczyk, J. Cumings, A. Zettl and R.O. Ritchie, Appl. Phys. Lett. 78, 2772 (2001).Google Scholar
  107. 107.
    A. Celik-Aktas, J.M. Zuo, J.F. Stubbins, C. Tang and Y. Bando, Appl. Phys. Lett. 86, 133110 (2005).Google Scholar
  108. 108.
    R. Arenal, M. Kociak, A. Loiseau, D.-J. Miller, Appl. Phys. Lett. 89, 073104 (2006).Google Scholar
  109. 109.
    I. Narita and T. Oku, Chem. Phys. Lett. 377, 354 (2003).Google Scholar
  110. 110.
    I. Narita and T. Oku, Solid State Commun. 129, 415 (2004).Google Scholar
  111. 111.
    T. Oku and I. Narita, Diam. Relat. Mater. 13, 1254 (2004).Google Scholar
  112. 112.
    D. Golberg, Y. Bando, K. Kurashima and T. Sato, Solid State Commun. 116, 1 (2000).Google Scholar
  113. 113.
    C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara and D. Golberg, J. Phys. Chem. B 110, 1525 (2006).Google Scholar
  114. 114.
    H. Chen, Y. Chen, J. Yu and J.S. Williams, Chem. Phys. Lett. 425, 315 (2006).Google Scholar
  115. 115.
    N. Koi, T. Oku, M. Inoue and K. Suganuma, J. Mater. Sci. 43, 2961 (2008).Google Scholar
  116. 116.
    C. Zhi, Y. Bando, C. Tang, R. Xie, T. Sekiguchi and D. Golberg. J. Am. Chem. Soc. 127, 15996 (2005).Google Scholar
  117. 117.
    S.-Y. Xie, W. Wang, K.A.S. Fernando, X. Wang, Y. Lin and Y.-P. Sun, Chem. Commun. 3670 (2006).Google Scholar
  118. 118.
    I. Narita, T. Oku, H. Tokoro and K. Suganuma, J. Electron Microsc. 55, 123 (2006).Google Scholar
  119. 119.
    T. Oku, I. Narita and H. Tokoro, J. Phys. Chem. Solids 67, 1152 (2006).Google Scholar
  120. 120.
    J.S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, and E. Rosencher, L. Goux-Capes, Phys. Rev. Lett. 94, 037405 (2005).Google Scholar
  121. 121.
    R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau and C. Colliex, Phys. Rev. Lett. 95, 127601 (2005).Google Scholar
  122. 122.
    H. Chen, Y. Chen, Y. Liu, C.-N. Xu, J.S. Williams, Opt. Mater. 29, 1295 (2007).Google Scholar
  123. 123.
    T. Oku, N. Koi, K. Suganuma, R.V. Belosludov and Y. Kawazoe, Solid State Commun. 143, 331 (2007).Google Scholar
  124. 124.
    M. Endo, Y.A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones and M.S. Dresselhaus, Carbon 41, 1941 (2003).Google Scholar
  125. 125.
    T. Oku, N. Koi and K. Suganuma, J. Phys. Chem. Solids 69, 1228 (2008).Google Scholar
  126. 126.
    M. Ishigami, J.D. Sau, S. Aloni, M.L. Cohen and A. Zettl, Phys. Rev. Lett. 94, 056804 (2005)Google Scholar
  127. 127.
    M. Ishigami, J.D. Sau, S. Aloni, M.L. Cohen and A. Zettl, Phys. Rev. Lett. 97, 176804 (2006).Google Scholar
  128. 128.
    J. Wang, V.K. Kayastha, Y.K. Yap, Z. Fan, J.G. Lu, Z. Pan, I.N. Ivanov, A.A. Puretzky, D.B. Geohegan, Nano Lett. 5, 2528 (2005)Google Scholar
  129. 129.
    X. Bai, D. Golberg, Y. Bando, C. Zhi, C. Tang, M. Mitome and K. Kurashima, Nano Lett. 7, 632 (2007).Google Scholar
  130. 130.
    N. Koi, T. Oku and M. Nishijima, Solid State Commun. 136, 342 (2005).Google Scholar
  131. 131.
    T. Oku, N. Koi, I. Narita, K. Suganuma and M. Nishijima, Mater. Trans. 48, 722 (2007).Google Scholar
  132. 132.
    K.P. Loh, M.L.M. Yeadon, C. Boothroyd and Z. Hu, Chem. Phys. Lett. 387, 40 (2004).Google Scholar
  133. 133.
    T. Oku, I. Narita and A. Nishiwaki, J. Eur. Ceram. Soc. 26, 443 (2006).Google Scholar
  134. 134.
    A. Nishiwaki and T. Oku, J. Electron Microsc. 54, i9 (2005).Google Scholar
  135. 135.
    A. Nishiwaki and T. Oku, J. Eur. Ceram. Soc. 26, 435 (2006).Google Scholar
  136. 136.
    T. Oku and A. Nishiwaki, Phys. E 29, 712 (2005).Google Scholar
  137. 137.
    T. Matsuda, N. Uno, H. Nakae, T. Hirai, J. Mater. Sci. 21, 649 (1986).Google Scholar
  138. 138.
    T. Matsuda, H. Nakae, T. Hirai, J. Mater. Sci. 23, 509 (1988).Google Scholar
  139. 139.
    T. Oku, K. Hiraga, T. Matsuda, T. Hirai and M. Hirabayashi, Diam. Relat. Mater. 12, 1918 (2003).Google Scholar
  140. 140.
    Joint Committee on Powder Diffraction Standards (1984) 34-421.Google Scholar
  141. 141.
    T. Oku, N. Koi and A. Nishiwaki, Diam. Relat. Mater. 14, 1193 (2005).Google Scholar
  142. 142.
    F.E. Kruis, H. Fissan, A. Peled, J. Aerosol Sci. 29, 511 (1998).Google Scholar
  143. 143.
    S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000).Google Scholar
  144. 144.
    M. Kuno, T. Oku, and K. Suganuma, Scripta Mater. 44, 1583 (2001).Google Scholar
  145. 145.
    H. Tokoro, S. Fujii, T. Oku, Solid State Commun. 133, 681 (2005).Google Scholar
  146. 146.
    J.Q. Hu, Q.Y. Lu, K.B. Tang, S.H. Yu, Y.T. Qian, G.E. Zhou, X.M. Liu, J.X. Wu, J. Solid State Chem. 148, 325 (1999).Google Scholar
  147. 147.
    N. Koi and T. Oku, Sci. Technol. Adv. Mater. 5, 625 (2004).Google Scholar
  148. 148.
    N. Koi, T. Oku, K. Suganuma, Phys. E 29, 541 (2005).Google Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  • Takeo Oku
    • 1
    Email author
  • Ichihito Narita
    • 1
  • Naruhiro Koi
    • 1
  • Atsushi Nishiwaki
    • 1
  • Katsuaki Suganuma
    • 1
  • Masahiro Inoue
    • 1
  • Kenji Hiraga
    • 1
  • Toshitsugu Matsuda
    • 1
  • Makoto Hirabayashi
    • 1
  • Hisato Tokoro
    • 1
  • Shigeo Fujii
    • 1
  • Makoto Gonda
    • 1
  • Masahiko Nishijima
    • 1
  • Toshio Hirai
    • 1
  • Rodion V. Belosludov
    • 1
  • Yoshiyuki Kawazoe
    • 1
  1. 1.Department of Materials ScienceThe University of Shiga PrefectureHikoneJapan

Personalised recommendations