B-C-N Nanotubes and Related Nanostructures pp 149-194 | Cite as
Boron Nitride Nanocage Clusters, Nanotubes, Nanohorns, Nanoparticles, and Nanocapsules
- 10 Citations
- 989 Downloads
Abstract
Various types of boron nitride (BN) nanostructured materials such as nanocage clusters, nanotubes, nanohorns, nanoparticles, and nanocapsules were synthesized by arc melting, thermal annealing, and chemical vapor deposition methods, which were characterized by high-resolution electron microscopy and molecular orbital calculations, and their properties were discussed. The BN clusters consisted of 4-, 6-, 8- and 10-membered BN rings satisfying the isolated tetragonal rule, which was optimized by molecular orbital calculations. Total energy calculation showed that some elements stabilize and expand the B36N36 structure. Bandgap energies of the B36N36 clusters were found to be reduced by introducing a metal atom inside the cluster, which indicates controllability of the energy gap. Chiralities of BN nanotubes with zigzag- and armchair-type structures were directly determined from high-resolution images, and structure models are proposed. Total energies of BN nanotubes with a zigzag-type structure were lower than those of armchair-type structure, and these results agreed well with the experimental data. Cup-stacked BN nanotubes and Fe-filled BN nanotubes were also produced, and the atomic structures, structural stability, and electronic property were investigated and discussed. BN nanohorns were synthesized, and multiwalled BN nanohorns would be stabilized by stacking of BN nanohorns. Formation and structures of multiply twinned nanoparticles with fivefold symmetry in chemical vapor-deposited BN were also investigated. A new process for Fe or Co nanoparticles coated with BN layers in large quantity was developed, and they exhibited a soft magnetic characteristic and good oxidation resistances. These unique structures would be suitable materials for nanoelectronics devices, magnetic recording media, and biological sensors with excellent protection against oxidation and wear. Possibility of hydrogen gas storage in BN clusters was also investigated by molecular orbital calculations, which indicated possibility of hydrogen storage of ~5 wt%. The new BN nanostructured materials would be expected as future nanocale devices.
Keywords
Boron Nitride Molecular Orbital Calculation Boron Nitride Nanotubes HREM Image Yttrium AtomReferences
- 1.1. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie and A. Zettl, Science 269, 966 (1995).Google Scholar
- 2.A. Loiseau, F. Willaime, N. Demoncy, G. Hug and H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).Google Scholar
- 3.M. Terrones, W.K. Hsu, H. Terrones, J.P. Zhang, S. Ramos, J.P. Hare, R. Castillo, K. Prassides, A.K. Cheetham, H.W. Kroto and D.R.M. Walton, Chem. Phys. Lett. 259, 568 (1996).Google Scholar
- 4.A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, G. Hug, C. Colliex and H. Pascard, Carbon 36, 743 (1998).Google Scholar
- 5.D. Golberg, Y. Bando, K. Kurashima and T. Sato, Chem. Phys. Lett. 323, 185 (2000).Google Scholar
- 6.J. Cumings and A. Zettl, Chem. Phys. Lett. 316, 211 (2000).Google Scholar
- 7.T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara and K. Suganuma, Mater. Sci. Eng. B 74, 206 (2000).Google Scholar
- 8.C.C. Tang, M.L. de la Chapell, P. Li, Y.M. Liu, H.Y. Dang and S.S. Fan, Chem. Phys. Lett. 342, 492 (2001).Google Scholar
- 9.C. Tang, Y. Bando and T. Sato, Chem. Phys. Lett. 362, 185 (2002).Google Scholar
- 10.D. Goldberg, F.-F. Xu and Y. Bando, Appl. Phys. A 76, 479 (2003).Google Scholar
- 11.W. Mickelson, S. Aloni, W.-Q. Han, J. Cumings and A. Zettl, Science 300, 467 (2003).Google Scholar
- 12.D. Goldberg, Y. Bando, M. Mitome, K. Kurashima, T. Sato, N. Grobert, M. Reyes-Reyes, H. Terrones and M. Terrones, Phys. B 323, 60 (2002).Google Scholar
- 13.T. Oku, I. Narita and A. Nishiwaki, Mater. Manuf. Process. 19, 1215 (2004).Google Scholar
- 14.L. Bourgeois, Y. Bando, W.Q. Han and T. Sato, Phys. Rev. B 61, 7686 (2000).Google Scholar
- 15.M. Terauchi, M. Tanaka, K. Suzuki, A. Ogino and K. Kimura, Chem. Phys. Lett. 324, 359 (2000).Google Scholar
- 16.M. Machado, R. Mota, and P. Piquini, Electronic properties of BN nanocones under electric fields, Microelectron. J. 34, 545 (2003).Google Scholar
- 17.A. Nishiwaki, T. Oku and I. Narita, Sci. Technol. Adv. Mater. 5, 629 (2004).Google Scholar
- 18.T. Oku, I. Narita, A. Nishiwaki, N. Koi, Defects Diffus. Forum 226-228, 113 (2004).Google Scholar
- 19.C. Zhi, Y. Bando, C. Tang and D. Golberg, Phys. Rev. B 72, 245419 (2005).Google Scholar
- 20.C. Zhi, Y. Bando, C. Tang, D. Golberg, R. Xie and T. Sekiguchi, Appl. Phys. Lett. 87, 063107 (2005).Google Scholar
- 21.A. Nishiwaki and T. Oku, Diam. Relat. Mater. 14, 1183 (2005).Google Scholar
- 22.T. Oku, T. Kusunose, K. Niihara and K. Suganuma, J. Mater. Chem. 10, 255 (2000).Google Scholar
- 23.J.F. Li, L.Z. Yao, C.H. Ye, C.M. Mo, W.L. Cai, Y. Zhang and L.D. Zhang, J. Cryst. Growth 223, 535 (2001).Google Scholar
- 24.H. Kitahara, T. Oku, T. Hirano and K. Suganuma, Diam. Relat. Mater. 10, 1210 (2001).Google Scholar
- 25.I. Narita and T. Oku, Diam. Relat. Mater. 11, 949 (2002).Google Scholar
- 26.G. Xing, G. Chen, X. Song, X. Yuan, W. Yao and H. Yan, Microelectron. Eng. 66, 70 (2003).Google Scholar
- 27.Y.-C. Zhu, Y. Bando, L.-W. Yin and D. Golberg, Chem. Eur. J. 10, 3667 (2004).Google Scholar
- 28.E. Borowiak-Palen, M.H. Rummeli, M. Knupfer, G. Behr, K. Biedermann, T. Gemming, R.J. Kalenczuk, T. Pichler, Carbon 43, 615 (2005).Google Scholar
- 29.T. Oku and K. Hiraga, Diam. Relat. Mater. 10, 1398 (2001).Google Scholar
- 30.T. Oku, K. Hiraga, T. Matsuda, T. Hirai and M. Hirabayashi, Diam. Relat. Mater. 12, 1138 (2003).Google Scholar
- 31.F. Banhart, M. Zwanger and H.-J. Muhr, Chem. Phys. Lett. 231, 98 (1994).Google Scholar
- 32.T. Oku, A. Nishiwaki, I. Narita and M. Gonda, Chem. Phys. Lett. 380, 620 (2003).Google Scholar
- 33.T. Oku, A. Nishiwaki and I. Narita, Sci. Technol. Adv. Mater. 5, 635 (2004).Google Scholar
- 34.D. Golberg, Y. Bando, O. Stéphan, and K. Kurashima, Appl. Phys. Lett. 73, 2441 (1998).Google Scholar
- 35.O. Stéphan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya and T. Sato, Appl. Phys. A 67, 107 (1998).Google Scholar
- 36.T. Oku, M. Kuno, H. Kitahara and I. Narita, Int. J. Inorg. Mater. 3, 597 (2001).Google Scholar
- 37.T. Oku, M. Kuno and I. Narita, Diam. Relat. Mater. 11, 940 (2002).Google Scholar
- 38.S. Kokado and K. Harigaya, Synthetic Met. 135-136,745 (2003).Google Scholar
- 39.M. Radosavljević, J. Appenzeller, V. Derycke, R. Martel, Ph. Avouris, A. Loiseau, J.-L. Cochon and D. Pigache, Appl. Phys. Lett. 82, 4131 (2003).Google Scholar
- 40.Y. Bando, K. Ogawa and D. Golberg, Chem. Phys. Lett. 347, 349 (2001).Google Scholar
- 41.C.C. Tang, Y. Bando and T. Sato, Appl. Phys. A 75, 681 (2002).Google Scholar
- 42.H. Tokoro, S. Fujii and T. Oku, IEEE Trans. Mag. 39, 2761 (2003).Google Scholar
- 43.H. Tokoro, S. Fujii and T. Oku, J. Mater. Chem. 14, 253 (2004).Google Scholar
- 44.R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu, J. Am. Chem. Soc. 124, 7672 (2002).Google Scholar
- 45.T. Oku, M. Kuno and I. Narita, J. Phys. Chem. Solids 65, 549 (2004).Google Scholar
- 46.X. Chen, X.P. Gao, H. Zhang, Z. Zhou, W.K. Hu, G.L. Pan, H.Y. Zhu, T.Y. Yan, and D.Y. Song, J. Phys. Chem. B 109, 11525 (2005).Google Scholar
- 47.S.H. Lim, J. Luo, W. Ji and J. Lin, Catal. Today 120, 346 (2007).Google Scholar
- 48.K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004).Google Scholar
- 49.Y. Kubota, K. Watanabe, O. Tsuda and T. Taniguchi, Science 317, 932 (2007).Google Scholar
- 50.A. Rubio, J.L. Corkill and M.L. Cohen, Phys. Rev. B 49, 5081 (1994).Google Scholar
- 51.J.-Ch. Charlier, X. Blase, A. De Vita and R. Car, Appl. Phys. A 68, 267 (1999).Google Scholar
- 52.Y.-H. Kim, K.J. Chang and S.G. Louie, Phys. Rev. B 63, 205408 (2001).Google Scholar
- 53.Ş. Erkoç, J. Mol. Struct. (Theochem) 542, 89 (2001).Google Scholar
- 54.S. Okada, S. Saito and A. Oshiyama, Phys. B 323, 224 (2002).Google Scholar
- 55.Z. Peralta-Inga, P. Lane, J.S. Murray, S. Boyd, M.E. Grice, C.J. O’Connor and P. Politzer, Nano Lett. 3, 21 (2003).Google Scholar
- 56.V.V. Ivanovskaya, A.A. Sofronov and A.L. Ivanovskii, Phys. Lett. A 297, 436 (2002).Google Scholar
- 57.W. Song, M. Ni, J. Lu, Z. Gao, S. Nagase, D. Yu, H. Ye, X. Zhang, J. Mol. Struct. (Theochem) 730, 121 (2005).Google Scholar
- 58.X. Li, W. Yang and B. Liu, Nano Lett. 7, 3709 (2007).Google Scholar
- 59.N. Thamwattana and J.M. Hill, J. Phys. Condens. Matter 19, 406209 (2007).Google Scholar
- 60.F. Jensen and H. Toflund, Chem. Phys. Lett. 201, 89 (1993).Google Scholar
- 61.M.E. Zandler, E.C. Behrman, M.B. Arrasmith, J.R. Myers and T.V. Smith, J. Mol. Struct. (Theochem) 362, 215 (1996).Google Scholar
- 62.G. Seifert, R.W. Fowler, D. Mitchell, D. Porezag and Th. Frauenheim, Chem. Phys. Lett. 268, 352 (1997).Google Scholar
- 63.Z. Slanina, M.-L. Sun and S.-L. Lee, Nanostruct. Mater. 8, 623 (1997).Google Scholar
- 64.H.-Y. Zhu, T.G. Schmalz and D.J. Klein, Int. J. Quant. Chem. 63, 393 (1997).Google Scholar
- 65.S.S. Alexandre, M.S.C. Mazzoni and H. Chacham, Appl. Phys. Lett. 75, 61 (1999).Google Scholar
- 66.P.W. Fowler, K.M. Rogers, G. Seifert, M. Terrones and H. Terrones, Chem. Phys. Lett. 299, 359 (1999).Google Scholar
- 67.K.M. Rogers, P.W. Fowler and G. Seifert, Chem. Phys. Lett. 332, 43 (2000).Google Scholar
- 68.G. Will and P.G. Perkins, Diam. Relat. Mater. 10, 2010 (2001).Google Scholar
- 69.S.S. Alexandre, H. Chacham and R.W. Nunes, Phys. Rev. B 63, 085406 (2001).Google Scholar
- 70.H.-S. Wu and H. Jiao, Chem. Phys. Lett. 386, 369 (2004).Google Scholar
- 71.R.R. Zope, B.I. Dunlap, Chem. Phys. Lett. 386, 403 (2004).Google Scholar
- 72.R.R. Zope, T. Baruah, M.R. Pederson and B.I. Dunlap, Phys. Rev. A 71, 025201 (2005).Google Scholar
- 73.V.V. Pokropivny and V.L. Bekenev, Semiconductors 40, 636 (2006).Google Scholar
- 74.V. Barone, A. Koller and G.E. Scuseria, J. Phys. Chem. A 110, 10844 (2006).Google Scholar
- 75.H.-S. Wu, and H. Jiao, J. Mol. Model 12, 537 (2006).Google Scholar
- 76.L. Koponen, L. Tunturivuori, M.J. Puska and Risto M. Nieminen, J. Chem. Phys. 126, 214306 (2007).Google Scholar
- 77.Q. Wang, Q. Sun, T. Oku and Y. Kawazoe, Phys. B 339, 105 (2003).Google Scholar
- 78.A. Nishiwaki, T. Oku and K. Suganuma, Phys. B 349, 254 (2004).Google Scholar
- 79.R.J.C. Batista, M.S.C. Mazzoni and H. Chacham, Phys. Rev. B 75, 035417 (2007).Google Scholar
- 80.V.V. Pokropivny, V.V. Skorokhod, G.S. Oleinik, A.V. Kurdyumov, T.S. Bartnitskaya, A.V. Pokropivny, A.G. Sisonyuk, D.M. Sheichenko, J. Solid State Chem. 154, 214 (2000).Google Scholar
- 81.D.L. Strout, J. Phys. Chem. A 104, 3364 (2000).Google Scholar
- 82.S.S. Alexandre, R.W. Nunes and H. Chacham, Phys. Rev. B 66, 085406 (2002).Google Scholar
- 83.S. Azevedo, M.S.C. Mazzoni, R.W. Nunes and H. Chacham, Phys. Rev. B 70, 205412 (2004).Google Scholar
- 84.W. An, X. Wu and X.C. Zeng, J. Phys. Chem. B 110, 16346 (2006).Google Scholar
- 85.T. Oku and I. Narita, Phys. B 323, 216 (2002).Google Scholar
- 86.I. Narita and T. Oku, Diam. Relat. Mater. 11, 945 (2002).Google Scholar
- 87.S.S. Han, J. Ku Kang, H.M. Lee, A.C.T. van Duin and W.A. Goddard III, J. Phys. Chem. 123, 114703 (2005).Google Scholar
- 88.S.-H. Jhi, Phys. Rev. B 74, 155424 (2006).Google Scholar
- 89.G. Mpourmpakis, G.E. Froudakis, Catal. Today 120, 341 (2007).Google Scholar
- 90.Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Appl. Phys. Lett. 84, 2430 (2004).Google Scholar
- 91.T. Oku, I. Narita, A. Nishiwaki, N. Koi, K. Suganuma, R. Hatakeyama, T. Hirata, H. Tokoro, S. Fujii, Top. Appl. Phys. 100, 187 (2006).Google Scholar
- 92.Y. Saito, M. Okuda, M. Tomita and T. Hayashi, Chem. Phys. Lett. 236, 419 (1995).Google Scholar
- 93.T. Oku, A. Nishiwaki and I. Narita, Phys. B 351, 184 (2004).Google Scholar
- 94.I. Narita and T. Oku, Solid State Commun. 122, 465 (2002).Google Scholar
- 95.I. Narita and T. Oku, Diam. Relat. Mater. 12, 1146 (2003).Google Scholar
- 96.K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida and T. Yoshida, Rapid Commun. Mass Spectrom. 2, 151 (1988).Google Scholar
- 97.H. Ajie, M.M. Alvarez, S.J. Anz, R.D. Beck, F. Diederich, K. Fostiropoulos, D.R. Huffman, W. Krätschmer, Y. Rubin, K.E. Schriver, D. Sensharma and R.L. Whetten, J. Phys. Chem. 94, 8630 (1990).Google Scholar
- 98.T. Oku, A. Carlsson, L.R. Wallenberg, J.-O. Malm, J.-O. Bovin, I. Higashi, T. Tanaka and Y. Ishizawa, J. Solid State Chem. 135, 182 (1998).Google Scholar
- 99.T. Oku, J. Ceram. Soc. Jpn 109, S17 (2001).Google Scholar
- 100.P.W. Stephens, G. Bortel, G. Faigel, M. Tegze, A. Jánossy, S. Pekker, G. Oszlanyi and L. Forró, Nature 370, 636 (1994).Google Scholar
- 101.M. Takata, B. Umeda, E. Nishibori, M. Sakata, Y. Saito, M. Ohno and H. Shinohara, Nature 377, 46 (1995).Google Scholar
- 102.H. Shinohara, Rep. Prog. Phys. 63, 843 (2000).Google Scholar
- 103.W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Nature 347, 354 (1990).Google Scholar
- 104.E. Bengu and L.D. Marks, Phys. Rev. Lett. 86, 2385 (2001).Google Scholar
- 105.D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima and T. Sato, Appl. Phys. Lett. 77, 1979 (2000).Google Scholar
- 106.B.G. Demczyk, J. Cumings, A. Zettl and R.O. Ritchie, Appl. Phys. Lett. 78, 2772 (2001).Google Scholar
- 107.A. Celik-Aktas, J.M. Zuo, J.F. Stubbins, C. Tang and Y. Bando, Appl. Phys. Lett. 86, 133110 (2005).Google Scholar
- 108.R. Arenal, M. Kociak, A. Loiseau, D.-J. Miller, Appl. Phys. Lett. 89, 073104 (2006).Google Scholar
- 109.I. Narita and T. Oku, Chem. Phys. Lett. 377, 354 (2003).Google Scholar
- 110.I. Narita and T. Oku, Solid State Commun. 129, 415 (2004).Google Scholar
- 111.T. Oku and I. Narita, Diam. Relat. Mater. 13, 1254 (2004).Google Scholar
- 112.D. Golberg, Y. Bando, K. Kurashima and T. Sato, Solid State Commun. 116, 1 (2000).Google Scholar
- 113.C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara and D. Golberg, J. Phys. Chem. B 110, 1525 (2006).Google Scholar
- 114.H. Chen, Y. Chen, J. Yu and J.S. Williams, Chem. Phys. Lett. 425, 315 (2006).Google Scholar
- 115.N. Koi, T. Oku, M. Inoue and K. Suganuma, J. Mater. Sci. 43, 2961 (2008).Google Scholar
- 116.C. Zhi, Y. Bando, C. Tang, R. Xie, T. Sekiguchi and D. Golberg. J. Am. Chem. Soc. 127, 15996 (2005).Google Scholar
- 117.S.-Y. Xie, W. Wang, K.A.S. Fernando, X. Wang, Y. Lin and Y.-P. Sun, Chem. Commun. 3670 (2006).Google Scholar
- 118.I. Narita, T. Oku, H. Tokoro and K. Suganuma, J. Electron Microsc. 55, 123 (2006).Google Scholar
- 119.T. Oku, I. Narita and H. Tokoro, J. Phys. Chem. Solids 67, 1152 (2006).Google Scholar
- 120.J.S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, and E. Rosencher, L. Goux-Capes, Phys. Rev. Lett. 94, 037405 (2005).Google Scholar
- 121.R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau and C. Colliex, Phys. Rev. Lett. 95, 127601 (2005).Google Scholar
- 122.H. Chen, Y. Chen, Y. Liu, C.-N. Xu, J.S. Williams, Opt. Mater. 29, 1295 (2007).Google Scholar
- 123.T. Oku, N. Koi, K. Suganuma, R.V. Belosludov and Y. Kawazoe, Solid State Commun. 143, 331 (2007).Google Scholar
- 124.M. Endo, Y.A. Kim, T. Hayashi, T. Yanagisawa, H. Muramatsu, M. Ezaka, H. Terrones, M. Terrones and M.S. Dresselhaus, Carbon 41, 1941 (2003).Google Scholar
- 125.T. Oku, N. Koi and K. Suganuma, J. Phys. Chem. Solids 69, 1228 (2008).Google Scholar
- 126.M. Ishigami, J.D. Sau, S. Aloni, M.L. Cohen and A. Zettl, Phys. Rev. Lett. 94, 056804 (2005)Google Scholar
- 127.M. Ishigami, J.D. Sau, S. Aloni, M.L. Cohen and A. Zettl, Phys. Rev. Lett. 97, 176804 (2006).Google Scholar
- 128.J. Wang, V.K. Kayastha, Y.K. Yap, Z. Fan, J.G. Lu, Z. Pan, I.N. Ivanov, A.A. Puretzky, D.B. Geohegan, Nano Lett. 5, 2528 (2005)Google Scholar
- 129.X. Bai, D. Golberg, Y. Bando, C. Zhi, C. Tang, M. Mitome and K. Kurashima, Nano Lett. 7, 632 (2007).Google Scholar
- 130.N. Koi, T. Oku and M. Nishijima, Solid State Commun. 136, 342 (2005).Google Scholar
- 131.T. Oku, N. Koi, I. Narita, K. Suganuma and M. Nishijima, Mater. Trans. 48, 722 (2007).Google Scholar
- 132.K.P. Loh, M.L.M. Yeadon, C. Boothroyd and Z. Hu, Chem. Phys. Lett. 387, 40 (2004).Google Scholar
- 133.T. Oku, I. Narita and A. Nishiwaki, J. Eur. Ceram. Soc. 26, 443 (2006).Google Scholar
- 134.A. Nishiwaki and T. Oku, J. Electron Microsc. 54, i9 (2005).Google Scholar
- 135.A. Nishiwaki and T. Oku, J. Eur. Ceram. Soc. 26, 435 (2006).Google Scholar
- 136.T. Oku and A. Nishiwaki, Phys. E 29, 712 (2005).Google Scholar
- 137.T. Matsuda, N. Uno, H. Nakae, T. Hirai, J. Mater. Sci. 21, 649 (1986).Google Scholar
- 138.T. Matsuda, H. Nakae, T. Hirai, J. Mater. Sci. 23, 509 (1988).Google Scholar
- 139.T. Oku, K. Hiraga, T. Matsuda, T. Hirai and M. Hirabayashi, Diam. Relat. Mater. 12, 1918 (2003).Google Scholar
- 140.Joint Committee on Powder Diffraction Standards (1984) 34-421.Google Scholar
- 141.T. Oku, N. Koi and A. Nishiwaki, Diam. Relat. Mater. 14, 1193 (2005).Google Scholar
- 142.F.E. Kruis, H. Fissan, A. Peled, J. Aerosol Sci. 29, 511 (1998).Google Scholar
- 143.S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000).Google Scholar
- 144.M. Kuno, T. Oku, and K. Suganuma, Scripta Mater. 44, 1583 (2001).Google Scholar
- 145.H. Tokoro, S. Fujii, T. Oku, Solid State Commun. 133, 681 (2005).Google Scholar
- 146.J.Q. Hu, Q.Y. Lu, K.B. Tang, S.H. Yu, Y.T. Qian, G.E. Zhou, X.M. Liu, J.X. Wu, J. Solid State Chem. 148, 325 (1999).Google Scholar
- 147.N. Koi and T. Oku, Sci. Technol. Adv. Mater. 5, 625 (2004).Google Scholar
- 148.N. Koi, T. Oku, K. Suganuma, Phys. E 29, 541 (2005).Google Scholar