Advertisement

Optical and Vibrational Properties of Boron Nitride Nanotubes

  • Ludger Wirtz
  • Angel RubioEmail author
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 6)

Abstract

As for carbon nanotubes, optical and vibrational spectroscopy – in particular Raman and luminescence spectroscopy – play an important role for the characterization of BN nanotubes. In this chapter we review, from a theoretical view point, the different spectroscopic techniques that are currently used for BN nanotubes and make a close link with available experimental data. We summarize experimental and theoretical data on optical absorption spectroscopy, luminescence spectroscopy, electron-energy loss spectroscopy, Raman spectroscopy, and infrared (IR) absorption spectroscopy. The combination of all those methods allows for a fairly complete characterization of the electronic structure and the vibrational properties of BN tubes. Possible applications in optoelectronic devices are briefly discussed.

Keywords

Boron Nitride Lower Unoccupied Molecular Orbital Radial Breathing Mode Boron Nitride Nanotubes Transverse Optical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge funding by Spanish MEC (FIS2007-65702-C02-01), Grupos Consolidados UPV/EHU of the Basque Country Government (IT-319-07), and European Community through e-I3 ETSF project (INFRA-211956); NoE Nanoquanta (NMP4-CT-2004-500198) and SANES (NMP4-CT-2006-017310). All this work started as an activity of the European research and training network COMELCAN and benefited a lot from fruitful collaborations and discussions with A. Marini, M. Grüning, C. Attaccalite, F. Mauri, M. Lazzeri, R. Arenal, P. Jaffrennou, and A. Loiseau. A.R. acknowledge Profs. S.G. Louie, M.L. Cohen, and A. Zettl for fundamental collaborations and support while we started the field of BN nanotubes that now is the scope of the present book chapter.

References

  1. 1.
    A. Rubio, J.L. Corkill, and M.L. Cohen, Phys. Rev. B 49, 5081(R) (1994).Google Scholar
  2. 2.
    X. Blase, A. Rubio, S.G. Louie, and M.L. Cohen, Europhys. Lett. 28, 335 (1994).CrossRefGoogle Scholar
  3. 3.
    Y. Miyamoto, A. Rubio, S.G. Louie, and M.L. Cohen, Phys. Rev. B 50, 18360 (1994).CrossRefGoogle Scholar
  4. 4.
    Y. Miyamoto, A. Rubio, S.G. Louie, and M.L. Cohen, Phys. Rev. B 50, 4976 (1994).CrossRefGoogle Scholar
  5. 5.
    Y. Miyamoto, A. Rubio, S.G. Louie, and M.L. Cohen, Phys. Rev. Lett. 76, 2121 (1996).CrossRefGoogle Scholar
  6. 6.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, and A. Zettl, Science 269, 966 (1995)CrossRefGoogle Scholar
  7. 7.
    Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl, and R. Gronsky, Phys. Rev. B 51, 11229 (1995).CrossRefGoogle Scholar
  8. 8.
    O. Stephan, P.M. Ajayan, C. Colliex, Ph. Redlich, J.M. Lambert, P. Bernier, and P. Lefin, Science 266, 1683 (1994).CrossRefGoogle Scholar
  9. 9.
    M. Radosavljević, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J.-L. Cochon, D. Pigache, Appl. Phys. Lett. 82, 4131 (2003).CrossRefGoogle Scholar
  10. 10.
    K. Watanabe, T. Taniguchi and H. Kanda, Nat. Mater. 3, 404 (2004).CrossRefGoogle Scholar
  11. 11.
    L. Wirtz, A. Marini, and A. Rubio, Phys. Rev. Lett. 96, 126104 (2006).CrossRefGoogle Scholar
  12. 12.
    G.Y. Guo and J.C. Lin, Phys. Rev. B 71, 165402 (2005).CrossRefGoogle Scholar
  13. 13.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  14. 14.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  15. 15.
    B. Baumeier, P. Krüger, and J. Pollmann, Phys. Rev. B 76, 085407 (2007).CrossRefGoogle Scholar
  16. 16.
    M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986).CrossRefGoogle Scholar
  17. 17.
    W.G. Aulbur, L. Jönsson, and J.W. Wilkins, Quasiparticle calculations in solids in Solid State Physics, edited by H. Ehrenreich and F. Spaepen (Academic, New York, 2000), Vol. 54, p. 1.Google Scholar
  18. 18.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).CrossRefGoogle Scholar
  19. 19.
    C. Friedrich and A. Schindlmayr, in Computational Nanoscience: Do It Yourself! (NIC Series), edited by J. Grotendorst, S. Blügel, and D. Marx (John von Neumann Institute for Computing, Jülich, 2006), Vol. 31, p. 335.Google Scholar
  20. 20.
    X. Blase, A. Rubio, S.G. Louie and M.L. Cohen, Phys. Rev. B 51, 6868 (1995).CrossRefGoogle Scholar
  21. 21.
    B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett. 96, 026402 (2006).CrossRefGoogle Scholar
  22. 22.
    G. Strinati, Phys. Rev. B 29, 5718 (1984).CrossRefGoogle Scholar
  23. 23.
    M. Rohlfing and S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998).CrossRefGoogle Scholar
  24. 24.
    C. Tarrio and S.E. Schnatterly, Phys. Rev. B 40, 7852 (1989).CrossRefGoogle Scholar
  25. 25.
    Y.N. Xu and W.Y. Ching, Phys. Rev. B 44, 7787 (1991).CrossRefGoogle Scholar
  26. 26.
    G. Cappellini, G. Satta, M. Palummo, and G. Onida, Phys. Rev. B 64, 035104 (2001).CrossRefGoogle Scholar
  27. 27.
    A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, and L. Reining, Appl. Phys. A 78, 1157 (2004).CrossRefGoogle Scholar
  28. 28.
    L. Wirtz, A. Marini, M. Grüning, C. Attaccalite, G. Kresse, and A. Rubio, Phys. Rev. Lett. 100, 189701 (2008).CrossRefGoogle Scholar
  29. 29.
    M. Shinada and S. Sugano, J. Phys. Soc. Jpn 21, 1936 (1966).CrossRefGoogle Scholar
  30. 30.
    T.G. Pedersen, Phys. Rev. B 67, 073401 (2003).CrossRefGoogle Scholar
  31. 31.
    B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett. 100, 189702 (2008).CrossRefGoogle Scholar
  32. 32.
    A. Marini, C. Hogan, M. Grüning, D. Varsano, Comp. Phys. Comm. (2009), doi:10.1016/j.cpc. 2009.02.003.Google Scholar
  33. 33.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  34. 34.
    M. Shishkin and G. Kresse, Phys. Rev. B 74, 035101 (2006).CrossRefGoogle Scholar
  35. 35.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  36. 36.
    R. Mamy, J. Thomas, G. Jezequel, and J.C. Lemonnier, J. Phys. (Paris) Lett. 42, 473 (1981).Google Scholar
  37. 37.
    J.S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, and E. Rosencher, Phys. Rev. Lett. 94, 037405 (2005).CrossRefGoogle Scholar
  38. 38.
    A. Marini, Phys. Rev. Lett. 101, 106405 (2008).Google Scholar
  39. 39.
    T. Ando, J. Phys. Soc. Jpn 66, 1066 (1997).CrossRefGoogle Scholar
  40. 40.
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Phys. Rev. Lett. 92, 077402 (2004).CrossRefGoogle Scholar
  41. 41.
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Appl. Phys. A 78, 1129 (2004).CrossRefGoogle Scholar
  42. 42.
    E. Chang, G. Bussi, A. Ruini, and E. Molinari, Phys. Rev. Lett. 92, 196401 (2004).CrossRefGoogle Scholar
  43. 43.
    F. Wang, G. Dukovic, L.E. Brus, and T.F. Heinz, Science 308, 838 (2005).CrossRefGoogle Scholar
  44. 44.
    Y.-Z. Ma, S.L. Dexheimer, L. Valkunas, S.M. Bachilo, and G.R. Fleming, Phys. Rev. Lett. 94, 157402 (2005).CrossRefGoogle Scholar
  45. 45.
    Y.-Z. Ma, L. Valkunas, S.M. Bachilo, and G.R. Fleming, J. Phys. Chem. B 109, 15671 (2005).CrossRefGoogle Scholar
  46. 46.
    C.-H. Park, C.D. Spataru, S.G. Louie, Phys. Rev. Lett. 96, 126105 (2006).CrossRefGoogle Scholar
  47. 47.
    Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317, 932 (2007).CrossRefGoogle Scholar
  48. 48.
    L. Museur and A. Kanaev, J. Appl. Phys. 103, 103520 (2008).CrossRefGoogle Scholar
  49. 49.
    P. Jaffrennou, J. Barjon, J.-S. Lauret, B. Attal-Trétout, F. Ducastelle, and A. Loiseau, J. Appl. Phys. 102, 116102 (2007).CrossRefGoogle Scholar
  50. 50.
    C.A. Taylor II, S.W. Brown, V. Subramaniam, S. Kidner, S.C. Rand, and R. Clark, Appl. Phys. Lett. 65, 1251 (1994).CrossRefGoogle Scholar
  51. 51.
    M.G. Silly, P. Jaffrennou, J. Barjon, J.-S. Lauret, F. Ducastelle, A. Loiseau, E. Obraztsova, B. Attal-Tretout, and E. Rosencher, Phys. Rev. B 75, 085205 (2007).CrossRefGoogle Scholar
  52. 52.
    W.-Q. Han, H.-G. Yu, C. Zhi, J. Wang, Z. Liu, T. Sekiguchi, and Y. Bando, Nano Lett. 8, 491 (2008).CrossRefGoogle Scholar
  53. 53.
    T. Taniguchi and K. Watanabe, J. Cryst. Growth 303, 525 (2007).CrossRefGoogle Scholar
  54. 54.
    J. Wu, W.-Q. Han, W. Walukiewicz, J.W. Ager III, W. Shan, E.E. Haller, A. Zettl, Nano Lett. 4(4), 647 (2004).CrossRefGoogle Scholar
  55. 55.
    P. Jaffrennou, F. Donatini, J. Barjon, J.-S. Lauret, A. Maguer, B. Attal-Tretout, F. Ducastelle, and A. Loiseau, Chem. Phys. Lett. 442, 372 (2007).CrossRefGoogle Scholar
  56. 56.
    P. Jaffrennou, J. Barjon, J.-S. Lauret, A. Maguer, D. Goldberg, B. Attal-Trétout, F. Ducastelle, and A. Loiseau, Phys. Status Solidi B 244, 4147 (2007).CrossRefGoogle Scholar
  57. 57.
    P. Jaffrennou, J. Barjon, T. Schmid, L. Museur, A. Kanaev, J.-S. Lauret, C.Y. Zhi, C. Tang, Y. Bando, D. Goldberg, B. Attal-Trétout, F. Ducastelle, and A. Loiseau, Phys. Rev. B 77, 235422 (2008).CrossRefGoogle Scholar
  58. 58.
    K.H. Koo, M.S.C. Mazzoni, and S.G. Louie, Phys. Rev. B 69, 201401(R) (2004).Google Scholar
  59. 59.
    C.-W. Chen, M.-H. Lee, and S.J. Clark, Nanotechnology 15, 1837 (2004).CrossRefGoogle Scholar
  60. 60.
    C. Attaccalite, L. Wirtz, A. Marini, and A. Rubio, Phys. Status Solidi B 244, 4288 (2007).CrossRefGoogle Scholar
  61. 61.
    G.G. Fuentes, E. Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R.J. Kalenczuk, M. Knupfer, and J. Fink, Phys. Rev. B 67, 035429 (2003).CrossRefGoogle Scholar
  62. 62.
    Vl.A. Margulis, E.E. Muryumin, and E.A. Gaiduk, Phys. Rev. B 77, 035425 (2008).CrossRefGoogle Scholar
  63. 63.
    R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau, and C. Colliex, Phys. Rev. Lett. 95, 127601 (2005).CrossRefGoogle Scholar
  64. 64.
    D. Taverna, M. Kociak, V. Charbois, and L. Henrard, Phys. Rev. B 66, 235419 (2002).CrossRefGoogle Scholar
  65. 65.
    L. Henrard and P. Lambin, J. Phys. B 29, 5127 (1996).CrossRefGoogle Scholar
  66. 66.
    P.C. Eklund, J.M. Holden, R.A. Jishi, Carbon 33, 959 (1995).CrossRefGoogle Scholar
  67. 67.
    J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, and H. Zandbergen, Chem. Phys. Lett. 221, 53 (1994).CrossRefGoogle Scholar
  68. 68.
    A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, and M.S. Dresselhaus, Science 275, 187 (1997).CrossRefGoogle Scholar
  69. 69.
    R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 57, 4145 (1998).CrossRefGoogle Scholar
  70. 70.
    U. Kuhlmann, H. Jontoljak, N. Pfänder, P. Bernier, C. Journet, and C. Thomsen, Chem. Phys. Lett. 294, 237 (1998).CrossRefGoogle Scholar
  71. 71.
    E. Borowiak-Palen, T. Pichler, G.G. Fuentes, B. Bendjemil, X. Liu, A. Graff, G. Behr, R.J. Kalenczuk, M. Knupfer, and J. Fink, Chem. Commun. 1, 82 (2003).CrossRefGoogle Scholar
  72. 72.
    V. N. Popov, Phys. Rev. B 67, 085408 (2003).CrossRefGoogle Scholar
  73. 73.
    P. Saxena, Pand S.P. Sanyal, Phys. E 24, 244 (2004).CrossRefGoogle Scholar
  74. 74.
    E. Rokuta, Y. Hasegawa, K. Suzuki, Y. Gamou, C. Oshima, and A. Nagashima, Phys. Rev. Lett. 79, 4609 (1997).CrossRefGoogle Scholar
  75. 75.
    D. Sánchez-Portal and E. Hernández, Phys. Rev. B 66, 235415 (2002).CrossRefGoogle Scholar
  76. 76.
    L. Wirtz, R. Arenal de la Concha, A. Loiseau, and A. Rubio, Phys. Rev. B 68, 045425 (2003).CrossRefGoogle Scholar
  77. 77.
    L. Wirtz and A. Rubio, IEEE Trans. Nanotechnol. 2, 341 (2003).CrossRefGoogle Scholar
  78. 78.
    O. Madelung (Ed.), Semiconductors – Basic Data (Springer, Berlin, 1996).Google Scholar
  79. 79.
    G. Kern, G. Kresse, and J. Hafner, Phys. Rev. B 59, 8551 (1999).CrossRefGoogle Scholar
  80. 80.
    W.J. Yu, W.M. Lau, S.P. Chan, Z.F. Liu, and Q.Q. Zheng, Phys. Rev. B 67, 014108 (2003).CrossRefGoogle Scholar
  81. 81.
    J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio, and L. Wirtz, Phys. Rev. Lett. 98, 095503 (2007).CrossRefGoogle Scholar
  82. 82.
    R. Geick, C.H. Perry, and G. Rupprecht, Phys. Rev. 146, 543 (1966).CrossRefGoogle Scholar
  83. 83.
    R.J. Nemanich, S.A. Solin, and R.M. Martin, Phys. Rev. B 23, 6348 (1981).CrossRefGoogle Scholar
  84. 84.
    S. Reich, A.C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson, Phys. Rev. B 71, 205201 (2005).CrossRefGoogle Scholar
  85. 85.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976).Google Scholar
  86. 86.
    A. Marini, P. García-Gonzalez, and A. Rubio, Phys. Rev. Lett. 96, 136404 (2006).CrossRefGoogle Scholar
  87. 87.
    O. Dubay and G. Kresse, Phys. Rev. B 67, 035401 (2003).CrossRefGoogle Scholar
  88. 88.
    G. Kresse, J. Furthmüller, and J. Hafner, Europhys. Lett. 32, 729 (1995).CrossRefGoogle Scholar
  89. 89.
    P. Pavone, R. Bauer, K. Karch, O. Schütt, S. Vent, W. Windl, D. Strauch, S. Baroni, and S. de Gironcoli, Phys. B 219 & 220, 439 (1996).CrossRefGoogle Scholar
  90. 90.
    L. Wirtz and A. Rubio, Solid State Commun. 131, 141 (2004).CrossRefGoogle Scholar
  91. 91.
    E.J. Mele and P. Kral, Phys. Rev. Lett. 88, 056803 (2002).CrossRefGoogle Scholar
  92. 92.
    The selection rules for Raman and IR spectroscopy are discussed in many textbooks. E.g., a nice introduction can be found in: D.C. Harris and M.D. Bertolucci, Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Dover, New York, 1989).Google Scholar
  93. 93.
    M. Damnjanović, T. Vuković, I. Milošević, and B. Nikolić, Act Cryst. A57, 304 (2001).Google Scholar
  94. 94.
    O.E. Alon, Phys. Rev. B 64, 153408 (2001).CrossRefGoogle Scholar
  95. 95.
    O.E. Alon, J. Phys.: Condens. Mat. 15, S2489 (2003).CrossRefGoogle Scholar
  96. 96.
    O.E. Alon, Phys. Rev. B 63, 201403 (2001).CrossRefGoogle Scholar
  97. 97.
    R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).CrossRefGoogle Scholar
  98. 98.
    R.A. Jishi, L. Venkataraman, M.S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209, 77–82 (1993).CrossRefGoogle Scholar
  99. 99.
    J. Kürti, G. Kresse, and H. Kuzmany, Phys. Rev. B 58, R8869 (1998).CrossRefGoogle Scholar
  100. 100.
    H. Vogt, in Light Scattering in Solids II, edited by M. Cardona and G. Güntherodth (Springer, Berlin, 1982).Google Scholar
  101. 101.
    L. Wirtz, M. Lazzeri, F. Mauri, and A. Rubio, Phys. Rev. B 71, 241402(R) (2005).CrossRefGoogle Scholar
  102. 102.
    M. Lazzeri and F. Mauri, Phys. Rev. Lett. 90, 036401 (2003).CrossRefGoogle Scholar
  103. 103.
    R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.-Y. Mevellec, S. Lefrant, A. Rubio, and A. Loiseau, Nano Lett. 6, 1812 (2006).CrossRefGoogle Scholar
  104. 104.
    E. Balan, A.M. Saitta, F. Mauri, and G. Calas, Am Mineral 86, 1321 (2001).Google Scholar
  105. 105.
    J.A. Misewich et al, Science 300, 783 (2003).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Institute for Electronics, Microelectronics, and Nanotechnology (IEMN)CNSR-UMR 8520Villeneuve d’Ascq CedexFrance
  2. 2.European Theoretical Spectroscopy Facility (ETSF), Departamento de Física de MaterialesUniversidad del País Vasco, Edificio Korta, AvdaSan SebastiánSpain

Personalised recommendations