Skip to main content

Electronic Properties of Boron-Nitride and Boron Carbonitride Nanotubes and Related Heterojunctions

  • Chapter
  • First Online:
B-C-N Nanotubes and Related Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 6))

Abstract

We review in the present chapter the electronic and optical properties of hexagonal boron-nitride and hexagonal composite boron carbonitride planar and nanotubular structures. We focus mainly on theoretical aspects, but illustrate in all situations the link with existing experimental findings. In a first part, the ­insulating nature, and the band gap stability, of boron-nitride nanotubes are shown to be related to the ionicity character of the boron-nitrogen bond. Specific ­emphasis is given to the optical properties and the related excitonic effects. In a second part, the evolution of the stability and band gap of boron carbonitride systems as a function of the degree of segregation in pure carbon or boron-nitride domains is illustrated and their potential in terms of rectifying hetero-junctions, quantum dots, or ­visible-light optoelectronics devices is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Blase, A. Rubio, M.L. Cohen, S.G. Louis, Europhys. Lett. 28, 335 (1994).

    Article  CAS  Google Scholar 

  2. A. Rubio, J. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994).

    Article  CAS  Google Scholar 

  3. J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature (London) 91, 19 (1998).

    Google Scholar 

  4. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature (London) 91, 62 (1998).

    Google Scholar 

  5. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).

    Article  CAS  Google Scholar 

  6. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  CAS  Google Scholar 

  7. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992).

    Article  CAS  Google Scholar 

  8. N.G. Chopra et al., Science 269, 966 (1995).

    Article  CAS  Google Scholar 

  9. A. Loiseau et al., Phys. Rev. Lett. 76, 4737 (1996).

    Article  CAS  Google Scholar 

  10. M. Terrones et al., Chem. Phys. Lett. 259, 568 (1996).

    Article  CAS  Google Scholar 

  11. D. Golberg et al., Appl. Phys. Lett. 69, 2045 (1996).

    Article  CAS  Google Scholar 

  12. O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin, Science 266, 1683 (1994).

    Article  CAS  Google Scholar 

  13. Loiseau, A., P. Launois, P. Petit, S. Roche, J.-P. Salvetat, Understanding Carbon Nanotubes from Basics to Applications, Lecture Notes in Physics 677, Springer-Verlag, Berlin (2006).

    Google Scholar 

  14. M. Terrones et al., Mat. Today 10, 30–38 (2007).

    Article  CAS  Google Scholar 

  15. D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Adv. Mater. 19, 2413–2432 (2007).

    Article  CAS  Google Scholar 

  16. L. Liu, Y.P. Fezng, Z.X. Shen, Phys. Rev. B 68, 104102 (2003).

    Article  Google Scholar 

  17. L. Wirtz, R. Arenal de la Concha, A. Loiseau, A. Rubio, Phys. Rev. B 68, 045425 (2003).

    Article  Google Scholar 

  18. R. Tenne et al., Nature 360, 444 (1992).

    Article  CAS  Google Scholar 

  19. L. Margulis et al., Nature 365, 113 (1993).

    Article  CAS  Google Scholar 

  20. R. Tenne et al., Chem. Mater. 10, 3225 (1998).

    Article  CAS  Google Scholar 

  21. L. Rapoport et al., Nature 387, 791 (1997).

    Article  CAS  Google Scholar 

  22. G. Seifert et al., Phys. Rev. Lett. 85, 146 (2000).

    Article  CAS  Google Scholar 

  23. M. Côté et al., Phys. Rev. B 58, R4277 (1998).

    Article  Google Scholar 

  24. P. Zhang and V.H. Crespi, Phys. Rev. Lett. 89, 056403 (2002).

    Article  Google Scholar 

  25. J.-C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79, 667 (2007).

    Article  Google Scholar 

  26. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004).

    Article  CAS  Google Scholar 

  27. R.F.W. Bader, Atoms in Molecules: A Quantum Theory, International Series of Monographs in Chemistry, Clarendon Press, Oxford (1990).

    Google Scholar 

  28. C. Katan, P. Rabiller, C. Lecomte, M. Guezo, V. Oison, M. Souhassou, J. Appl. Cryst. 36, 65 (2003).

    Article  CAS  Google Scholar 

  29. J. Robertson, Phys. Rev. B 29, 2131 (1984).

    Article  CAS  Google Scholar 

  30. A. Catellani, M. Posternak, A. Balderschi, A.J. Freeman, Phys. Rev. B 36, 6105 (1997).

    Article  Google Scholar 

  31. J. Furthmüller, J. Hafner, G. Kresse, Phys. Rev. B 50, 15606 (1994).

    Article  Google Scholar 

  32. Y.N. Xu, W.Y. Ching, Phys. Rev. B 44, 7787 (1991).

    Article  CAS  Google Scholar 

  33. R. Dovesi, C. Pisani, C. Roetti, Int. J. Quantum Chem. 17, 517–529 (1980).

    Article  CAS  Google Scholar 

  34. L. Hedin and S. Lundquist, in Solid State Phyisics, Vol. 23, edited by H. Ehrenreich, F. Sietz, and D. Turnbull, Academic, New York, (1969), p. 1.

    Google Scholar 

  35. X. Blase, A. Rubio, M.L. Cohen, S.G. Louie, Phys. Rev. B 51, 6868 (1995).

    Article  CAS  Google Scholar 

  36. G. Cappellini, G. Satta, M. Palummo, G. Onida, Phys. Rev. B 64, 035104 (2001).

    Article  Google Scholar 

  37. B. Arnaud, S. Lebègue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 96, 026402 (2006).

    Article  CAS  Google Scholar 

  38. L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006).

    Article  Google Scholar 

  39. C.-H. Park, C.D. Spataru, S.G. Louie, Phys. Rev. Lett. 96, 126105 (2006).

    Article  Google Scholar 

  40. K.T. Park, K. Terakura, N. Hamada, J. Phys. C: Solid State Phys. 20, 1241–1251 (1987).

    Article  CAS  Google Scholar 

  41. E.R. Margine and H. Vincent, Crespi, Phys. Rev. Lett. 96, 196803 (2006).

    Article  CAS  Google Scholar 

  42. L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. B 52, 8541 (1995).

    Article  CAS  Google Scholar 

  43. S. Tasaki, K. Maekawa, T. Yamabe, Phys. Rev. B 57, 9301 (1998).

    Article  CAS  Google Scholar 

  44. A.G. Marinopoulos, L. Reining, A. Rubio, N. Vast, Phys. Rev. Lett. 91, 046402 (2003).

    Article  CAS  Google Scholar 

  45. N. Wang, Z.K. Tang, G.D. Li, and J.S. Chen, Nature (London) 408, 50 (2000).

    CAS  Google Scholar 

  46. A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, L. Reining, Appl. Phys. A 78, 1157–1167 (2004).

    Article  CAS  Google Scholar 

  47. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

    Article  CAS  Google Scholar 

  48. C.F. Klingshim, Semiconductor Optics, Springer-Verlag, Berlin (1995).

    Google Scholar 

  49. R.J. Elliott, Phys. Rev. 108, 1384 (1957).

    Article  CAS  Google Scholar 

  50. R. Loudon, Am. J. Phys. 27, 649 (1959).

    Article  CAS  Google Scholar 

  51. Ogawa and Takagahara, Phys. Rev. B 43, 14325 (1991).

    Article  Google Scholar 

  52. Ogawa and Takagahara, Phys. Rev. B 44, 8138 (1991).

    Article  Google Scholar 

  53. P. Král et al., Phys. Rev. Lett. 85, 1512 (2000).

    Article  Google Scholar 

  54. E.J. Mele and P. Král, Phys. Rev. Lett. 88, 056803 (2002).

    Article  CAS  Google Scholar 

  55. K. H. Khoo, M.S.C. Mazzoni, Steven G. Louie, Phys. Rev. B 69, 201401 (2004).

    Article  Google Scholar 

  56. M. Ishigami et al., Phys. Rev. Lett. 94, 056804 (2005).

    Article  Google Scholar 

  57. O. Stephan et al., Appl. Phys. A Mater. Sci. Process 67, 107 (1998).

    Article  CAS  Google Scholar 

  58. D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Appl. Phys. Lett. 73, 2441 (1998).

    Article  CAS  Google Scholar 

  59. T. Oku, A. Nishiwaki, I. Narita, M. Gonda, Chem. Phys. Lett. 380, 620 (2003).

    Article  CAS  Google Scholar 

  60. T. Oku, A. Nishiwaki, I. Narita, J. Phys. Chem. Solids 65, 369 (2004).

    Article  CAS  Google Scholar 

  61. F. Jensen and H. Toftlund, Chem. Phys. Lett. 201, 89 (1993).

    Article  CAS  Google Scholar 

  62. X. Blase, A. De Vita, J.-C. Charlier, R. Car, Phys. Rev. Lett. 80, 166 (1998).

    Article  Google Scholar 

  63. H. S. Wu, X. H. Xu, H. Jiao, Chem. Phys. Lett. 386, 369 (2004).

    Article  CAS  Google Scholar 

  64. R.R. Zope, T. Baruah, M.R. Pederson, B.I. Dunlap, Chem. Phys. Lett. 393, 300 (2004).

    Article  CAS  Google Scholar 

  65. R.J.C. Batista, M.S.C. Mazzoni, H. Chacham, Chem. Phys. Lett. 421, 246 (2004).

    Article  Google Scholar 

  66. S.S. Alexandre, M.S.C. Mazzoni, H. Chacham, Appl. Phys. Lett. 73, 61 (1999).

    Article  Google Scholar 

  67. P.W. Fowler, K.M. Rogers, G. Seifert, M. Terrones, H. Terrones, Chem. Phys. Lett. 209, 359 (1994).

    Google Scholar 

  68. S.S. Alexandre, H. Chacham, R.W. Nunes, Phys. Rev. B 63, 045402 (2001).

    Article  Google Scholar 

  69. S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004).

    Article  Google Scholar 

  70. S. Azevedo, M.S.C. Mazzoni, H. Chacham, R.W. Nunes, Appl. Phys. Lett. 82, 2323 (2003).

    Article  CAS  Google Scholar 

  71. J. Kouvetakis, R.B. Kaner, M.L. Sattler, N. Bartlett, J. Chem. Soc., Chem. Commun. (24), 1785 (1986).

    Google Scholar 

  72. M.O. Watanabe, S. Itoh, T. Sasaki, K. Mizushima, Phys. Rev. Lett. 77, 187 (1996); Erratum, Phys. Rev. Lett. 77, 2846 (1996).

    Article  CAS  Google Scholar 

  73. Y. Chen, J.C. Barnard, R.E. Palmer, M.O. Watanabe, T. Sasaki, Phys. Rev. Lett. 83, 2406 (1999).

    Article  CAS  Google Scholar 

  74. A.Y. Liu et al., Phys. Rev. B 39, 1760 (1989).

    Article  CAS  Google Scholar 

  75. X. Blase, J.-C. Charlier, A. De Vita, R. Car, Appl. Phys. A 68, 293–300 (1999).

    Article  CAS  Google Scholar 

  76. Y. Miyamoto, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 76, 2121–2124 (1996).

    Article  CAS  Google Scholar 

  77. X. Blase, Comp. Matt. Sci. 17, 107 (2000).

    Article  CAS  Google Scholar 

  78. H. Nozaki and S. Itoh, J. Phys. Chem. Solids 57, 41–49 (1996).

    Article  CAS  Google Scholar 

  79. K. Suenaga, C. Colliex, N. Demoncy et al., Science 278 653–655 (1997).

    Article  CAS  Google Scholar 

  80. O.A. Louchev, Y. Sato, H. Kanda, Y. Bando, Appl. Phys. Lett. 77, 1446–1448 (2000)

    Article  CAS  Google Scholar 

  81. C.Y. Zhi, X.D. Bai, E.G. Wang, Appl. Phys. Lett. 84, 1549–1551 (2004).

    Article  CAS  Google Scholar 

  82. D. Goldberg, P. Dorozhkin, Y. Bando, M. Hasegawa, Z.C. Dong, Chem. Phys. Lett. 359, 220–228 (2002).

    Article  Google Scholar 

  83. C.Y. Zhi, J.D. Guo, X.D. Bai, E.G. Wang, J. Appl. Phys. 91, 5325–5333 (2002).

    Article  CAS  Google Scholar 

  84. Y.K. Yap, Y. Wada, M. Yamaoka, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Rel. Mater. 10, 1137–1141 (2001).

    Article  CAS  Google Scholar 

  85. Y. Wada, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Rel. Mater. 9, 620–624 (2000).

    Article  CAS  Google Scholar 

  86. X. Blase, J.-C. Charlier, A. De Vita, R. Car, Appl. Phys. Lett. 70, 197 (1997)

    Article  CAS  Google Scholar 

  87. S. Enouz, O. Stephan, J.-L. Cochon, C. Colliex, A. Loiseau, Nano Lett. 7, 1856 (2007).

    Article  CAS  Google Scholar 

  88. J. Choi, Y.-H. Kim, K.J. Chang, D. Tománek, Phys. Rev. B 67, 125421 (2003).

    Article  Google Scholar 

  89. J. Nakamura, T. Nitta, A. Natori, Phys. Rev. B 72, 205429 (2005).

    Article  Google Scholar 

  90. M.S.C. Mazzoni, R.W. Nunes, S. Azevedo et al., Phys. Rev. B 73, 073108 (2006).

    Article  Google Scholar 

  91. S. Okada, A. Oshiyama, Phys. Rev. Lett. 87, 146803 (2001).

    Article  CAS  Google Scholar 

  92. E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

    Article  Google Scholar 

Download references

Ackowledgments

X.B. acknowledges support from the French CNRS and National Agency for Research (ANR) under contract PNANO-ACCENT n° ANR-06-NANO-069-02. H.C. acknowledges support from the Brazilian agencies CNPq and FAPEMIG, and from the project Instituto do Milênio de Nanotecnologia/MCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Blase .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Blase, X., Chacham, H. (2009). Electronic Properties of Boron-Nitride and Boron Carbonitride Nanotubes and Related Heterojunctions. In: B-C-N Nanotubes and Related Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0086-9_4

Download citation

Publish with us

Policies and ethics