Advertisement

Electronic Properties of Boron-Nitride and Boron Carbonitride Nanotubes and Related Heterojunctions

  • Xavier BlaseEmail author
  • Helio Chacham
Chapter
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 6)

Abstract

We review in the present chapter the electronic and optical properties of hexagonal boron-nitride and hexagonal composite boron carbonitride planar and nanotubular structures. We focus mainly on theoretical aspects, but illustrate in all situations the link with existing experimental findings. In a first part, the ­insulating nature, and the band gap stability, of boron-nitride nanotubes are shown to be related to the ionicity character of the boron-nitrogen bond. Specific ­emphasis is given to the optical properties and the related excitonic effects. In a second part, the evolution of the stability and band gap of boron carbonitride systems as a function of the degree of segregation in pure carbon or boron-nitride domains is illustrated and their potential in terms of rectifying hetero-junctions, quantum dots, or ­visible-light optoelectronics devices is emphasized.

Keywords

Density Functional Theory Graphene Sheet Excitonic Binding Energy Carbon Tube Excitonic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Ackowledgments

X.B. acknowledges support from the French CNRS and National Agency for Research (ANR) under contract PNANO-ACCENT n° ANR-06-NANO-069-02. H.C. acknowledges support from the Brazilian agencies CNPq and FAPEMIG, and from the project Instituto do Milênio de Nanotecnologia/MCT.

References

  1. 1.
    X. Blase, A. Rubio, M.L. Cohen, S.G. Louis, Europhys. Lett. 28, 335 (1994).CrossRefGoogle Scholar
  2. 2.
    A. Rubio, J. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994).CrossRefGoogle Scholar
  3. 3.
    J.W.G. Wildöer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature (London) 91, 19 (1998).Google Scholar
  4. 4.
    T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature (London) 91, 62 (1998).Google Scholar
  5. 5.
    N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).CrossRefGoogle Scholar
  6. 6.
    R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).CrossRefGoogle Scholar
  7. 7.
    J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992).CrossRefGoogle Scholar
  8. 8.
    N.G. Chopra et al., Science 269, 966 (1995).CrossRefGoogle Scholar
  9. 9.
    A. Loiseau et al., Phys. Rev. Lett. 76, 4737 (1996).CrossRefGoogle Scholar
  10. 10.
    M. Terrones et al., Chem. Phys. Lett. 259, 568 (1996).CrossRefGoogle Scholar
  11. 11.
    D. Golberg et al., Appl. Phys. Lett. 69, 2045 (1996).CrossRefGoogle Scholar
  12. 12.
    O. Stephan, P.M. Ajayan, C. Colliex, P. Redlich, J.M. Lambert, P. Bernier, P. Lefin, Science 266, 1683 (1994).CrossRefGoogle Scholar
  13. 13.
    Loiseau, A., P. Launois, P. Petit, S. Roche, J.-P. Salvetat, Understanding Carbon Nanotubes from Basics to Applications, Lecture Notes in Physics 677, Springer-Verlag, Berlin (2006).Google Scholar
  14. 14.
    M. Terrones et al., Mat. Today 10, 30–38 (2007).CrossRefGoogle Scholar
  15. 15.
    D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Adv. Mater. 19, 2413–2432 (2007).CrossRefGoogle Scholar
  16. 16.
    L. Liu, Y.P. Fezng, Z.X. Shen, Phys. Rev. B 68, 104102 (2003).CrossRefGoogle Scholar
  17. 17.
    L. Wirtz, R. Arenal de la Concha, A. Loiseau, A. Rubio, Phys. Rev. B 68, 045425 (2003).CrossRefGoogle Scholar
  18. 18.
    R. Tenne et al., Nature 360, 444 (1992).CrossRefGoogle Scholar
  19. 19.
    L. Margulis et al., Nature 365, 113 (1993).CrossRefGoogle Scholar
  20. 20.
    R. Tenne et al., Chem. Mater. 10, 3225 (1998).CrossRefGoogle Scholar
  21. 21.
    L. Rapoport et al., Nature 387, 791 (1997).CrossRefGoogle Scholar
  22. 22.
    G. Seifert et al., Phys. Rev. Lett. 85, 146 (2000).CrossRefGoogle Scholar
  23. 23.
    M. Côté et al., Phys. Rev. B 58, R4277 (1998).CrossRefGoogle Scholar
  24. 24.
    P. Zhang and V.H. Crespi, Phys. Rev. Lett. 89, 056403 (2002).CrossRefGoogle Scholar
  25. 25.
    J.-C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79, 667 (2007).CrossRefGoogle Scholar
  26. 26.
    K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004).CrossRefGoogle Scholar
  27. 27.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory, International Series of Monographs in Chemistry, Clarendon Press, Oxford (1990).Google Scholar
  28. 28.
    C. Katan, P. Rabiller, C. Lecomte, M. Guezo, V. Oison, M. Souhassou, J. Appl. Cryst. 36, 65 (2003).CrossRefGoogle Scholar
  29. 29.
    J. Robertson, Phys. Rev. B 29, 2131 (1984).CrossRefGoogle Scholar
  30. 30.
    A. Catellani, M. Posternak, A. Balderschi, A.J. Freeman, Phys. Rev. B 36, 6105 (1997).CrossRefGoogle Scholar
  31. 31.
    J. Furthmüller, J. Hafner, G. Kresse, Phys. Rev. B 50, 15606 (1994).CrossRefGoogle Scholar
  32. 32.
    Y.N. Xu, W.Y. Ching, Phys. Rev. B 44, 7787 (1991).CrossRefGoogle Scholar
  33. 33.
    R. Dovesi, C. Pisani, C. Roetti, Int. J. Quantum Chem. 17, 517–529 (1980).CrossRefGoogle Scholar
  34. 34.
    L. Hedin and S. Lundquist, in Solid State Phyisics, Vol. 23, edited by H. Ehrenreich, F. Sietz, and D. Turnbull, Academic, New York, (1969), p. 1.Google Scholar
  35. 35.
    X. Blase, A. Rubio, M.L. Cohen, S.G. Louie, Phys. Rev. B 51, 6868 (1995).CrossRefGoogle Scholar
  36. 36.
    G. Cappellini, G. Satta, M. Palummo, G. Onida, Phys. Rev. B 64, 035104 (2001).CrossRefGoogle Scholar
  37. 37.
    B. Arnaud, S. Lebègue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 96, 026402 (2006).CrossRefGoogle Scholar
  38. 38.
    L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006).CrossRefGoogle Scholar
  39. 39.
    C.-H. Park, C.D. Spataru, S.G. Louie, Phys. Rev. Lett. 96, 126105 (2006).CrossRefGoogle Scholar
  40. 40.
    K.T. Park, K. Terakura, N. Hamada, J. Phys. C: Solid State Phys. 20, 1241–1251 (1987).CrossRefGoogle Scholar
  41. 41.
    E.R. Margine and H. Vincent, Crespi, Phys. Rev. Lett. 96, 196803 (2006).CrossRefGoogle Scholar
  42. 42.
    L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. B 52, 8541 (1995).CrossRefGoogle Scholar
  43. 43.
    S. Tasaki, K. Maekawa, T. Yamabe, Phys. Rev. B 57, 9301 (1998).CrossRefGoogle Scholar
  44. 44.
    A.G. Marinopoulos, L. Reining, A. Rubio, N. Vast, Phys. Rev. Lett. 91, 046402 (2003).CrossRefGoogle Scholar
  45. 45.
    N. Wang, Z.K. Tang, G.D. Li, and J.S. Chen, Nature (London) 408, 50 (2000).Google Scholar
  46. 46.
    A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, L. Reining, Appl. Phys. A 78, 1157–1167 (2004).CrossRefGoogle Scholar
  47. 47.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002).CrossRefGoogle Scholar
  48. 48.
    C.F. Klingshim, Semiconductor Optics, Springer-Verlag, Berlin (1995).Google Scholar
  49. 49.
    R.J. Elliott, Phys. Rev. 108, 1384 (1957).CrossRefGoogle Scholar
  50. 50.
    R. Loudon, Am. J. Phys. 27, 649 (1959).CrossRefGoogle Scholar
  51. 51.
    Ogawa and Takagahara, Phys. Rev. B 43, 14325 (1991).CrossRefGoogle Scholar
  52. 52.
    Ogawa and Takagahara, Phys. Rev. B 44, 8138 (1991).CrossRefGoogle Scholar
  53. 53.
    P. Král et al., Phys. Rev. Lett. 85, 1512 (2000).CrossRefGoogle Scholar
  54. 54.
    E.J. Mele and P. Král, Phys. Rev. Lett. 88, 056803 (2002).CrossRefGoogle Scholar
  55. 55.
    K. H. Khoo, M.S.C. Mazzoni, Steven G. Louie, Phys. Rev. B 69, 201401 (2004).CrossRefGoogle Scholar
  56. 56.
    M. Ishigami et al., Phys. Rev. Lett. 94, 056804 (2005).CrossRefGoogle Scholar
  57. 57.
    O. Stephan et al., Appl. Phys. A Mater. Sci. Process 67, 107 (1998).CrossRefGoogle Scholar
  58. 58.
    D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Appl. Phys. Lett. 73, 2441 (1998).CrossRefGoogle Scholar
  59. 59.
    T. Oku, A. Nishiwaki, I. Narita, M. Gonda, Chem. Phys. Lett. 380, 620 (2003).CrossRefGoogle Scholar
  60. 60.
    T. Oku, A. Nishiwaki, I. Narita, J. Phys. Chem. Solids 65, 369 (2004).CrossRefGoogle Scholar
  61. 61.
    F. Jensen and H. Toftlund, Chem. Phys. Lett. 201, 89 (1993).CrossRefGoogle Scholar
  62. 62.
    X. Blase, A. De Vita, J.-C. Charlier, R. Car, Phys. Rev. Lett. 80, 166 (1998).CrossRefGoogle Scholar
  63. 63.
    H. S. Wu, X. H. Xu, H. Jiao, Chem. Phys. Lett. 386, 369 (2004).CrossRefGoogle Scholar
  64. 64.
    R.R. Zope, T. Baruah, M.R. Pederson, B.I. Dunlap, Chem. Phys. Lett. 393, 300 (2004).CrossRefGoogle Scholar
  65. 65.
    R.J.C. Batista, M.S.C. Mazzoni, H. Chacham, Chem. Phys. Lett. 421, 246 (2004).CrossRefGoogle Scholar
  66. 66.
    S.S. Alexandre, M.S.C. Mazzoni, H. Chacham, Appl. Phys. Lett. 73, 61 (1999).CrossRefGoogle Scholar
  67. 67.
    P.W. Fowler, K.M. Rogers, G. Seifert, M. Terrones, H. Terrones, Chem. Phys. Lett. 209, 359 (1994).Google Scholar
  68. 68.
    S.S. Alexandre, H. Chacham, R.W. Nunes, Phys. Rev. B 63, 045402 (2001).CrossRefGoogle Scholar
  69. 69.
    S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004).CrossRefGoogle Scholar
  70. 70.
    S. Azevedo, M.S.C. Mazzoni, H. Chacham, R.W. Nunes, Appl. Phys. Lett. 82, 2323 (2003).CrossRefGoogle Scholar
  71. 71.
    J. Kouvetakis, R.B. Kaner, M.L. Sattler, N. Bartlett, J. Chem. Soc., Chem. Commun. (24), 1785 (1986).Google Scholar
  72. 72.
    M.O. Watanabe, S. Itoh, T. Sasaki, K. Mizushima, Phys. Rev. Lett. 77, 187 (1996); Erratum, Phys. Rev. Lett. 77, 2846 (1996).CrossRefGoogle Scholar
  73. 73.
    Y. Chen, J.C. Barnard, R.E. Palmer, M.O. Watanabe, T. Sasaki, Phys. Rev. Lett. 83, 2406 (1999).CrossRefGoogle Scholar
  74. 74.
    A.Y. Liu et al., Phys. Rev. B 39, 1760 (1989).CrossRefGoogle Scholar
  75. 75.
    X. Blase, J.-C. Charlier, A. De Vita, R. Car, Appl. Phys. A 68, 293–300 (1999).CrossRefGoogle Scholar
  76. 76.
    Y. Miyamoto, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 76, 2121–2124 (1996).CrossRefGoogle Scholar
  77. 77.
    X. Blase, Comp. Matt. Sci. 17, 107 (2000).CrossRefGoogle Scholar
  78. 78.
    H. Nozaki and S. Itoh, J. Phys. Chem. Solids 57, 41–49 (1996).CrossRefGoogle Scholar
  79. 79.
    K. Suenaga, C. Colliex, N. Demoncy et al., Science 278 653–655 (1997).CrossRefGoogle Scholar
  80. 80.
    O.A. Louchev, Y. Sato, H. Kanda, Y. Bando, Appl. Phys. Lett. 77, 1446–1448 (2000)CrossRefGoogle Scholar
  81. 81.
    C.Y. Zhi, X.D. Bai, E.G. Wang, Appl. Phys. Lett. 84, 1549–1551 (2004).CrossRefGoogle Scholar
  82. 82.
    D. Goldberg, P. Dorozhkin, Y. Bando, M. Hasegawa, Z.C. Dong, Chem. Phys. Lett. 359, 220–228 (2002).CrossRefGoogle Scholar
  83. 83.
    C.Y. Zhi, J.D. Guo, X.D. Bai, E.G. Wang, J. Appl. Phys. 91, 5325–5333 (2002).CrossRefGoogle Scholar
  84. 84.
    Y.K. Yap, Y. Wada, M. Yamaoka, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Rel. Mater. 10, 1137–1141 (2001).CrossRefGoogle Scholar
  85. 85.
    Y. Wada, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Rel. Mater. 9, 620–624 (2000).CrossRefGoogle Scholar
  86. 86.
    X. Blase, J.-C. Charlier, A. De Vita, R. Car, Appl. Phys. Lett. 70, 197 (1997)CrossRefGoogle Scholar
  87. 87.
    S. Enouz, O. Stephan, J.-L. Cochon, C. Colliex, A. Loiseau, Nano Lett. 7, 1856 (2007).CrossRefGoogle Scholar
  88. 88.
    J. Choi, Y.-H. Kim, K.J. Chang, D. Tománek, Phys. Rev. B 67, 125421 (2003).CrossRefGoogle Scholar
  89. 89.
    J. Nakamura, T. Nitta, A. Natori, Phys. Rev. B 72, 205429 (2005).CrossRefGoogle Scholar
  90. 90.
    M.S.C. Mazzoni, R.W. Nunes, S. Azevedo et al., Phys. Rev. B 73, 073108 (2006).CrossRefGoogle Scholar
  91. 91.
    S. Okada, A. Oshiyama, Phys. Rev. Lett. 87, 146803 (2001).CrossRefGoogle Scholar
  92. 92.
    E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 2009

Authors and Affiliations

  1. 1.Institut NéelCNRS and Université Joseph FourierGrenoble Cedex 09France
  2. 2.Departamento de Fisica, ICExUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations