Heteroatomic Single-Wall Nanotubes Made of Boron, Carbon, and Nitrogen
- 4 Citations
- 898 Downloads
Abstract
In this chapter, we review the current status of research on heteroatomic single-walled nanotubes (SWNTs): boron nitride (BN), B–C, C–N, and B–C–N. We present developments in the synthesis, the characterization, and the properties measurements and theoretical studies. These nanotubes have unique properties when compared with that of their carbon counterparts. For instance, BN-SWNTs are chemically inert, resistant to oxidation at high-temperature, and most importantly, possess a uniform electronic structure that is independent of their geometry. In the first part of this chapter, we review the different synthesis methods employed to produce these nanotubes (high and medium-low temperature processes). We then turn to the study of the atomic structure of these nanomaterials by different transmission electron microscopy techniques as well as we review the works concerning the growth mechanism of these nanotubes. Finally, the main physical (electronic, vibrational, optical, mechanical, electromechanical, and thermal) and chemical (functionalization and hydrogen storage) properties of these heteroatomic SWNTs, particularly the case of BN, are outlined, followed by the presentation of the potential applications of these nanoobjects.
Keywords
Boron Nitride Electron Energy Loss Spectroscopy Boron Oxide Chemical Vapor Deposition Technique Boron Nitride NanotubesNotes
Acknowledgments
Some of the work shown here was supported by the European Community research and training network COMELCAN (HPRN-CT-2000-00128), by the European Commission under the 6 Framework Programme (STREP project BNC Tubes, contract number NMP4-CT-2006-03350), by the “Agence Nationale de la Recherche” – France (A.N.R.) and done within the framework of the GDR-I ‘Nano-I’ (N 2756) of the CNRS. Part of the results presented in this chapter are issued from very fruitful collaborations and discussions with B. Attal-Tretout, X. Blase, L. Bresson, J.L. Cochon, C. Colliex, N. Dorval, F. Ducastelle, S. Enouz-Vedrenne, A.C. Ferrari, M. Glerup, A. Gloter, P. Jaffrennou, M. Kociak, S. Lefrant, H. Lin, A. Maguer, J.Y. Mevellec, D. Pigache, S. Reich, A. Rubio, J. Serrano, O. Stephan, D. Taverna, M. Tence, L. Wirtz, and A. Zobelli.
References
- 1.S. Iijima, Nature 354, 56 (1991).CrossRefGoogle Scholar
- 2.X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994).CrossRefGoogle Scholar
- 3.A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994).CrossRefGoogle Scholar
- 4.X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Phys. Rev. B 51, 6868 (1995).CrossRefGoogle Scholar
- 5.D. Golberg, Y. Bando, C. Tang, C.Y. Zhi, Adv. Mat. 19, 2413 (2007).CrossRefGoogle Scholar
- 6.R. Arenal, X. Blase, A. Loiseau, Adv. Phys. (in press).Google Scholar
- 7.A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat (Eds.), Understanding Carbon Nanotubes from Basics to Applications, Series: Lecture Notes in Physics, 677, Springer, Berlin (2006).Google Scholar
- 8.W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990).CrossRefGoogle Scholar
- 9.T.W. Ebbesen, P.M. Ajayan, Nature 358, 220 (1992).CrossRefGoogle Scholar
- 10.S. Iijima, T. Ichihashi, Nature 363, 603 (1993).CrossRefGoogle Scholar
- 11.R.Droppa, Jr. P.Hammer, A.C.M. Carvalho, M.C. dos Santos, F.Alvarez, J. Non-Crystalline Solids 299, 874 (2002).CrossRefGoogle Scholar
- 12.M.Glerup, J.teinmetz, D.Samaille, O.Stphan, S.Enouz, A.Loiseau, S.Roth, P.Bernier, Chem. Phys. Lett. 387, 193 (2004).CrossRefGoogle Scholar
- 13.J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N.L. Rupesinghe, W.K. Hsu, N. Grobert, H. Terrones, G.A.J. Amaratunga, Nano Lett. 2, 1191 (2002).CrossRefGoogle Scholar
- 14.N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, Science 269, 966 (1995) moncy, G. Hug, H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).CrossRefGoogle Scholar
- 15.A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).CrossRefGoogle Scholar
- 16.C.M. Lee, S.I. Choi, S.S. Choi, S.H. Hong, Curr. Appl. Phys. 6, 166 (2006).CrossRefGoogle Scholar
- 17.R.S. Lee, J. Gavillet, M. Lamy de la Chapelle, A. Loiseau, J.-L. Cochon, D. Pigache, J. Thibault, F. Willaime, Phys. Rev. B 64, 121405(R) (2001).Google Scholar
- 18.R. Arenal, PhD Thesis Universite Paris XI - Orsay, (2005).Google Scholar
- 19.R. Arenal, O. Stéphan, J.L. Cochon, A. Loiseau, J. Am. Chem. Soc. 129, 16183 (2007).CrossRefGoogle Scholar
- 20.E. Borowiak-Palen, T. Pichler, G.G. Fuentes, A. Graff, R.J. Kalenczuk, M. Knupfer, J. Fink, Chem. Phys. Lett. 378, 516 (2003).CrossRefGoogle Scholar
- 21.S. Enouz, O. Stephan, J.L. Cochon, C. Colliex, A. Loiseau, Nano Lett. 7, 1856 (2007).CrossRefGoogle Scholar
- 22.S. Enouz, PhD Thesis Universite Montpellier II (2007).Google Scholar
- 23.H. Lin, J. Lagoute, C. Chacon, R. Arenal, O. Stephan, V. Repain, Y. Girard, S. Enouz, L. Bresson, S. Rousset, A. Loiseau, Phys. Status Solidi B doi: 10.1002/pssb.200879634 (2008).Google Scholar
- 24.M. Castignolles, PhD Thesis Universite Montpellier II (2004).Google Scholar
- 25.J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, J.-C. Charlier, Phys. Rev. Lett. 87, 275504 (2001).CrossRefGoogle Scholar
- 26.P.L. Gai, O. Stephan, K. McGuire, A.M. Rao, M.S. Dresselhaus, G. Dresselhaus, C. Colliex, J. Mater. Chem. 14, 669 (2004).CrossRefGoogle Scholar
- 27.C.E. Lowell, J. of American Chem. Soc. 50, 142 (1967).Google Scholar
- 28.G. Keskar, R. Rao, J. Luo, J. Hudson, J. Chen, A.M. Rao, Chem. Phys. Lett. 412, 269 (2005).CrossRefGoogle Scholar
- 29.F. Villalpando-Paez, A. Zamudio, A.L. Elias, H. Son, E.B. Barros, S.G. Chou, Y.A. Kim, H. Muramatsu, T. Hayashi, J. Kong, H. Terrones, G. Dresselhaus, M. Endo, M. Terrones, M.S. Dresselhaus, Chem. Phys. Lett. 424, 345 (2006).CrossRefGoogle Scholar
- 30.P. Ayala, A. Grneis, C. Kramberger, M.H. Rmmeli, I.G. Solrzano, F.L. Freire, T. Pichler, J. Chem. Phys. 127, 184709 (2007).CrossRefGoogle Scholar
- 31.W.L. Wang, X.D. Bai, K.H. Liu, Z. Xu, D. Golberg, Y. Bando, E.G. Wang, J. Am. Chem. Soc. 128, 6530 (2006).CrossRefGoogle Scholar
- 32.J. Thomas, N.E. Weston, T.E. O’Connor, J. Am. Chem. Soc. 84, 4619 (1963).CrossRefGoogle Scholar
- 33.J. Economy, R.Y. Lin, in Boron Nitride Fibers in Boron, Refractory Borides, V.I. Matkovich (Ed.), Springer, Berlin (1977).Google Scholar
- 34.E.L. Muetterties (Ed.), The Chemistry of Boron, its Compounds, Wiley, New York (1967).Google Scholar
- 35.M. Hubacek, M. Ueki, T. Sato, V. Broiek, Thermochim. Acta 282/283, 359 (1996).Google Scholar
- 36.A. Aydogdu, N. Sevin, J. Eur. Ceram. Soc. 23, 3153 (2003).CrossRefGoogle Scholar
- 37.D.-F. Lii, J.-L. Huang, L.-J. Tsui, S.-M. Lee, Surf. Coat. Technol. 150, 269 (2002).CrossRefGoogle Scholar
- 38.L. Hackspill, J. Besson, A. Hrold, Chimie minrale, Volume II, Presses Universitaires de France,Paris (1968).Google Scholar
- 39.W. Han, Y. Bando, K. Kurashima, T. Sato, Appl. Phys. Lett. 73, 3085 (1998).CrossRefGoogle Scholar
- 40.T.S.M. Bartnitskaya, G.S. Oleinik, A.V. Pokropivnyi, V.V. Pokropivnyi, JETP Lett. 69, 163 (1999).CrossRefGoogle Scholar
- 41.W.Q. Han, P. Todd, M. Strongin, Appl. Phys. Lett. 89, 173103 (2006).CrossRefGoogle Scholar
- 42.D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Carbon 38, 2017 (2000).CrossRefGoogle Scholar
- 43.Zhong-lin Wang Chun Hui, Electron Microscopy of Nanotubes, Springer, Berlin (2003).Google Scholar
- 44.C.P. Ewels, M. Glerup, J. Nanosci. Nanotechnol. 5, 1345 (2005).CrossRefGoogle Scholar
- 45.S. Enouz, J.L. Bantignies, M.R. Babaa, L. Alvarez, P. Parent, F. Le Normand, O. Stephan, P. Poncharal, A. Loiseau, B. Doyle, J. Nanosci. Nanotechnol. 7, 1 (2007).CrossRefGoogle Scholar
- 46.M. De Graef, Introduction to Conventional Transmission Electron Microscopy, Cambridge University Press, Cambridge (London/New York) (2003).CrossRefGoogle Scholar
- 47.P. Stadelmann, Ultramicroscopy 21, 131 (1987).CrossRefGoogle Scholar
- 48.B.G. Demczyck, J. Cumings, A. Zettl, R.O. Ritchie, Appl. Phys. Lett. 78, 2772 (2001).CrossRefGoogle Scholar
- 49.R. Arenal, M. Kociak, A. Loiseau, D.J. Miller, Appl. Phys. Lett. 89, 073104 (2006).CrossRefGoogle Scholar
- 50.A. Zobelli, C.P. Ewels, A. Gloter, G. Seifert, O. Stephan, S. Csillag, C. Colliex, Nano Lett. 6, 1955 (2006).CrossRefGoogle Scholar
- 51.K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita, S. Iijima, Nat. Nanotechnol., 2, 358 (2007).CrossRefGoogle Scholar
- 52.P. Lambin, A. Lucas, Phys. Rev. B 56, 3571 (1997).CrossRefGoogle Scholar
- 53.M. Gao, J. M. Zuo, R. Twesten, I. Petrov, Appl. Phys. Lett. 82, 2703 (2003).CrossRefGoogle Scholar
- 54.R. Arenal, M. Kociak, A. Loiseau, D.J. Miller, Microsc. Microanal. 12, 578 (2006).CrossRefGoogle Scholar
- 55.J.G. Wiltshire, L.-J. Li, L.M. Herz, R.J. Nicholas, M. Glerup, J.-L. Sauvajol, A.N. Khlobystov, Phys. Rev. B 72, 205431 (2005).CrossRefGoogle Scholar
- 56.L.-J. Li, M. Glerup, A.N. Khlobystov, J.G. Wiltshire, J.-L. Sauvajol, Taylor, R.J. Nicholas, Carbon 44, 2752 (2006).CrossRefGoogle Scholar
- 57.R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York, (1996).Google Scholar
- 58.C. Jeanguillaume, C. Colliex, Ultramicroscopy 28, 252 (1989).CrossRefGoogle Scholar
- 59.R. Arenal, O. Stephan, A. Loiseau, C. Colliex, Microsc. Microanal. 13, 1240 (2007).Google Scholar
- 60.R. Arenal, F. De la Pena, O. Stephan, M. Walls, M. Tence, A. Loiseau, C. Colliex, Ultramicroscopy 109, 32 (2008).Google Scholar
- 61.R. Arenal, M. Kociak, N.J. Zaluzec, Appl. Phys. Lett. 90, 204105 (2007).CrossRefGoogle Scholar
- 62.O. Stephan, P.M. Ajayan, C. Colliex, F. CyrotLackmann, E. Sandre, Phys. Rev. B 53, 13824 (1996).CrossRefGoogle Scholar
- 63.S. Enouz-Vedrenne, O. Stephan, M. Glerup, J.-L. Cochon, C. Colliex, A. Loiseau, J. Phys. Chem. C 112, 16422 (2008).Google Scholar
- 64.X. Blase, J.C. Charlier, A. De Vita, R. Car, Ph. Redlich, M. Terrones, W.K. Hsu, H. Terrones, D.L. Carroll, P.M. Ajayan, Phys. Rev. Lett. 83, 5078 (1999).CrossRefGoogle Scholar
- 65.M. Cau, N. Dorval, B. Attal-Trtout, J.L. Cochon, B. Cao, L. Bresson, P. Jaffrennou, M. Silly, A. Loiseau, J. Nanoscien. Nanotech. (in press).Google Scholar
- 66.X. Blase, A. De Vita, J.C. Charlier, R. Car, Phys. Rev. Lett 80, 1666 (1998).CrossRefGoogle Scholar
- 67.M. Terrones, J.M. Romo-Herrera, E. Cruz-Silva, F. Lopez-Urias, E. Munoz-Sandoval, J.J. Velazquez-Salazar, H. Terrones, Y. Bando, D. Golberg, Mat. Today 10, 30 (2007).CrossRefGoogle Scholar
- 68.S. Latil, S. Roche, D. Mayou, J.C. Charlier, Phys. Rev. Lett. 92, 256805 (2004).CrossRefGoogle Scholar
- 69.R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, D. Tekleab, P.M. Ajayan, W. Blau, M. Ruhle, D.L. Carroll, Nano Lett. 1, 457 (2001).CrossRefGoogle Scholar
- 70.M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D.L. Carroll, J.C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, T. seeger, H. Terrones, Appl. Phys. A 74, 355 (2002).CrossRefGoogle Scholar
- 71.V. Krstic, G.L.J.A. Rikken, P. Bernier, S. Roth, M. Glerup, Eur. Phys. Lett. 77, 37001 (2007).CrossRefGoogle Scholar
- 72.A. Yu Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. Khodos, Yu.B. Gorbatov, V.T. Volko, C. Journet, M. Burghard, Science 284, 1508 (1999).CrossRefGoogle Scholar
- 73.A.Y. Kasumov, M. Kociak, M. Ferrier, R. Deblock, S. Gueron, B. Reulet, I. Khodos, O. Stephan, H. Bouchiat, Phys. Rev. B 68, 214521 (2003).CrossRefGoogle Scholar
- 74.M. Kociak, A.Y. Kasumov, S. Gueron, B. Reulet, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, L. Vaccarini, H. Bouchiat, Phys. Rev. Lett. 86, 2416 (2001).CrossRefGoogle Scholar
- 75.I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinohara, Phys. Rev. Lett. 96, 057001 (2006).CrossRefGoogle Scholar
- 76.N. Murata, J. Haruyama, J. Reppert, A.M. Rao, T. Koretsune, S. Saito, M. Matsudaira, Y. Yagi, Phys. Rev. Lett. 100, 27002 (2008).CrossRefGoogle Scholar
- 77.M. Radosavljevic, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J.-L. Cochon, D. Pigache, Appl. Phys. Lett. 82, 4131 (2003).CrossRefGoogle Scholar
- 78.K.H. Khoo, M.S.C. Mazzoni, S.G. Louie, Phys. Rev. B 69, 201401 (2004).CrossRefGoogle Scholar
- 79.M. Ishigami, J. Sau, S. Aloni, M. Cohen, A. Zettl, Phys. Rev. Lett. 94, 056804 (2005).CrossRefGoogle Scholar
- 80.S.H. Lim, H.I. Elim, X.Y. Gao, A.T.S. Wee, W. Ji, J.Y. Lee, J. Lin, Phys. Rev. B 73, 045402 (2006).CrossRefGoogle Scholar
- 81.E. Borowiak-Palen, T. Pichler, A. Graff, R.J. Kalenczuk, M. Knupfer, J. Fink, Carbon 42 1123 (2004).CrossRefGoogle Scholar
- 82.J.S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, E. Rosencher, L. Goux-Capes, Phys. Rev. Lett. 94, 037405 (2005).CrossRefGoogle Scholar
- 83.L. Wirtz, A. Marini, M. Gruning, A. Rubio, Cond-Mat 0508421 (2005).Google Scholar
- 84.L. Wirtz, A. Marini, A. Rubio, Phys. Rev. Lett. 96, 126104 (2006).CrossRefGoogle Scholar
- 85.A.G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, L. Reining, Appl. Phys. A 78, 1157 (2004).CrossRefGoogle Scholar
- 86.C.-H. Park, C.D. Spataru, S.G. Louie, Phys. ReV. Lett. 96, 126105 (2006).CrossRefGoogle Scholar
- 87.B. Arnaud, S. Lebegue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 96, 026402 (2006).CrossRefGoogle Scholar
- 88.M.G. Silly, P. Jaffrennou, J. Barjon, J.-S. Lauret, F. Ducastelle, A. Loiseau, E. Obraztsova, B. Attal-Tretout, E. Rosencher, Phys. Rev. B 75, 085205 (2007).CrossRefGoogle Scholar
- 89.P. Jaffrennou, J. Barjon, T. Schmid, L. Museur, A. Kanaev, J.-S. Lauret, C.Y. Zhi, C. Tang, Y. Bando, D. Golberg, B. Attal-Tretout, F. Ducastelle, A. Loiseau, Phys. Rev. B 77, 235422 (2008).CrossRefGoogle Scholar
- 90.P. Jaffrennou, F. Donatini, J. Barjon, J.-S. Lauret, B. Attal-Tretout, H. Mariette, F. Ducastelle, A. Loiseau, Chem. Phys. Lett. 442, 372 (2007).CrossRefGoogle Scholar
- 91.R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Phys. Rev. Lett. 95, 127601 (2005).CrossRefGoogle Scholar
- 92.R. Arenal, O. Stephan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Microsc. Microanal. 14, 274 (2008).CrossRefGoogle Scholar
- 93.A. Gloter, A. Douiri, M. Tencé, C. Colliex, Ultramicroscopy 96, 385 (2002).CrossRefGoogle Scholar
- 94.A.A. Lucas, L. Henrard, Ph. Lambin, Phys. Rev. B 49, 2888 (1994).CrossRefGoogle Scholar
- 95.R. Vilanove, C.R. Acad. Sc. Paris 272, 1066 (1971).Google Scholar
- 96.C. Tarrio, S.E. Schnatterly, Phys. Rev. B 40, 7852 (1989).CrossRefGoogle Scholar
- 97.L. Henrard, F. Malengreau, P. Rudolf, K. Hevesi, R. Caudano, Ph. Lambin, Th. Cabioc’h, Phys. Rev. B 59, 5832 (1999).CrossRefGoogle Scholar
- 98.O. Stéphan, M. Kociak, D. Taverna, K. Suenaga, L. Henrard, C. Colliex, Phys. Rev. B 66, 155422 (2002).CrossRefGoogle Scholar
- 99.M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin, 2001.Google Scholar
- 100.S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, Berlin, 2004.Google Scholar
- 101.A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
- 102.K. McGuire, N. Gothard, P.L. Gai, M.S. Dresselhaus, G. Sumanasekera, A.M. Rao, Carbon 43, 219 (2005).CrossRefGoogle Scholar
- 103.D. sanchez-Portal, E. Hernandez, Phys. Rev. B 66, 235415 (2002).CrossRefGoogle Scholar
- 104.L. Wirtz, A. Rubio, R. Arenal, A. Loiseau, Phys. Rev. B 68, 045425 (2003).CrossRefGoogle Scholar
- 105.V.N. Popov, Phys. Rev. B 67, 085408 (2003).CrossRefGoogle Scholar
- 106.J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio, L. Wirtz, Phys. Rev. Lett. 98, 095503 (2007).CrossRefGoogle Scholar
- 107.R. Geick, C.H. Perry, G. Rupprecht, Phys. Rev. 146, 543 (1966).CrossRefGoogle Scholar
- 108.S. Reich, A.C. Ferrari, R. Arenal, A. Loiseau, I. Bello, J. Robertson, Phys. Rev. B 71, 205201 (2005).CrossRefGoogle Scholar
- 109.R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.-Y. Mevellec, S. Lefrant, A. Rubio, A. Loiseau, Nano Lett. 6, 1812 (2006).CrossRefGoogle Scholar
- 110.E. Hernandez, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).CrossRefGoogle Scholar
- 111.L. Vaccarini, C. Goze, L. Henrard, E. Hernandez, P. Bernier, A. Rubio, Carbon 38 1681 (2000).CrossRefGoogle Scholar
- 112.T. Dumitrica, H. Bettinger, G.E. Scuseria, B. Yakobson, Phys. Rev. B 68, 085412 (2003).CrossRefGoogle Scholar
- 113.H. Bettinger, T. Dumitrica, G.E. Scuseria, B. Yakobson, Phys. Rev. B 58, 041406 (2002).CrossRefGoogle Scholar
- 114.P. Kral, E.J. Mele, D. Tomanek, Phys. Rev. Lett. 85, 1512 (2000).CrossRefGoogle Scholar
- 115.E.J. Mele, P. Kral, Phys. Rev. Lett. 88, 056803 (2002).CrossRefGoogle Scholar
- 116.S.M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc, M. Buongiorno Nardelli, Phys. Rev. B 67, 235406 (2003).CrossRefGoogle Scholar
- 117.R.J. Baierle, T.M. Schmidt, A. Fazzio, Sol. State Comm. 142, 49 (2007).CrossRefGoogle Scholar
- 118.X.J. Wu, W. An, X.C. Zheng, J. Am. Chem. Soc. 128, 12001 (2006).CrossRefGoogle Scholar
- 119.C. Zhi, Y. Bando, C. Tang, R. Xie, T. Sekiguchi, D. Golberg, J. Am. Chem. Soc. 127, 15996 (2005).CrossRefGoogle Scholar
- 120.S.Y. Xie, W. Wang, K.A. Shiral Fernando, X. Wang, Y. Lin, Y.P. Sun, Chem. Commun., 3670 (2005).Google Scholar
- 121.S. Pal, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, J. Mater. Chem. 17, 450 (2007).Google Scholar
- 122.A. Maguer, E. Leroy, Lionel Bresson, E. Doris, A. Loiseau, C. Mioskowski, J. Mater. Chem. 19, 1271 (2008).Google Scholar
- 123.R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu, D. Wu, J. Amer. Chem. Soc. 124, 7672 (2002).CrossRefGoogle Scholar
- 124.S.-H. Jhi, Y.-K. Kwon”, Phys. Rev. B 69, 245407 (2004).CrossRefGoogle Scholar
- 125.X. Wu, J. Yang, J.G. Hou, Q. Zhu, Phys. Rev. B 69, 153411 (2004).CrossRefGoogle Scholar
- 126.Z. Zhou, X. Gao, J. Yan, D. Song, Carbon 44, 939 (2006).CrossRefGoogle Scholar
- 127.Z.Y. Zhang, K. Cho, Phys. Rev. B 75, 75420 (2007).CrossRefGoogle Scholar
- 128.F. Li, Y. Xia, M. Zhao, X. Liu, B. Huang, Y. Ji, C. Song, Phys. Lett. A 357, 369 (2006).CrossRefGoogle Scholar