Introduction to B–C–N Materials
- 1 Citations
- 969 Downloads
Abstract
B–C–N is an emerging material system consisting of novel nanostructures of boron (B), carbon (C), boron nitride (BN), carbon nitride (CN x ), boron-carbon nitride (B x C y N z ), and boron carbide (B x C y ). These B–C–N materials are sometimes called as frontier carbon materials, because of their flexibility in forming materials of various types of hybridizations similar to those in the pure carbon system. This chapter provides a concise introduction on all these materials. Readers are referred to various references and other chapters compiled in this book for further reading.
Keywords
Boron Nitride Graphene Sheet Boron Carbide Triangular Zone Excimer Laser AnnealingNotes
Acknowledgment
Y. K. Yap acknowledges National Science Foundation CAREER Award (DMR 0447555) for supporting the project on frontier carbon materials; the U.S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-06ER46294) for in part supporting the project on boron nitride nanotubes; and the U.S. Department of Army (W911NF-04-1-0029) and the Defense Advanced Research Projects Agency (DAAD17-03-C-0115 through Army Research Laboratory) for supporting his projects on CNTs.
References
- 1.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318, 162 (1985).Google Scholar
- 2.S. Iijima, Nature (London) 354, 56 (1991).Google Scholar
- 3.
- 4.A. Y. Liu, R. M. Wentzcovitch, and M. L. Cohen, Phys. Rev. B 39, 1760 (1989).Google Scholar
- 5.T. W. Capehart, T. A. Perry, C. B. Beetz, D. N. Belton, G. B. Fisher, C. E. Beall, B. N. Yates, and J. W. Taylor, Appl. Phys. Lett. 55, 957 (1989).Google Scholar
- 6.R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon nanotubes, Imperial College Press, London (1998).Google Scholar
- 7.M. S. Dresselhaus and G. Dresselhaus, Eds., Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer-Verlag, Berlin (2001).Google Scholar
- 8.M. W. Geis and M. A. Tamor, in Encyclopedia of Applied Physics, Vol. 5, Diamond and Diamond-like Carbon, G. L. Trigg, Eds., VCH Publishers, Inc., New York, 1–24 (1993).Google Scholar
- 9.O. J. Vohler, F. von Sturm, and E. Wege, in Encyclopedia of Applied Physics, Vol. 3, Carbon Materials, G. L. Trigg, Eds., VCH Publishers, Inc., New York, 21–40 (1993).Google Scholar
- 10.M. S. Dresselhaus and G. Dresselhaus, in Encyclopedia of Applied Physics, Vol. 7, Graphite, G. L. Trigg, Eds., VCH Publishers, Inc., New York, 289–301 (1993).Google Scholar
- 11.http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0447555. Y. K. Yap, National Science Foundation Award # 0447555, “CAREER: Synthesis, Characterization and Discovery of Frontier Carbon Materials.Google Scholar
- 12.S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).Google Scholar
- 13.D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).Google Scholar
- 14.A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, Science 273, 483 (1996).Google Scholar
- 15.M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45, 6234 (1992).Google Scholar
- 16.J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett. 68, 631 (1992).Google Scholar
- 17.N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
- 18.J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).Google Scholar
- 19.T. W. Odom, J. L Huang, P. Kim, and C. M. Lieber, Nature (London) 391, 62 (1998).Google Scholar
- 20.N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Nature 408, 50 (2000).Google Scholar
- 21.T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, J. Phys. Chem. 99, 10694 (1995).Google Scholar
- 22.A. Peigney, Ch. Laurent, F. Dobigeon, and A. Rousset, J. Mater. Res. 12, 613 (1997).Google Scholar
- 23.J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, and R. E. Smalley, Chem. Phys. Lett. 296, 195 (1998).Google Scholar
- 24.H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 260, 471 (1996).Google Scholar
- 25.V. Kayastha, Y. K. Yap, S. Dimovski, and Y. Gogotsi, Appl. Phys. Lett. 85, 3265 (2004).Google Scholar
- 26.V. Kayastha, Y. K. Yap, Z. Pan, I. N. Ivanov, A. A. Puretzky, and D. B. Geohegan, Appl. Phys. Lett. 86, 253105 (2005).Google Scholar
- 27.K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Science 306, 1362 (2004).Google Scholar
- 28.G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, O. Nishi, J. Gibbons, and H. Dai, PNAS 102, 16141 (2005).Google Scholar
- 29.Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, and S. Maruyama, Chem. Phys. Lett. 385, 298 (2004).Google Scholar
- 30.V. K. Kayastha, S. Wu, J. Moscatello, and Y. K. Yap, J. Phys. Chem. C 111, 10158 (2007).Google Scholar
- 31.S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science 298, 2361 (2002).Google Scholar
- 32.D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, M. J. Mills, and K. F. McCarty, Phys. Rev. B. 50, 7884 (1994).Google Scholar
- 33.R. S. Pease, Acta. Cryst. 5, 356 (1952).Google Scholar
- 34.T. Ishii, T. Sato, Y. Sekikawa, and M. Iwata, J. Cryst. Growth 52, 285 (1981)Google Scholar
- 35.F. P. Bundy and R. H. Wentorf, Jr, J. Chem Phys. 38, 1144 (1963)Google Scholar
- 36.R. H. Wentorf, Jr., J. Chem. Phys. 34, 809 (1961)Google Scholar
- 37.C. B. Samantaray and R. N. Singh, Int. Mater. Rev., 50, 313 (2005)Google Scholar
- 38.P. B. Mirkarimi, K. F. McCarty, and D. L. Medlin, Mat. Sci. Eng. R 21, 47 (1997)Google Scholar
- 39.J. Thomas,N. E. Weston, and T. E. O’Connor, J. Am. Chem. Soc. 84, 4619 (1963)Google Scholar
- 40.A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B. 49, 5081 (1994).Google Scholar
- 41.X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Euro. Phy. Lett. 28, 335 (1994)Google Scholar
- 42.M. Ishigami, S. Aloni and A. Zettl, AIP Conf. Proc. 696, 94 (2003).Google Scholar
- 43.D. Ghosh, G. Subhash, C. H. Lee, Y. K. Yap, Appl. Phys. Letts. 91, 061910 (2007).Google Scholar
- 44.R. Naslain, in Boron and Refractory Borides, V. I. Matkovich, Ed., Springer-Verlag, New York, 139 (1977).Google Scholar
- 45.G. Will and K. Ploog, Nature 251, 406 (1974).Google Scholar
- 46.A. W. Laubengayer, D. T. Hurd, A. E. Newkirk, and J. L. Hoard, J. Am. Chem. Soc. 65, 1924 (1943).Google Scholar
- 47.A. Y. Liu and M. L. Cohen, Science 245, 841 (1989).Google Scholar
- 48.A. Y. Liu and M. L. Cohen, Phys. Rev. B 41, 10727 (1990).Google Scholar
- 49.D. M. Teter and R. J. Hemley, Science 271, 53 (1996).Google Scholar
- 50.C. M. Niu, Y. Z. Lu, and C. M. Lieber, Science 261, 334 (1993).Google Scholar
- 51.C. M. Lieber and Z. J. Zhang, Chem. Indus. 22, 922 (1995).Google Scholar
- 52.J. T. Hu, P. D. Yang, and C. M. Lieber, Phys. Rev. B 57, R3185 (1998).Google Scholar
- 53.J. T. Hu, P. D. Yang, and C. M. Lieber, Appl. Surf. Sci. 127–129, 569 (1998).Google Scholar
- 54.O. Matsumoto, T. Kotaki, H. Shikano, K. Takemura, and S. Tanaka, J. Electrochem. Soc. 141, L16 (1994).Google Scholar
- 55.Y. K. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, Appl. Phys. Lett. 73, 915 (1998).Google Scholar
- 56.Y. K. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, Diamond Relat. Mater. 8, 614 (1999).Google Scholar
- 57.Y. K. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, Diamond Relat. Mater. 9, 1228 (2000).Google Scholar
- 58.M. Itoh, Y. Suda, M. A. Bratescu, Y. Sakai, and K. Suzuki, Appl. Phys. A 79, 1575 (2004).Google Scholar
- 59.Y. A. Li, Z. B. Zhang, S. S. Xie, and G. Z. Yang, Chem. Phys. Lett. 247, 253 (1995).Google Scholar
- 60.Z. B. Zhang, Y. A. Li, S. S. Xie, and G. Z. Yang, J. Mater. Sci. Lett. 14, 1742 (1995).Google Scholar
- 61.S. Kumar, K. S. A. Butcher, and T. L. Tansley, J. Vac. Sci. Technol. A 14, 2687 (1996).Google Scholar
- 62.C. Y. Hsu and F. C. N. Hong, Jpn. J. Appl. Phys 37, L1058 (1998).Google Scholar
- 63.W. Lu and K. Komvopoulos, J. Appl. Phys. 85, 2642 (1999).Google Scholar
- 64.J. Peng, P. Zhang, Y. Guo, and G. H. Chen, Mater. Lett. 29, 191 (1996).Google Scholar
- 65.Y. A. Li, S. Xu, H. S. Li, and W. Y. Luo, J. Mater. Sci. Lett. 17, 31 (1998).Google Scholar
- 66.L. D. Jiang, A. G. Fitzgerald, and M. J. Rose, Appl. Surf. Sci. 158, 340 (2000).Google Scholar
- 67.J. Wei, J. Appl. Phys. 89, 4099 (2001).Google Scholar
- 68.X. C. Wang, P. Wu, Z. Q. Li, E. Y. Jiang, and H. L. Bai, J. Phys. D: Appl. Phys. 37, 2127 (2004).Google Scholar
- 69.M. Lejeune, O. Durand-Drouhin, S. Charvet, A. Zeinert, and M. Benlahsen, J. Appl. Phys. 101, 123501 (2007).Google Scholar
- 70.T. Y. Yen and C. P. Chou, Appl. Phys. Lett. 67, 2801 (1995).Google Scholar
- 71.Y. F. Zhang, Z. H. Zhou, and H. L. Li, Appl. Phys. Lett. 68, 634 (1996).Google Scholar
- 72.H. K. Woo, Y. F. Zhang, S. T. Lee, C. S. Lee, Y. W. Lam, and K. W. Wong, Diamond Relat. Mater. 6, 635 (1997).Google Scholar
- 73.J. L. He and W. L. Chang, Surf. Coat. Technol. 99, 184 (1998).Google Scholar
- 74.J. P. Riviere, D. Texier, J. Delafond, M. Jaouen, E. L. Mathe and J. Chaumont, Mater. Lett. 22, 115 (1995).Google Scholar
- 75.A. Fernandez, P. Prieto, C. Quiros, J. M. Sanz, J. M. Martin and B. Vacher, Appl. Phys. Lett. 69, 764 (1996).Google Scholar
- 76.X. W. Su, H. W. Song, F. Z. Cui, W. Z. Li, and H. D. Li, Surf. Coat. Technol. 84, 388 (1996).Google Scholar
- 77.Z. C. Wu, Y. H. Yu, and X. H. Liu, Appl. Phys. Lett. 68, 1291 (1996).Google Scholar
- 78.X. M. He, L. Shu, W. Z. Li, and H. D. Li, J. Mater. Res. 12, 1595 (1997).Google Scholar
- 79.J. Y. Feng, Y. Zheng, and J. Q. Xie, Mater. Lett. 27, 219 (1996).Google Scholar
- 80.P. N. Wang, Z. Guo, X. T. Ying, J. H. Chen, X. M. Xu, and F. M. Li, Phys. Rev. B 59, 13347 (1999).Google Scholar
- 81.Y. G. Li, A. T. S. Wee, C. H. A. Huan, W. S. Li, and J. S. Pan, Surf. Interface Anal. 28, 221 (1999).Google Scholar
- 82.Kazuhiro Yamamoto, Jpn. J. Appl. Phys. 44, 1879 (2005).Google Scholar
- 83.T. Hidekazu, M. Sougawa, K. Takarabe, S. Sato, and O. Ariyada, Jpn. J. Appl. Phys. 46, 1596 (2007).Google Scholar
- 84.D. Li, X.-W. Lin, S.-C. Cheng, V. P. Dravid, Y.-W. Chung, M.-S. Wong, and W. D. Sproul, Appl. Phys. Lett. 68, 1211 (1996).Google Scholar
- 85.J. Pereira, I. G. Grenier, and V. M. Guilbaud, Thin Solid Films 482, 226 (2005).Google Scholar
- 86.H. Y. Li, Y. C. Shi, and P. X. Feng, Appl. Phys. Lett. 89, 142901 (2006).Google Scholar
- 87.T. C. Mu, J. Huang, Z. M. Liu, B. X. Han, Z. H. Li, Y. Wang, T. Jiang, and H. X. Gao, J. Mater. Res. 19, 1736 (2004).Google Scholar
- 88.A.R. Badzian et al. in “Proceeding of the 3rd International Conference on Chemical Vapor Deposition” (F.A. Claski, Ed.), pp. 747–753. American Nuclear Society, Hinsdale, IL, 1972.Google Scholar
- 89.K. Montasser, S. Hattori, and S. Monita, Thin Solid Films 117, 311 (1984).Google Scholar
- 90.L. Maya, J. Am. Ceram. Soc. 71, 1104 (1988).Google Scholar
- 91.J. Kouvetaksi, T. Sasaki, C. Shen, R. Hagiwara, M. Lerner, K. M. Krishnan, and N. Bartlett, Synth. Metals 34, 1 (1989).Google Scholar
- 92.L. Maya and L. A. Harris, J. Am. Ceram. Soc. 73, 1912 (1990).Google Scholar
- 93.M. Yamada, M. Nakaishi, and K. Sugishima, J. Electrochem. Soc. 137, 2242 (1990).Google Scholar
- 94.T. M. Besmann, J. Am. Ceram. Soc. 73, 2498 (1990).Google Scholar
- 95.M. Morita, T. Hanada, H. Tsutsumi, Y. Matsuda, and W. Kawaguchi, J. Electrochem. Soc. 139, 1227 (1992).Google Scholar
- 96.F. Saugnac, F. Teyssandiev, and A. Marchand, J. Am. Ceram. Soc. 75, 161 (1992).Google Scholar
- 97.N. Kawaguchi and T. Kawashima, J. Chem. Soc., Chem. Commun. 14, 1133 (1993).Google Scholar
- 98.A. Derré, L. Filipozzi, F. Bouyer, and A. Marchand, J. Mater. Sci. 29, 1589 (1994).Google Scholar
- 99.M. Hubacek and T. Sato, J. Solid State Chem. 114, 258 (1995).Google Scholar
- 100.M. O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, Thin Solid Films 281-282, 334 (1996).Google Scholar
- 101.Y. K. Yap, “Boron-Carbon Nitride Nanohybrids,” in Encyclopedia of Nanoscience and Nanotechnology (Foreword by R. E. Smalley), H. S. Nalwa, Ed., Volume 1, 383–394, American Scientific Publishers, (2004).Google Scholar
- 102.C. H. Lee and Y. K. Yap,“ Current Research Status of Boron-Carbon Nitride Bulks, Thin Films, and Nanostructures,” Chapter 10, in Diamond and Related Materials Research, Shôta Shimizu Ed., Nova Science Publisher, New York, 277–292 (2008).Google Scholar
- 103.M. Yano, Y. K. Yap, M. Okamoto, M. Onda, M. Yoshimura, Y. Mori, and T. Sasaki, Jpn. J. Appl. Phys. 39, L300 (2000).Google Scholar
- 104.Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317, 932 (2007).Google Scholar
- 105.Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, Phys. Rev. B 50, 4976 (1994).Google Scholar
- 106.A. Y. Liu, R. M. Wentzcovitch, and M. L. Cohen, Phys. Rev. B 39, 1760 (1989).Google Scholar
- 107.T. Yuki, S. Umeda, and T. Sugino, Diamond Relat. Mater. 13, 1130 (2004).Google Scholar
- 108.J. Yu, E. G. Wang, J. Ahn, S. F. Yoon, Q. Zhang, J. Cui, and M. B. Yu, J. Appl. Phys. 87, 4022 (2000).Google Scholar
- 109.R. Gago, I. Jiménez, and J. M. Albella, Thin Solid Films 373, 277 (2000).Google Scholar
- 110.M. K. Lei,.Quan Li, Z. F. Zhou, I. Bello, C. S. Lee, and S. T. Lee, Thin Solid Films 389, 194 (2001).Google Scholar
- 111.D. H. Kim, E. Byon, S. Lee, J.-K. Kim, and H. Ruh, Thin Solid Films 447-448, 192 (2004).Google Scholar
- 112.Y. Wada, Y. K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki, Diamond Relat. Mater. 9, 620 (2000).Google Scholar
- 113.Y. K. Yap, Y. Wada, M. Yamaoka, M. Yoshimura, Y. Mori, and T. Sasaki, Diamond Relat. Mater. 10, 1137 (2000).Google Scholar
- 114.H. Aoki, K. Ohyama, H. Sota, T. Seino, C. Kimura, and T. Sugino, Appl. Surf. Sci. 254, 596 (2007).Google Scholar
- 115.Pi-Chuen Tsai, Surf. Coat. Technol. 201, 5108 (2007).Google Scholar
- 116.Y. K. Yap, M. Yoshimura, Y. Mori, and T. Sasaki, Appl. Phys. Lett. 80, 2559 (2002).Google Scholar
- 117.H. Sun, S.-H. Jhi, D. Roundy, M. L. Cohen, and S. G. Louie, Phys. Rev. B 64, 094108 (2001).Google Scholar
- 118.A. R. Badzian, Mat. Res. Bull. 16, 1385 (1981).Google Scholar
- 119.E. Knittle, R. B. Kaner, R. Jeanloz, and M. L. Cohen, Phys. Rev. B 51, 12149 (1995).Google Scholar
- 120.T. Sasaki, M. Akaishi, S. Yamaoka, Y. Fujiki, and T. Oikawa, Chem. Mater. 5, 695 (1993).Google Scholar
- 121.S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem. Mater. 6, 2246 (1994).Google Scholar
- 122.S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Mater. Sci. Eng. A 209, 26 (1996).Google Scholar
- 123.Y. Zhao, D. W. He, L. L. Daemen, T. D. Shen, R. B. Schwarz, Y. Zhu, D. L. Bish, J. Huang, J. Zhang, G. Shen, J. Qian, and T. W. Zerda, J. Mater. Res. 17, 3139 (2002).Google Scholar
- 124.E. Kim, T. Pang, W. Utsumi, V. L. Solozhenko, and Y. Zhao, Phys. Rev. B 75, 184115 (2007).Google Scholar
- 125.S. Ulrich, H. Ehrhardt, T. Theel, J. Schwan, S. Westermeyr, M. Scheib, P. Becker, H. Oechsner, G. Dollinger, and A. Bergmaier, Diamond Relat. Mater. 7, 839 (1998).Google Scholar
- 126.Yao, L. Liu and W. H. Su, J. Mater. Res. 13, 1753 (1998).Google Scholar
- 127.J. Huang, Y. Zhu and H. Mori, J. Mater. Res. 16, 1178 (2001).Google Scholar
- 128.Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, Phys. Rev. B 50, 4976 (1994).Google Scholar
- 129.Z. W. Sieh, K. Cherrey, N. G. Chopra, X. Blasé, Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, A. Zettl, and R. Gronsky, Phys. Rev. B 51, 11229 (1995).Google Scholar
- 130.Y. Zhang, H. Gu, K. Suenaga, and S. Iijima, Chem. Phys. Lett. 279, 264 (1997)Google Scholar
- 131.M. Terrones, A. M. Benito, C. Manteca-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Prassides, H. W. Kroto, and D. R. M. Walton, Chem. Phys. Lett. 257, 576 (1996).Google Scholar
- 132.X. Blasé, J.C. Charlier, A. De Vita, and R. Car, Appl. Phys. Lett. 70, 197 (1997).Google Scholar
- 133.W. Q. Han, Y. Bando, K. Kurashima, and T. Sato, Jpn. J. Appl. Phys. 38, L755, (1999).Google Scholar
- 134.W.-Q. Han, J. Cumings, X. Huang, K. Bradley, and A. Zettl, Chem. Phys. Lett. 346, 368 (2001).Google Scholar
- 135.W.-Q. Han, W. Mickelson, J. Cuming, and A. Zettl, Appl. Phys. Lett. 81, 1110 (2002).Google Scholar
- 136.M. Terrones, D. Golberg, N. Grobert, T. Seeger, M. R. Reyes, M. Mayne, R. Kamalakaran, P. Dorozhkin, Z.-C. Dong, H. Terrones, M. Ruhle, and Y. Bando, Adv. Mater. 15, 1899 (2003).Google Scholar
- 137.D. Golberg, P. Dorozhkin, Y. Bando, M. Hasegawa, and Z.-C. Dong, Chem. Phys. Lett. 359, 220 (2002).Google Scholar
- 138.D. Golberg, Y. Bando, K. Kurashima, and T. Sato, Solid State Commun. 116, 1 (2000).Google Scholar
- 139.J. Wu, W.-Q. Han, W. Walukiewicz, J. W. AgerIII, W. Shan, E. E. Haller, and A. Zettl, Nano Lett. 4, 647 (2004).Google Scholar
- 140.C. Y. Zhi, J. D. Guo, X. D. Bai, and E. G. Wang, J. Appl. Phys. 91, 5325 (2002).Google Scholar
- 141.W. L. Wang, X. D. Bai, K. H. Liu, Z. Xu, D. Golberg, Y. Bando, and E. G. Wang, J. Am. Chem. Soc. 128, 6530 (2006).Google Scholar
- 142.R. Ma, D. Golberg, Y. Bando, and T. Sasaki, Phil. Trans. R. Soc. Lond. A, 362, 2161 (2004).Google Scholar
- 143.Y. Miyamoto, M. L. Cohen, and S. G. Louie, Solid State Commun. 102, 605 (1997).Google Scholar
- 144.W.Q. Han, Y. Bando, K. Kurashima, and T. Sato, Chem. Phys. Lett. 299, 368 (1999).Google Scholar
- 145.L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, ACS Nano 1, 494 (2007).Google Scholar
- 146.R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Rühle, and D. L. Carroll, Nano Lett. 1, 457 (2001).Google Scholar
- 147.J. Liu, S. Webster, and D. L. Carroll, Appl. Phys. Lett. 88, 213119 (2006)Google Scholar
- 148.M. Doytcheva, M. Kaiser, M. A. Verheijen, M. Reyes-Reyes, M. Terrones, and N. de Jonge, Chem. Phys. Lett. 396, 126 (2004).Google Scholar