Skip to main content

A Synthesis of Auditory Cortical Connections: Thalamocortical, Commissural and Corticocortical Systems

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

The study of mammalian auditory cortex (AC) began with the delineation of a few areas which appeared to have a limited set of connections from other AC fields (Brugge and Reale 1985) and from a small number of nuclei in the medial geniculate body (MGB) (Rose and Woolsey 1958). Subsequent work with more sensitive methods revealed many more areas in a wider temporal lobe expanse (Schreiner and Cynader 1984; Bowman and Olson 1988; Clarey and Irvine 1990; Shinonaga et al. 1994; Clascá et al. 1997) and, within some regions, multiple subdivisions specialized physiologically for sound processing or communication signals (Ehret 1997; Winer and Lee 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAF:

anterior auditory field

AC:

auditory cortex

AES:

anterior ectosylvian field

AI:

primary auditory cortex

AII:

secondary auditory cortex

AL:

anterior lateral auditory belt, macaque

AM:

anterior medial thalamic nucleus

APt:

anterior pretectum

AS:

arcuate sulcus

AV:

anterior ventral thalamic nucleus

BIC:

brachium of the inferior colliculus

BSC:

brachium of the superior colliculus

CB:

cerebellum

CC:

corticocortical

CF:

constant frequency region or characteristic frequency

CF–CF:

constant frequency–constant frequency region, bat

CG:

central gray

CL:

caudal lateral auditory belt, macaque

CM:

caudomedial auditory belt, macaque

CMN:

centromedial nucleus

CO:

commissural or contralateral

CP:

cerebral peduncle, or caudal parabelt, macaque

CS:

central sulcus

CTb:

cholera toxin beta subunit

CTbG:

cholera toxin beta subunit, gold-conjugate

D:

dorsal nucleus of the medial geniculate body or dorsal

DD:

deep dorsal nucleus

DCa:

caudal dorsal nucleus of the medial geniculate body

DF:

dorsal fringe area, bat

DlF:

dorsal lateral fringe area, bat

DM:

dorsomedial area, bat

DSCF:

Doppler-shifted constant frequency region, bat

DD:

deep dorsal nucleus of the medial geniculate body

DS:

dorsal superficial nucleus of the medial geniculate body

DZ:

dorsal auditory zone

ED:

posterior ectosylvian gyrus, dorsal part

EI:

posterior ectosylvian gyrus, intermediate part

EN:

entopeduncular

EPP:

posterior ectosylvian gyrus, caudal par

EV:

posterior ectosylvian gyrus, ventral part

FM:

frequency modulated area, bat

FM–FM:

FM–FM area, bat

GABA:

gamma aminobutyric acid

Ha:

habenula

HiT:

habenulointerpeduncular tract

III:

oculomotor nucleus

In:

insular cortex

L:

lateral

LD:

lateral dorsal thalamic nucleus

LGB:

lateral geniculate nucleus

LGBd:

lateral geniculate body, dorsal nucleus

LGBv:

lateral geniculate body, ventral nucleus

LLS:

lateral visual association area, lateral part

LP:

lateral posterior nucleus

LOS:

lateral orbital sulcus

LS:

lateral sulcus

LS:

lateral suprasylvian visual association area

LuS:

lunate sulcus

M:

medial division of the medial geniculate body or medial

MD:

mediodorsal nucleus

MeV:

mesencephalic nucleus of the trigeminal

MGB:

medial geniculate body

ML:

middle lateral auditory belt, macaque

MLS:

middle lateral suprasylvian visual association area

MRF:

mesencephalic reticular formation

OT:

optic tract

Ov:

ovoid part of the medial geniculate body

P:

posterior auditory cortex

PAC:

paracentral thalamic nucleus

PC:

posterior commissure

PFC:

prefrontal cortex

PHyp:

posterior hypothalamus

Ps:

principal sulcus

Ps:

posterior sylvian gyrus

Pt:

pretectum

Pul:

pulvinar

R:

rostral, or rostral auditory area, macaque

RM:

rostromedial region, macaque

RN:

red nucleus

RP:

rostral pole nucleus of the medial geniculate body

RT:

rostrotemporal area, macaque

RTL:

lateral rostrotemporal auditory belt, macaque

RTM:

medial rostrotemporal auditory belt, macaque

RP:

rostral pole division of the medial geniculate body, or rostral parabelt, macaque

SC:

superior colliculus

SG:

suprageniculate nucleus

Sgl:

suprageniculate nucleus, lateral part

Sl:

suprageniculate nucleus, lateral part

Sm:

suprageniculate nucleus, medial part

SN:

substantia nigra

Spf:

subparafascicular nucleus

STG:

superior temporal gyrus

STS:

superior temporal sulcus

TC:

thalamocortical

Te1:

temporal area, rat

TRN:

thalamic reticular nucleus

V:

ventral division of the medial geniculate body or ventral

VA:

ventral anterior thalamic nucleus, or ventroanterior area, bat

Vb:

ventrobasal complex

Ve:

ventral auditory area

VF:

ventral fringe, bat

VL:

ventral lateral thalamic nucleus

Vl:

ventrolateral nucleus of the medial geniculate body

VP:

ventral posterior auditory area, or ventroposterior area, bat

Vpl:

ventral posterior nucleus, lateral part

Vpm:

ventral posterior nucleus, medial part

Vpmpc:

ventral posteromedial nucleus, parvocellular part

wm:

white matter

7:

parietal area 7

20:

posterior sylvian visual association area 20

21b:

posterior sylvian visual association area 21b

35:

perirhinal area 35

36:

perirhinal area 36

References

  • Aitkin LM and Dunlop CW (1968) Interplay of excitation and inhibition in the cat medial geniculate body. Journal of Neurophysiology 31:44–61.

    CAS  PubMed  Google Scholar 

  • Angelucci A, Levitt JB, Walton EJS, HupĂ© J-M, Bullier J, and Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. Journal of Neuroscience 22:8633–8646.

    CAS  PubMed  Google Scholar 

  • Benshalom G and White EL (1986) Quantification of thalamocortical synapses with spiny stellate neurons in layer IV of mouse somatosensory cortex. Journal of Comparative Neurology 253:303–314.

    Article  CAS  PubMed  Google Scholar 

  • Binzegger T, Douglas RJ, and Martin KA (2004) A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience 24:8441–8453.

    Article  CAS  PubMed  Google Scholar 

  • Bizley JK, Nodal FR, Nelken I, and King AJ (2005) Functional organization of ferret auditory cortex. Cerebral Cortex 15:1637–1653.

    Article  PubMed  Google Scholar 

  • Bordi F and LeDoux JE (1994) Response properties of single units in areas of rat auditory thalamus that project the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Experimental Brain Research 98:261–274.

    Article  CAS  Google Scholar 

  • Bowman EM and Olson CR (1988) Visual and auditory association areas of the cat’s posterior ectosylvian gyrus: cortical afferents. Journal of Comparative Neurology 272:30–42.

    Article  CAS  PubMed  Google Scholar 

  • Bozhko GT and Slepchenko AF (1988) Functional organization of the callosal connections of the cat auditory cortex. Neuroscience and Behavioral Physiology 18:323–330.

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS, Ahad PA, and Van Loon C (2001) Stream segregation of narrow-band noise bursts. Perception and Psychophysics 63:790–797.

    Article  CAS  PubMed  Google Scholar 

  • Brugge JF and Reale RA (1985) Auditory cortex. In: Peters A and Jones EG (eds). Cerebral Cortex, volume 4, Association and Auditory Cortices. Plenum Press, New York, pp. 229–271.

    Google Scholar 

  • Budinger E, Heil P, and Scheich H (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. European Journal of Neuroscience 12:2452–2474.

    Article  CAS  PubMed  Google Scholar 

  • Budinger E, Laszcz A, Lison H, Scheich H, and Ohl FW (2008) Non-sensory cortical and subcortical connections of the primary auditory cortex in Mongolian gerbils: bottom-up and top-down processing of neuronal information via field AI. Brain Research 1220:70–80.

    Article  PubMed  CAS  Google Scholar 

  • Bullier J, Kennedy H, and Salinger W (1984) Bifurcation of subcortical afferents to visual areas 17, 18, and 19 in the cat cortex. Journal of Comparative Neurology 228:308–328.

    Google Scholar 

  • Bullier J and Nowak JG (1995) Parallel versus serial processing: new vistas on the distributed organization of the visual system. Current Opinion in Neurobiology 5:497–503.

    Article  CAS  PubMed  Google Scholar 

  • Carrera E and Bogousslavsky J (2006) The thalamus and behavior: effects of anatomically distinct strokes. Neurology 66:1817–1823.

    Article  PubMed  Google Scholar 

  • Catalano SM and Shatz CJ (1998) Activity-dependent cortical target selection by thalamic axons. Science 281:559–562.

    Article  CAS  PubMed  Google Scholar 

  • Clarey JC and Irvine DRF (1990) The anterior ectosylvian sulcal auditory field in the cat: I. An electrophysiological study of its relation to surrounding auditory cortical fields. Journal of Comparative Neurology 301:289–303.

    Article  CAS  PubMed  Google Scholar 

  • Clascá F, Llamas A, and Reinoso-Suárez F (1997) Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. Journal of Comparative Neurology 384:456–482.

    Article  PubMed  Google Scholar 

  • Clemo HR, Keniston L, and Meredith MA (2003) A comparison of the distribution of GABA-ergic neurons in cortices representing different sensory modalities. Journal of Chemical Neuroanatomy 26:51–63.

    Article  CAS  PubMed  Google Scholar 

  • Davis TL and Sterling P (1979) Microcircuitry of cat visual cortex: classification of neurons in layer IV of area 17, and identification of the patterns of lateral geniculate input. Journal of Comparative Neurology 188:599–628.

    Article  CAS  PubMed  Google Scholar 

  • DeschĂŞnes M, Veinante P, and Zhang Z-W (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Research Reviews 28:286–308.

    Article  PubMed  Google Scholar 

  • Desimone R and Schein SJ (1987) Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. Journal of Neurophysiology 57:835–868.

    CAS  PubMed  Google Scholar 

  • Desimone R, Schein SJ, Moran J, and Ungerleider LG (1985) Contour, color and shape analysis beyond the striate cortex. Vision Research 25:441–452.

    Article  CAS  PubMed  Google Scholar 

  • Diamond IT and Hall WC (1969) Evolution of neocortex. Science 164:251–262.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1998) Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. Journal of Neurophysiology 80:2743–2764.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1999) Neural correlates of gap detection in three auditory cortical fields in the cat. Journal of Neurophysiology 81:2570–2581.

    CAS  PubMed  Google Scholar 

  • Ehret G (1997) The auditory cortex. Journal of Comparative Physiology A 181:547–557.

    Article  CAS  Google Scholar 

  • Felleman DJ and Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:1–47.

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick DC, Olsen JF, and Suga N (1998) Connections among functional areas in the mustached bat auditory cortex. Journal of Comparative Neurology 391:366–396.

    Article  CAS  PubMed  Google Scholar 

  • Frost SB, Milliken GW, Plautz EJ, Masterton RB, and Nudo RJ (2000) Somatosensory and motor representation in cerebral cortex of a primitive mammal (Monodelphis domestica): a window in the early evolution of sensorimotor cortex. Journal of Comparative Neurology 421:29–51.

    Article  CAS  PubMed  Google Scholar 

  • Gazzaniga MS (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123:1293–1326.

    Article  PubMed  Google Scholar 

  • Gil Z, Connors BW, and Amitai Y (1999) Efficacy of thalamocortical synaptic connections: quanta, innervation, and reliability. Neuron 23:385–397.

    Article  CAS  PubMed  Google Scholar 

  • Gross CG (2002) Genealogy of the “grandmother cell”. Neuroscientist 8:512–518.

    Article  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 394:475–495.

    Article  CAS  PubMed  Google Scholar 

  • Hall BK (2003) Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution. Biological Reviews of the Cambridge Philosophical Society 78:409–433.

    Article  PubMed  Google Scholar 

  • He J, Hashikawa T, Ojima H, and Kinouchi Y (1997) Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. Journal of Neuroscience 17:2615–2625.

    CAS  PubMed  Google Scholar 

  • Hromádka T, DeWeese MR, and Zador AM (2008) Sparse representation of sounds in the unanesthetized auditory cortex. Public Library of Science Biology 6:e16.

    Google Scholar 

  • Huang CL and Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology 427:302–331.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey AL, Sur M, Uhlrich DJ, and Sherman SM (1985) Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. Journal of Comparative Neurology 233:190–212.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi K, Lee CC, Linden JF, Winer JA, and Schreiner CE (2004a) The anterior auditory field of auditory cortex: neurophysiological and neuroanatomical organization. In: König R, Heil P, Budinger E, and Scheich H (eds). Auditory Cortex: Neurophysiological and Neuroanatomical Organization. Lawrence Erlbaum Associates, Mahwah, pp. 95–110.

    Google Scholar 

  • Imaizumi K, Priebe NJ, Crum PAC, Bedenbaugh PH, Cheung SW, and Schreiner CE (2004b) Modular functional organization of cat anterior auditory field. Journal of Neurophysiology 92:444–457.

    Article  PubMed  Google Scholar 

  • Imig TJ and Reale RA (1980) Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. Journal of Comparative Neurology 192:293–332.

    Article  CAS  PubMed  Google Scholar 

  • Irvine DRF (1986) The Auditory Brainstem. A Review of the Structure and Function of Auditory Brainstem Processing Mechanisms. In: Autrum H, Ottoson D, Perl ER, Schmidt RF, Shimazu H, and Willis WD (eds). Progress in Sensory Physiology. Springer, New York, pp. 1–279.

    Google Scholar 

  • Izhikevich EM, Gally JA, and Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cerebral Cortex 14:933–944.

    Article  PubMed  Google Scholar 

  • Jones EG and Porter R (1980) What is area 3a? Brain Research Reviews 2:1–43.

    Article  Google Scholar 

  • Kaas JH (1995) The evolution of isocortex. Brain, Behaviour and Evolution 46:187–196.

    Article  CAS  Google Scholar 

  • Kaas JH and Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiology and Neurotology 3:73–85.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH and Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America 97:11793–11799.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP and Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718.

    Article  CAS  PubMed  Google Scholar 

  • Kishan AU, Lee CC, and Winer JA (2008) Branched projections in the auditory thalamocortical and corticocortical systems. Neuroscience 154:283–293.

    Article  CAS  PubMed  Google Scholar 

  • Kitzes LM and Hollrigel GS (1996) Response properties of units in the posterior auditory field deprived of input from the ipsilateral primary auditory cortex. Hearing Research 100:120–130.

    Article  CAS  PubMed  Google Scholar 

  • Knight PL (1977) Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Research 130:447–467.

    Article  CAS  PubMed  Google Scholar 

  • Kral A and Eggermont JJ (2007) What’s to lose and what’s to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews 56:256–269.

    Article  Google Scholar 

  • Lee CC, Imaizumi K, Schreiner CE, and Winer JA (2004a) Concurrent tonotopic processing streams in auditory cortex. Cerebral Cortex 14:441–451.

    Article  PubMed  Google Scholar 

  • Lee CC, Schreiner CE, Imaizumi K, and Winer JA (2004b) Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience 128:871–887.

    Article  CAS  PubMed  Google Scholar 

  • Lee CC and Sherman SM (2008) Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. Journal of Neurophysiology 100:317–326.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2005) Principles governing auditory cortex connections. Cerebral Cortex 15:1804–1818.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2008a) Connections of cat auditory cortex. I. Thalamocortical system. Journal of Comparative Neurology 507:1879–1900.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2008b) Connections of cat auditory cortex. II. Commissural system. Journal of Comparative Neurology 507:1901–1919.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2008c) Connections of cat auditory cortex. III. Corticocortical system. Journal of Comparative Neurology 507:1920–1943.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2010) Convergence of thalamic and cortical pathways. Hearing Research doi:10.1016.

    Google Scholar 

  • Loftus WC and Sutter ML (2001) Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons. Journal of Neurophysiology 86:475–491.

    CAS  PubMed  Google Scholar 

  • Lomber SG, Malhotra S, and Hall AJ (2007) Functional specialization in non-primary auditory cortex of the cat: areal and laminar contributions to sound localization. Hearing Research 229:31–45.

    Article  PubMed  Google Scholar 

  • Lund JS, Wu Q, Hadingham PT, and Levitt JB (1995) Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases for neuroanatomically realistic models. Journal of Anatomy (London) 187:563–581.

    Google Scholar 

  • Malhotra S, Hall AJ, and Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. Journal of Neurophysiology 92:1625–1643.

    Article  PubMed  Google Scholar 

  • Matsubara JA and Phillips DP (1988) Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. Journal of Comparative Neurology 268:38–48.

    Article  CAS  PubMed  Google Scholar 

  • Meredith MA, Keniston LR, Dehner LR, and Clemo HR (2006) Crossmodal projections from somatosensory area SIV to the anterior ectosylvian sulcus (FAES) in cat: further evidence for subthreshold forms of multisensory processing. Experimental Brain Research 172:472–484.

    Article  Google Scholar 

  • Merzenich MM, Knight PL, and Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. Journal of Neurophysiology 38:231–249.

    CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Dykes RW, and Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographic organization orthogonal to isofrequency contours. Brain Research 181:31–48.

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, EscabĂ­ MA, Read HL, and Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, EscabĂ­ MA, Read HL, and Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology 87:516–527.

    PubMed  Google Scholar 

  • Nowak JG and Bullier J (1997) The timing of information transfer in the visual system. In: Rockland KS, Kaas JH, and Peters A (eds). Cerebral Cortex, volume 12, Extrastriate Cortex in Primates. Plenum Press, New York, pp. 205–241.

    Google Scholar 

  • Olshausen BA, Anderson CH, and Van Essen DC (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience 16:1180–1192.

    Google Scholar 

  • Pallas SL and Sur M (1993) Visual projections induced into the auditory pathway of ferrets: II. corticocortical connections of primary auditory cortex. Journal of Comparative Neurology 1993:317–333.

    Article  Google Scholar 

  • Phillips DP and Irvine DRF (1981) Responses of single neurons in physiologically defined primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity. Journal of Neurophysiology 45:48–58.

    CAS  PubMed  Google Scholar 

  • Phillips DP and Irvine DRF (1982) Properties of single neurons in the anterior auditory field (AAF) of the cat cerebral cortex. Brain Research 248:237–244.

    Article  CAS  PubMed  Google Scholar 

  • Priebe NJ, Cassanello CR, and Lisberger SG (2003) The neural representation of speed in macaque area MT/V5. Journal of Neuroscience 23:5650–5661.

    CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2001) Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 98:8042–8047.

    Article  CAS  PubMed  Google Scholar 

  • Reale RA and Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 182:265–291.

    Article  Google Scholar 

  • Roger M and Arnault P (1989) Anatomical study of the connections of the primary auditory area in the rat. Journal of Comparative Neurology 287:339–356.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, Bates JF, and Goldman-Rakic PS (1999a) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology 403:141–157.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, and Rauschecker JP (1999b) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience 2:1131–1136.

    Article  CAS  PubMed  Google Scholar 

  • Rose D and Dobson VG (eds) (1985) Models of the Visual Cortex, Wiley, Chichester.

    Google Scholar 

  • Rose JE and Woolsey CN (1958) Cortical connections and functional organization of the thalamic auditory system of the cat. In: Harlow HF, and Woolsey CN (eds). Biological and Biochemical Bases of Behavior. University of Wisconsin Press, Madison, pp. 127–150.

    Google Scholar 

  • Rouiller EM, Simm GM, Villa AEP, de Ribaupierre Y, and de Ribaupierre F (1991) Auditory corticocortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas. Experimental Brain Research 86:483–505.

    Article  CAS  Google Scholar 

  • Rutkowski RG and Weinberger NM (2006) Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 102:13664–13669.

    Article  CAS  Google Scholar 

  • Schreiner CE and Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. Journal of Neurophysiology 51:1284–1305.

    CAS  PubMed  Google Scholar 

  • Schreiner CE, Read HL, and Sutter ML (2000) Modular organization of frequency integration in primary auditory cortex. Annual Reviews of Neuroscience 23:501–529.

    Article  CAS  Google Scholar 

  • Schreiner CE and Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365.

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM and Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society London, series B, Biological Sciences 357:1695–1708.

    Article  Google Scholar 

  • Shinonaga Y, Takada M, and Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. Journal of Comparative Neurology 340:405–426.

    Article  CAS  PubMed  Google Scholar 

  • Sporns O, Tononi G, and Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behavioural Brain Research 135:69–74.

    Article  CAS  PubMed  Google Scholar 

  • Spreafico R, Barbaresi P, Weinberg RJ, and Rustioni A (1987) SII-projecting neurons in the rat thalamus: a single- and double-retrograde-tracing study. Somatosensory Research 4:359–375.

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Stark CE, and Clark RE (2004) The medial temporal lobe. Annual Reviews of Neuroscience 27:279–306.

    Article  CAS  Google Scholar 

  • Stecker GC, Harrington IA, Macpherson EA, and Middlebrooks JC (2005) Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. Journal of Neurophysiology 94:1267–1280.

    Article  PubMed  Google Scholar 

  • Stiebler I, Neulist R, Fichtel I, and Ehret G (1997) The auditory cortex of the house mouse: left–right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A 181:559–571.

    Article  CAS  Google Scholar 

  • Stratford KJ, Tarczy-Hornoch K, Martin KAC, Bannister NJ, and Jack JJB (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382:258–261.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield IC and Evans EF (1965) Responses of auditory cortical neurons to stimuli of changing frequency. Journal of Neurophysiology 28:655–672.

    CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, volume 1, The Mammalian Auditory Pathway: Neuroanatomy. Springer, New York, pp. 222–409.

    Google Scholar 

  • Winer JA, Diehl JJ, and Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. Journal of Comparative Neurology 430:27–55.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1987) Patterns of reciprocity in auditory thalamocortical and corticothalamic connections: study with horseradish peroxidase and autoradiographic methods in the rat medial geniculate body. Journal of Comparative Neurology 257:282–315.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, Diehl JJ, and Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. Journal of Comparative Neurology 400:147–174.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Lee CC (2007) The distributed auditory cortex. Hearing Research 229:3–13.

    Article  PubMed  Google Scholar 

  • Winer JA, Miller LM, Lee CC, and Schreiner CE (2005) Auditory thalamocortical transformation: structure and function. Trends in Neurosciences 28:255–263.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. Journal of Comparative Neurology 434:379–412.

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN (1960) Organization of cortical auditory system: a review and synthesis. In: Rasmussen GL and Windle WF (eds). Neural Mechanisms of the Auditory and Vestibular Systems. Charles C Thomas, Springfield, pp. 165–180.

    Google Scholar 

  • Xiao Z and Suga N (2004) Reorganization of the auditory cortex specialized for echo-delay processing in the mustached bat. Proceedings of the National Academy of Sciences of the United States of America 101:1769–1774.

    Article  CAS  PubMed  Google Scholar 

  • Zeki S (1993) The visual association cortex. Current Opinion in Neurobiology 3:155–159.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the National Institutes of Health grant R01 DC2319-29. David Larue’s help was essential in constructing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, C.C., Winer, J.A. (2011). A Synthesis of Auditory Cortical Connections: Thalamocortical, Commissural and Corticocortical Systems. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_7

Download citation

Publish with us

Policies and ethics