Skip to main content

The Commissural Auditory System

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

We consider the anatomy and the function of the forebrain auditory callosal system. We begin with an anatomical description of callosal organization, drawing on comparative evidence, present evidence for common principles and area-specific departures from these in audition and other modalities, and consider this system in its own right. We also consider experience-dependent development of commissural connectivity and how it is perturbed by experience and disease. We then explore the functional correlates of this anatomical organization with particular attention to the empirical link between callosal and intrahemispheric connectivity on the one hand, and binaural processing on the other. We conclude by exploring the hypothesis that callosal connectivity supports continuity of sensation across the midline to create perceptual unity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAF:

anterior auditory field (non-primate cortex)

APD:

auditory processing disorder

AI:

auditory area 1 (primary auditory cortex)

AII:

auditory area 2 (non-primate cortex)

CF:

characteristic frequency

dB:

decibel

EE:

excitatory (contralateral)—excitatory (ipsilateral)

EI:

excitatory (contralateral)—inhibitory (ipsilateral)

EO:

excitatory (contralateral)—no effect (ipsilateral)

GABA:

gamma-aminobutyric acid

HRP:

horseradish peroxidase

ILD:

interaural level difference

ITD:

interaural time difference

MGC:

medial geniculate complex (thalamus)

PAF:

posterior auditory field (non-primate cortex)

PB:

predominately binaural

PV:

parietal ventral area (primate somatic sensory cortex)

SI:

somatic sensory area 1 (non-primate cortex)

VI:

visual area 1 (area 17)

VII:

visual area 2 (area 18)

VPAF:

ventral posterior auditory field (non-primate cortex)

References

  • Abel PL, O’Brien BJ, Lia B, and Olavarria JF (1997) Distribution of neurons projecting to the superior colliculus correlates with thick cytochrome oxidase stripes in macaque visual area V2. Journal of Comparative Neurology 377:313–323.

    Article  CAS  PubMed  Google Scholar 

  • Abel PL, O’Brien BJ, and Olavarria JF (2000) Organization of callosal linkages in visual area V2 of macaque monkey. Journal of Comparative Neurology 428:278–293.

    Article  CAS  PubMed  Google Scholar 

  • Aitkin LM, Kudo M, and Irvine DRF (1988) Connections of the primary auditory cortex in the common marmoset, Callithrix jacchus jacchus. Journal of Comparative Neurology 269:235–248.

    Article  CAS  PubMed  Google Scholar 

  • Allen LS, Richey MF, Chai YM, and Gorski RA (1991) Sex differences in the corpus callosum of the living human being. Journal of Neuroscience 11:933–942.

    CAS  PubMed  Google Scholar 

  • Azuma M and Suzuki H (1984) Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Research 298:343–346.

    Article  CAS  PubMed  Google Scholar 

  • Banich MT (1998a) Integration of information between the cerebral hemispheres. Current Directions in Psychological Science 7:32–37.

    Article  Google Scholar 

  • Banich MT (1998b) The missing link: the role of interhemispheric interaction in attentional processing. Brain and Cognition 36:128–157.

    Article  CAS  PubMed  Google Scholar 

  • Barbaresi P, Bernardi S, and Manzoni T (1989) Callosal connections of the somatic sensory areas II and IV in the cat. Journal of Comparative Neurology 283:355–373.

    Article  CAS  PubMed  Google Scholar 

  • Barbaresi P, Minelli A, and Manzoni T (1994) Topographical relations between ipsilateral cortical afferents and callosal neurons in the second somatic sensory area of cats. Journal of Comparative Neurology 343:582–596.

    Article  CAS  PubMed  Google Scholar 

  • Beck PD and Kaas JH (1994) Interhemispheric connections in neonatal owl monkeys (Aotus trivirgatus) and galagos (Galago crassicaudatus). Brain Research 651:57–75.

    Article  CAS  PubMed  Google Scholar 

  • Berlucchi G (1972) Anatomical and physiological aspects of visual functions of corpus callosum. Brain Research 37:371–392.

    Article  CAS  PubMed  Google Scholar 

  • Berlucchi G and Rizzolatti G (1968) Binocularly driven neurons in visual cortex of split-chiasm cats. Science 159:308–310.

    Article  CAS  PubMed  Google Scholar 

  • Berlucchi G, Tassinari G, and Antonini A (1986) The organization of the callosal connections according to Sperry’s principle of supplemental complementarity. In: Leporé F, Ptito M, and Jasper HH (eds). Two Hemispheres – One Brain: Functions of the Corpus Callosum. Alan R Liss, New York, pp 171–188.

    Google Scholar 

  • Boehnke SE and Phillips DP (1999) Azimuthal tuning of human perceptual channels for sound location. Journal of the Acoustical Society of America 106:1948–1955.

    Article  CAS  PubMed  Google Scholar 

  • Boehnke SE and Phillips DP (2005) Auditory saltation in the vertical, midsagittal plane. Perception 34:371–377.

    Article  PubMed  Google Scholar 

  • Brugge JF, Anderson DJ, and Aitkin LM (1970) Responses of neurons in the dorsal nucleus of the lateral lemniscus of cat to binaural tonal stimulation. Journal of Neurophysiology 33:441–458

    CAS  PubMed  Google Scholar 

  • Brugge JF, Dubrovsky NA, Aitkin LM, and Anderson DJ (1969) Sensitivity of single neurons in auditory cortex of cat to binaural tonal stimulation; effects of varying interaural time and intensity. Journal of Neurophysiology 32:1005–1024.

    CAS  PubMed  Google Scholar 

  • Brugge JF and Imig TJ (1978) Some relationships of binaural response patterns of single neurons to cortical columns and interhemispheric connections of auditory area AI of cat cerebral cortex. In: Fernández C and Naunton RF (eds). Evoked Electrical Activity in the Auditory Nervous System. Academic Press, New York, pp. 487–504.

    Google Scholar 

  • Brugge JF, Reale RA, and Hind JE (1996) The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. Journal of Neuroscience 16:4420–4437.

    CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, Scheich H (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience 12:2425–2451.

    Article  CAS  PubMed  Google Scholar 

  • Buhl EH and Singer W (1989) The callosal projection in cat visual cortex as revealed by a combination of retrograde tracing and intracellular injection. Experimental Brain Research 75:470–476.

    Article  CAS  Google Scholar 

  • Caminiti R, Innocenti GM, and Manzoni T 1979 The anatomical substrate of callosal messages from SI and SII in the cat. Experimental Brain Research 35:295–314.

    Article  CAS  Google Scholar 

  • Choudhury BP, Whitteridge D, and Wilson ME (1965) The function of the callosal connections of the visual cortex. Quarterly Journal Experimental Physiology and Cognate Medical Sciences 50:214–219.

    CAS  Google Scholar 

  • Cipolloni PB and Pandya DN (1989) Connectional analysis of the ipsilateral and contralateral afferent neurons of the superior temporal region in the rhesus monkey. Journal of Comparative Neurology 281:567–585.

    Article  CAS  PubMed  Google Scholar 

  • Cipolloni PB and Peters A (1983) The termination of callosal fibres in the auditory cortex of the rat. A combined Golgi-electron microscope and degeneration study. Journal of Neurocytology 12:713–726.

    Article  CAS  PubMed  Google Scholar 

  • Clarey JC, Barone P, Irons WA, Samson FK. and Imig TJ (1995) Comparison of noise and tone azimuth tuning of neurons in cat primary auditory cortex and medial geniculate body. Journal of Neurophysiology 74:961–980.

    CAS  PubMed  Google Scholar 

  • Code RA and Winer JA (1985) Commissural neurons in layer III of cat primary auditory cortex (AI): pyramidal and non-pyramidal cell input. Journal of Comparative Neurology 242:485–510.

    Article  CAS  PubMed  Google Scholar 

  • Code RA and Winer JA (1986) Columnar organization and reciprocity of commissural connections in cat primary auditory cortex (AI). Hearing Research 23:205–222.

    Article  CAS  PubMed  Google Scholar 

  • Conti F, Fabri M, and Manzoni T (1986) Bilateral receptive fields and callosal connectivity of the body midline representation in the first somatosensory area of primates. Somatosensory and Motor Research 3:273–289.

    Article  CAS  Google Scholar 

  • Conti F and Manzoni T (1994) The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behavioral Brain Research 64:37–53.

    Article  CAS  Google Scholar 

  • Cusick CG, Gould HJ 3rd, and Kaas JH (1984) Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus). Journal of Comparative Neurology 230:311–336.

    Article  CAS  PubMed  Google Scholar 

  • Cusick CG and Kaas JH (1986) Interhemispheric connections of cortical sensory and motor representations in primates. In: Leporé F, Ptito M, and Jasper HH (eds). Two Hemispheres – One Brain: Functions of the Corpus Callosum. Alan R. Liss, New York, pp. 83–102.

    Google Scholar 

  • Cusick CG, MacAvoy MG, and Kaas JH (1985) Interhemispheric connections of cortical sensory areas in tree shrews. Journal of Comparative Neurology 235:111–128.

    Article  CAS  PubMed  Google Scholar 

  • Dehay C, Kennedy H, and Bullier J (1986) Callosal connectivity of areas V1 and V2 in the newborn monkey. Journal of Comparative Neurology 254:20–33.

    Article  CAS  PubMed  Google Scholar 

  • de la Mothe L, Blumell S, Kajikawa Y, and Hackett TA (2006a) Cortical connections of auditory cortex in marmoset monkeys: core and medial belt regions. Journal of Comparative Neurology 496:27–71.

    Google Scholar 

  • Diamond IT, Jones EG, and Powell TPS (1968) Interhemispheric fiber connections of the auditory cortex of the cat. Brain Research 11:177–193.

    Article  CAS  PubMed  Google Scholar 

  • Dingle RN, Hall SE, and Phillips DP (2010) A midline azimuthal channel in human spatial hearing. Hearing Research 268:67–74.

    Google Scholar 

  • Ebner FF and Myers RE (1965) Distribution of corpus callosum and anterior commissure in cat and raccoon. Journal of Comparative Neurology 124:353–365.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ and Mossop JE (1998) Azimuth coding in primary auditory cortex of the cat. I. Spike synchrony versus spike count representations. Journal of Neurophysiology 80:2133–2150.

    CAS  PubMed  Google Scholar 

  • Eimer M, Fortser B, and Vibell J (2005) Cutaneous saltation within and across arms: A new measure of the saltation illusion in somatosensation. Perception and Psychophysics 67:458–468.

    PubMed  Google Scholar 

  • Endrass T, Mohr B, and Rockstroh B (2002) Reduced interhemispheric transmission in schizophrenia patients: evidence from event-related potentials. Neuroscience Letters 320:57–60.

    Article  CAS  PubMed  Google Scholar 

  • Fabri M and Manzoni T (2004) Glutamic acid decarboxylase immunoreactivity in callosal projecting neurons of cat and rat somatic sensory areas. Neuroscience 123:557–566.

    Article  CAS  PubMed  Google Scholar 

  • Feng JZ and Brugge JF (1983) Postnatal development of auditory callosal connections in the kitten. Journal of Comparative Neurology 214:416–426.

    Article  Google Scholar 

  • Fitzpatrick KA and Imig TJ (1980) Auditory cortico-cortical connections in the owl monkey. Journal of Comparative Neurology 192:589–610.

    Article  CAS  PubMed  Google Scholar 

  • FitzPatrick KA and Imig TJ (1982) Organization of auditory connections. The primate auditory cortex. In: Woolsey CN (ed) Cortical Sensory Organization, Volume 3, Multiple Auditory Areas. Humana Press, Clifton, NJ, pp 71–109.

    Google Scholar 

  • Forbes BF and Moskowitz N (1977) Cortico-cortical connections of the superior temporal gyrus in the squirrel monkey. Brain Research 136:547–552.

    Article  CAS  PubMed  Google Scholar 

  • Geldard FA (1976) The auditory saltation effect in vision. Sensory Processes 1:77–86.

    CAS  PubMed  Google Scholar 

  • Geldard FA and Sherrick CE (1986) Space, time and touch. Scientific American 255:90–95.

    Article  CAS  PubMed  Google Scholar 

  • Guillemot J-P, Richer L, Ptito M, Guilbert M, and Leporé F (1992) Somatosensory receptive field properties of corpus callosum fibres in the raccoon. Journal of Comparative Neurology 321:124–132.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1999) Callosal connections of the parabelt auditory cortex in macaque monkeys. European Journal of Neuroscience 11:856–866.

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa T, Molinari M, Rausell E, and Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. Journal of Comparative Neurology 362:195–208.

    Article  CAS  PubMed  Google Scholar 

  • Heffner HE (1997) The role of macaque auditory cortex in sound localization. Acta Otolaryngology (Stockholm) Supplement 532:22–27.

    Article  CAS  Google Scholar 

  • Heilman KM and Valenstein E (1972) Auditory neglect in man. Archives of Neurology 26:32–35.

    CAS  PubMed  Google Scholar 

  • Highley JR, Esiri MM, McDonald B, Roberts HC, Wakler MA, and Crow TJ (1999) The size and fiber composition of the anterior commissure with respect to gender and schizophrenia. Biological Psychiatry 45:1120–1127.

    Article  CAS  PubMed  Google Scholar 

  • Houzel JC, Milleret C, and Innocenti G (1994) Morphology of callosal axons interconnecting areas 17 and 18 of the cat. European Journal of Neuroscience 6:898–917.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH and Wiesel TN (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28:229–289.

    CAS  PubMed  Google Scholar 

  • Hubel DH and Wiesel TN (1967) Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. Journal of Neurophysiology 30:1561–1573.

    CAS  PubMed  Google Scholar 

  • Hughes CM and Peters A (1990) Morphological evidence for callosally projecting nonpyramidal neurons in rat visual cortex. Anatomy and Embryology (Berlin) 182:591–603.

    CAS  Google Scholar 

  • Hynd GW, Hall J, Novey ES, Eliopulos D, Black K, Gonzales JJ, Edmonds JE, Riccio C, Cohen M (1995) Dyslexia and corpus callosum morphology. Archives of Neurology 52:32–38.

    CAS  PubMed  Google Scholar 

  • Imig TJ and Adrián HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Research 138:241–257.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Brugge JF (1978) Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. Journal of Comparative Neurology 182:637–660.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Irons WA, and Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. Journal of Neurophysiology 63:1448–1466.

    CAS  PubMed  Google Scholar 

  • Imig TJ, Morel A, and Kauer CD (1982) Covariation of distributions of callosal cell bodies and callosal axon terminals in layer III of cat primary auditory cortex. Brain Research 251:157–159.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Reale RA (1980) Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. Journal of Comparative Neurology 192:293–332.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Reale RA 1981 Ipsilateral corticocortical projections related to binaural columns in cat primary auditory cortex. Journal of Comparative Neurology 203:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Reale RA, and Brugge JF (1977) The origin and targets of primary field efferents related to tonotopic and binaural maps of cat auditory cortex. Proceedings of the International Union of Physiology 12:706.

    Google Scholar 

  • Innocenti GM (1986) General organization of commissural connections in the cerebral cortex. In: Jones EG and Peters A (eds). Cerebral Cortex, volume 5, Sensory-Motor Areas and Aspects of Cortical Connectivity. Plenum Press, New York, pp. 291–353.

    Google Scholar 

  • Innocenti GM, Aggoun-Zouaoui D, and Lehmann P (1995) Cellular aspects of callosal connections and their development. Neuropsychologia 33:961–987.

    Article  CAS  PubMed  Google Scholar 

  • Inzitari D (2000) Age-related white matter changes and cognitive impairment. Annals of Neurology 47:141–143.

    Article  CAS  PubMed  Google Scholar 

  • Iwamura Y, Iriki A, and Tanaka M (1994) Bilateral hand representation in the postcentral somatosensory cortex. Nature 369:554–556.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson S and Trojanowski JQ (1974) The cells of origin of the corpus callosum in rat, cat and rhesus monkey. Brain Research 74:149–155.

    Article  CAS  PubMed  Google Scholar 

  • Janowsky JS, Kaye JA, and Carper RA (1996) Atrophy of the corpus callosum in Alzheimer’s Disease versus healthy aging. Journal of the American Geriatric Society 44:798–803.

    CAS  Google Scholar 

  • Jenkins WM and Masterton RB (1982) Sound localization: effects of unilateral lesions in the central auditory system. Journal of Neurophysiology 47:987–1016.

    CAS  PubMed  Google Scholar 

  • Jenny AB (1979) Commissural projections of the cortical hand motor area in monkeys. Journal of Comparative Neurology 188:137–145.

    Article  CAS  PubMed  Google Scholar 

  • Jerger J, Martin J, and McColl R (2004) Interaural cross correlations of event-related potentials and diffusion tensor imaging in the evaluation of auditory processing disorder: a case study. Journal of the American Academy of Audiology 15:79–87.

    Article  PubMed  Google Scholar 

  • Jerger J, Thibodeau L, Martin J, Mehta J, Tillman G, Greenwald R, Britt L, Scott J, and Overson G (2002) Behavioral and electrophysiological evidence of auditory processing disorder: a twin study. Journal of the American Academy of Audiology 13:438–460.

    PubMed  Google Scholar 

  • Jones EG and Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. Journal of Comparative Neurology 168:197–248.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Burton H, and Porter R (1975) Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates. Science 190:572–574.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Coulter JD, and Hendry SHC (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. Journal of Comparative Neurology 181:291–347.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Coulter JD, and Wise SP (1979) Commissural columns in the sensory-motor cortex of monkeys. Journal of Comparative Neurology 188:113–135.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH (1995) The organization of callosal connections in primates. In: Reeves AG and Roberts DW (eds) Epilepsy and the Corpus Callosum II. New York: Plenum Press. pp 15–27.

    Google Scholar 

  • Kavanagh GL and Kelly JB (1987) Contribution of auditory cortex to sound localization by the ferret (Mustela putorius). Journal of Neurophysiology 57:1746–1766.

    CAS  PubMed  Google Scholar 

  • Kelly JB and Judge PW (1994) Binaural organization of primary auditory cortex in the ferret (Mustela putorius). Journal of Neurophysiology 71:904–913.

    CAS  PubMed  Google Scholar 

  • Kelly JP and Wong D (1981) Laminar connections of the cat’s auditory cortex. Brain Research 212:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy H and Dehay C (1988) Functional implications of the anatomical organization of the callosal projections of visual areas VI and V2 in the macaque monkey. Behavioral Brain Research 29:225–236.

    Article  CAS  Google Scholar 

  • Killackey HP, Gould HJ 3rd, Cusick CG, Pons TP, and Kaas JH (1983) The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys. Journal of Comparative Neurology 219:384–419.

    Article  CAS  PubMed  Google Scholar 

  • Kitzes LM and Doherty D (1994) Influence of callosal activity on units in the auditory cortex of ferret (Mustela putorius). Journal of Neurophysiology 71:1740–1751.

    CAS  PubMed  Google Scholar 

  • Kitzes LM, Wrege KS, and Cassady JM (1980) Patterns of responses of cortical cells to binaural stimulation. Journal of Comparative Neurology 192:455–472.

    Article  CAS  PubMed  Google Scholar 

  • Künzle H (1976) Alternating afferent zones of high and low axon terminal density within the macaque motor cortex. Brain Research 106:365–370.

    Article  PubMed  Google Scholar 

  • Lee CC and Winer JA (2008) Connections of cat auditory cortex: II. Commissural system. Journal of Comparative Neurology 507:1901–1919.

    Article  PubMed  Google Scholar 

  • Leporé F and Guillemot J-P (1982) Visual receptive field properties of cells innervated through the corpus callosum in the cat. Experimental Brain Research 46:413–424.

    Article  Google Scholar 

  • Leporé F, Ptito M, and Guillemot J-P (1986) The role of the corpus callosum in midline fusion. In: Leporé F, Ptito M, and Jasper HH (eds). Two Hemispheres-One Brain: Functions of the Corpus Callosum. Alan R Liss, New York, pp. 211–229.

    Google Scholar 

  • Lessard N, Leporé F, Villemagne J, and Lassonde M (2002) Sound localization in callosal agenesis and early callosotomy subjects: brain reorganization and/or compensatory strategies. Brain 125:1039–1053.

    Article  PubMed  Google Scholar 

  • Leporé F, Samson A, Paradis MC, Ptito M, and Guillemot J-P (1992) Binocular interaction and disparity coding at the 17–18 border: contribution of the corpus callosum. Experimental Brain Research 90:129–140.

    Article  Google Scholar 

  • Lewis JW and Olavarria JF (1995) Two rules for callosal connectivity in striate cortex of the rat. Journal of Comparative Neurology 361:119–137.

    Article  CAS  PubMed  Google Scholar 

  • Luethke LE, Krubitzer LA, and Kaas JH (1988) Cortical connections of electrophysiologically and architectonically defined subdivisions of auditory cortex in squirrels. Journal of Comparative Neurology 268:181–203.

    Article  CAS  PubMed  Google Scholar 

  • Luethke LE, Krubitzer LA, and Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, Saguinus. Journal of Comparative Neurology 285:487–513.

    Article  CAS  PubMed  Google Scholar 

  • Liu W and Suga N (1997) Binaural and commissural organization of the primary auditory cortex of the mustached bat. Journal of Comparative Physiology A 181:599–605.

    Article  CAS  Google Scholar 

  • Lund JS, Lund RD, Hendrickson AE, Bunt AH, and Fuchs AF (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 164:287–303.

    Article  CAS  PubMed  Google Scholar 

  • Manzoni T (1997) The callosal connections of the hierarchically organized somatosensory areas of primates. Journal of Neurosurgical Sciences 41:1–22.

    CAS  PubMed  Google Scholar 

  • Manzoni T, Barbaresi P, Conti F, and Fabri M (1989) The callosal connections of the primary somatosensory cortex and the neural bases of midline fusion. Experimental Brain Research 76:251–266.

    Article  CAS  Google Scholar 

  • Matsubara JA and Phillips DP (1988) Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. Journal of Comparative Neurology 268:38–48.

    Article  CAS  PubMed  Google Scholar 

  • McMullen NT and de Venecia RK (1993) Thalamocortical patches in auditory neocortex. Brain Research 620:317–322.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Dykes RW, and Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Research 181:31–48.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC and Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. Journal of Neuroscience 1:107–120.

    CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Xu L, Eddins AC, and Green DM (1998) Codes for sound source location in nontonotopic auditory cortex. Journal of Neurophysiology 80:863–881.

    CAS  PubMed  Google Scholar 

  • Middlebrooks JC and Zook JM (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex. Journal of Neuroscience 3:203–224.

    CAS  PubMed  Google Scholar 

  • Mitchell TN, Free SL, Merschhemke M, Lemieux L, Sisodiya SM, and Shorvon SD (2003) Reliable callosal measurement: population normative data confirm sex-related differences. American Journal of Neuroradiology 24:410–418.

    PubMed  Google Scholar 

  • Morel A, Garraghty PE, and Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology 335:437–459.

    Article  CAS  PubMed  Google Scholar 

  • Moore CN, Casseday JH, and Neff WD (1974) Sound localization: the role of the commissural pathways of the auditory system of the cat. Brain Research 82:13–26.

    Article  CAS  PubMed  Google Scholar 

  • Morel A and Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. Journal of Comparative Neurology 318:27–63.

    Article  CAS  PubMed  Google Scholar 

  • Newsome WT and Allman JM (1980) Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis. Journal of Comparative Neurology 194:209–233.

    Article  CAS  PubMed  Google Scholar 

  • Oka S, Miyamoto O, Janjua NA, Honjo-Fujiwara N, Ohkawa M, Nagao S, Kondo H, Minami T, Toyoshima T, and Itano T (1999) Re-evaluation of sexual dimorphism in human corpus callosum. NeuroReport 10:937–940.

    Article  CAS  PubMed  Google Scholar 

  • Olavarria JF (1996) Non-mirror-symmetric patterns of callosal linkages in areas 17 and 18 in cat visual cortex. Journal of Comparative Neurology 366:643–655.

    Article  CAS  PubMed  Google Scholar 

  • Olavarria JF and Abel PL (1996) The distribution of CC correlates with the pattern of cytochrome oxidase stripes in visual area V2 of macaque monkeys. Cerebral Cortex 6:631–639.

    Article  CAS  PubMed  Google Scholar 

  • Orman SS and Phillips DP (1984) Binaural interactions of single neurons in posterior field of cat auditory cortex. Journal of Neurophysiology 51:1028–1039.

    CAS  PubMed  Google Scholar 

  • Pallas SL, Littman T, and Moore DRF (1999) Cross-modal reorganization of callosal connectivity without altering thalamocortical projections. Proceedings of the National Academy of Sciences of the United States of America 96:8751–8756.

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN, Hallett M, and Mukherjee SK (1969) Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Research 14:49–65.

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN and Rosene DL (1993) Laminar termination patterns of thalamic, callosal, and association afferents in the primary auditory area of the rhesus monkey. Experimental Neurology 119:220–234.

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN and Sanides (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeitschrift für Anatomie und Entwicklungsgeschichte 139:127–161.

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN and Vignolo LA (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Research 26:217–233.

    CAS  PubMed  Google Scholar 

  • Peters A and Sethares C (2002) Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. Journal of Comparative Neurology 442:277–291.

    Article  PubMed  Google Scholar 

  • Phillips DP (2001) Introduction to the central auditory nervous system. In: Jahn AF and Santos-Sacchi JR (eds). Physiology of the Ear. Singular, San Diego, pp. 613–638.

    Google Scholar 

  • Phillips DP and Brugge JF (1985) Progress in neurophysiology of sound localization. Annual Review of Psychology 36:245–274.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Hall SE (2001) Spatial and temporal factors in auditory saltation. Journal of the Acoustical Society of America 110:1539–1547.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Hall SE (2005) Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hearing Research 202:188–199.

    Article  PubMed  Google Scholar 

  • Phillips DP, Hall SE, Boehnke SE, and Rutherford LED (2002) Spatial stimulus cue information supplying auditory saltation. Perception 31: 875–885.

    Article  PubMed  Google Scholar 

  • Phillips DP and Irvine DRF (1981) Responses of single neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hearing Research 4:299–307.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Irvine DRF (1982) Properties of single neurons in the anterior auditory field (AAF) of cat cerebral cortex. Brain Research 248:237–244.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Irvine DRF (1983) Some features of binaural input to single neurons in physiologically defined area AI of cat cerebral cortex. Journal of Neurophysiology 49:383–395.

    CAS  PubMed  Google Scholar 

  • Phillips DP, Calford MB, Pettigrew JD, Aitkin LM, and Semple MN (1982) Directionality of sound pressure transformation at the cat’s pinna. Hearing Research 8:13–28.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP, Vigneault-MacLean BK, Boehnke SE, and Hall SE (2003) Acoustic hemifields in the spatial release from masking of speech by noise. Journal of the American Academy of Audiology 14:518–524.

    Article  CAS  PubMed  Google Scholar 

  • Poirier P, Lassonde M, Villemure J-G, Geoffroy G, and Leporé F (1994) Sound localization in hemispherectomized patients. Neuropsychologia 32:541–553.

    Article  CAS  PubMed  Google Scholar 

  • Poirier P, Leporé F, Provencal C, Ptito M, and Guillemot J-P (1995) Binaural noise stimulation of auditory callosal fibers of the cat: responses to interaural time delays. Experimental Brain Research 104:30–40.

    Article  CAS  Google Scholar 

  • Qi HX, Lyon DC, and Kaas JH (2002) Cortical and thalamic connections of the parietal ventral somatosensory area in marmoset monkeys (Callithrix jacchus). Journal of Comparative Neurology 443:168–182.

    Article  PubMed  Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF, and McKay J (1990) Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and effects of variations in stimulus parameters. Journal of Neurophysiology 64:872–887.

    CAS  PubMed  Google Scholar 

  • Recanzone GH, Guard DC, Phan ML, and Su T-IK (2000) Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. Journal of Neurophysiology 83:2723–2739.

    CAS  PubMed  Google Scholar 

  • Richter K, Hess A, and Scheich H (1999) Functional mapping of transsynaptic effects of local manipulation of inhibition in gerbil auditory cortex. Brain Research 831:184–199.

    Article  CAS  PubMed  Google Scholar 

  • Roe AW, Pallas SL, Hahm JO, and Sur M (1990). A map of visual space induced in primary auditory cortex. Science 250:818–820.

    Article  CAS  PubMed  Google Scholar 

  • Roe AW, Pallas SL, Kwon YH, and Sur M (1992) Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex. Journal of Neuroscience 12:3651–3664.

    CAS  PubMed  Google Scholar 

  • Rouiller EM, Simm GM, Villa AE, de Ribaupierre Y, and de Ribaupierre F (1991) Auditory corticocortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas. Experimental Brain Research 86:483–505.

    Article  CAS  Google Scholar 

  • Sanchez-Longo LP and Forster FM (1958) Clinical significance of impairment of sound localization. Neurology 8:119–125.

    CAS  PubMed  Google Scholar 

  • Sanides D (1978) The retinotopic distribution of visual callosal projections in the suprasylvian visual areas compared to the classical visual areas (17, 18, 19) in the cat. Experimental Brain Research 33:435–443.

    Article  CAS  Google Scholar 

  • Santhouse AM, Ffytche DH, Howard RJ, Williams SCR, Rifkin L, and Murray RM (2002) Functional imaging of the mechanisms underlying the bilateral field advantage. NeuroImage 17:680–687.

    Article  CAS  PubMed  Google Scholar 

  • Shanks MF, Rockel AJ, and Powell TPS (1975) The commissural fibre connections of the primary somatic sensory cortex. Brain Research 98:166–171.

    Article  CAS  PubMed  Google Scholar 

  • Stecker GC, Harrington IA, and Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. Public Library of Science Biology 3:520–528 (e78).

    CAS  Google Scholar 

  • Sur M, Garraghty PE, and Roe AW (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242:1437–1441.

    Article  CAS  PubMed  Google Scholar 

  • Swadlow HA, Weyand TG, and Waxman SG (1978) The cells of origin of the corpus callosum in rabbit visual cortex. Brain Research 156:129–134.

    Article  CAS  PubMed  Google Scholar 

  • Thompson GC and Cortez AM (1983) The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behavioral Brain Research 8:211–216.

    Article  CAS  Google Scholar 

  • Thompson PM, Moussai J, Zohoori S, Goldkorn A, Khan AA, Mega MS, Small GW, Cummings JL, and Toga AW (1998) Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cerebral Cortex 8:492–509.

    Article  CAS  PubMed  Google Scholar 

  • Tigges J, Tigges M, Anschel S, Cross NA, Letbetter WD, and McBride RL (1981) Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). Journal of Comparative Neurology 202:539–560.

    Article  CAS  PubMed  Google Scholar 

  • Vaadia E, Benson DA, Hienz RD, and Goldstein MH Jr (1986) Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. Journal of Neurophysiology 56:934–952.

    CAS  PubMed  Google Scholar 

  • Van Essen DC, Newsome WT, and Bixby JL (1982) The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. Journal of Neuroscience 2:265–283.

    PubMed  Google Scholar 

  • Vaughan DW and Peters A (1985) Proliferation of thalamic afferents in cerebral cortex altered by callosal deafferentation. Journal of Neurocytology 14:705–716.

    Article  CAS  PubMed  Google Scholar 

  • Voigt T, LeVay S, and Stamnes MA (1988) Morphological and immunocytochemical observations on the visual callosal projections in the cat. Journal of Comparative Neurology 272:450–460.

    Article  CAS  PubMed  Google Scholar 

  • Wallace MN and Harper MS (1997) Callosal connections of the ferret primary auditory cortex. Experimental Brain Research 116:367–374.

    Article  CAS  Google Scholar 

  • White EL and Czeiger D (1991) Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: emphasis on intrinsic connections. Journal of Comparative Neurology 303:233–244.

    Article  CAS  PubMed  Google Scholar 

  • Wong D and Kelly JP (1981) Differentially projecting cells in individual layers of the auditory cortex: a double-labeling study. Brain Research 230:362–366.

    Article  CAS  PubMed  Google Scholar 

  • Zeki SM (1970) Interhemispheric connections of prestriate cortex in monkey. Brain Research 19:63–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Some of the work described in this chapter was supported by grants from the Natural Sciences and Engineering Research Council of Canada, the Canadian Language and Literacy Research Network, and the Killam Trust (D.P.P.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy A. Hackett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hackett, T.A., Phillips, D.P. (2011). The Commissural Auditory System. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_5

Download citation

Publish with us

Policies and ethics