Skip to main content

Auditory Cortical Organization: Evidence for Functional Streams

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

Understanding auditory cortex functional organization lags far behind the current understanding of visual cortex. One reason may be that auditory research has traditionally taken a bottom-up approach dealing first with cochlear and brain stem mechanisms of auditory coding. However, to understand how complex sounds are processed, stored, and recognized, we must understand how auditory cortex functions. In the cortex, the primary auditory cortex (AI) has long received the most attention. Physiological and anatomical studies in cats and monkeys find that multiple auditory areas surround AI, just as multiple representations of the visual world surround primary visual cortex (VI). It is reasonable to propose that these multiple fields support unique specialized functions in the complex behavioral repertoire of higher mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

primary auditory cortex

AL:

anterior region of the lateral belt

BBW:

best bandwidth

BPN:

band pass noise

CL:

caudolateral area

CM:

caudal medial area

CPB:

caudal parabelt region

DLPFC:

dorsolateral prefrontal cortex

FM:

frequency modulation

fMRI:

functional magnetic resonance imaging

Ig:

granular insula

L:

lateral region

LB:

lateral belt

Lim:

limitans

MB:

medial belt

MC:

monkey call

MCPI:

monkey call preference index

MGad:

anterodorsal division of the medial geniculate complex

MGC:

medial geniculate complex

MGd:

dorsal division of the medial geniculate complex

MGm:

magnocellular division of the medial geniculate complex

MGpd:

dorsoposterior division of the medial geniculate complex

MGv:

ventral division of the medial geniculate complex

ML:

mediolateral area

PET:

positron emission tomography

PFC:

prefrontal cortex

PM:

medial pulvinar

Po:

posterior nucleus of the multisensory thalamic complex

R:

rostral field

Ri:

retroinsular cortex

RM:

rostromedial belt region

RPB:

rostral parabelt region

RT:

rostral temporal field

RTL:

lateral rostrotemporal belt region

RTM:

medial rostrotemporal belt region

Sg:

suprageniculate

STG:

superior temporal gyrus

STP:

superior temporal plane

STS:

superior temporal sulcus

TAa:

anterior temporal area

TE:

inferior temporal lobe region

TEO:

inferior temporal lobe region

TPO:

temporal polysensory area

Tpt:

temporo-parietal area

TS1,2:

rostral areas of the superior temporal gyrus

VI:

primary visual cortex

VLPFC:

ventro-lateral prefrontal cortex

References

  • Ahveninen J, Jääskeläinen IP, Raij T, Bonmassar G, Devore S, Hamalainen M, Levanen S, Lin FH, Sams M, Shinn-Cunningham BG, Witzel T, and Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 103:14608–14613.

    Article  CAS  PubMed  Google Scholar 

  • Alain C, Arnott SR, Hevenor S, Graham S, and Grady CL (2001) “What” and “where” in the human auditory system. Proceedings of the National Academy of Sciences of the United States of America 98:12301–12306.

    Article  CAS  PubMed  Google Scholar 

  • Arnott SR, Binns MA, Grady CL, and Alain C (2004) Assessing the auditory dual-pathway model in humans. Neuroimage 22:401–408.

    Article  PubMed  Google Scholar 

  • Averbeck BB and Romanski LM (2006) Probabilistic encoding of vocalizations in macaque ventral lateral prefrontal cortex. Journal of Neuroscience 26:11023–11033.

    Article  CAS  PubMed  Google Scholar 

  • Averbeck BB and Romanski LM (2004) Principal and independent components of macaque vocalizations: constructing stimuli to probe high-level sensory processing. Journal of Neurophysiology 91:2897–2909.

    Article  PubMed  Google Scholar 

  • Azuma M and Suzuki H (1984) Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Research 298:343–346.

    Article  Google Scholar 

  • Barbas H (1992) Architecture and cortical connections of the prefrontal cortex in the rhesus monkey. Advances in Neurology 57:91–115.

    CAS  PubMed  Google Scholar 

  • Barraclough NE, Xiao D, Baker CI, Oram MW, and Perrett DI (2005) Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions. Journal of Cognitive Neuroscience 17:377–391.

    Article  PubMed  Google Scholar 

  • Baylis GC, Rolls ET, and Leonard CM (1987) Functional subdivisions of the temporal lobe neocortex. Journal of Neuroscience 7:330–342.

    CAS  PubMed  Google Scholar 

  • Belin P, Zatorre RJ, Lafaille P, Ahad P, and Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312.

    Article  CAS  PubMed  Google Scholar 

  • Benevento LA, Fallon J, Davis BJ, and Rezak M (1977) Auditory-visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Experimental Neurology 57:849–872.

    Article  CAS  PubMed  Google Scholar 

  • Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Springer JA, Kaufman JN, and Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex 10:512–528.

    Article  CAS  PubMed  Google Scholar 

  • Binder JR, Liebenthal E, Possing ET, Medler DA, and Ward BD (2004) Neural correlates of sensory and decision processes in auditory object identification. Nature Neuroscience 7:295–301.

    Article  CAS  PubMed  Google Scholar 

  • Bodner M, Kroger J, and Fuster JM (1996) Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7:1905–1908.

    Article  CAS  PubMed  Google Scholar 

  • Bon L and Lucchetti C (2006) Auditory environmental cells and visual fixation effect in area 8B of macaque monkey. Experimental Brain Research 168:441–449.

    Article  Google Scholar 

  • Broca P (1861) Remarques su le siege defaulte de langage articule suivies d’une observation d’aphemie (perte de la parole). Bulletin de la Societe’ d’Anthropologie 2:330–337.

    Google Scholar 

  • Bruce C, Desimone R, and Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46:369–384.

    CAS  PubMed  Google Scholar 

  • Brugge JF and Merzenich MM (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. Journal of Neurophysiology 36:1138–1158.

    CAS  PubMed  Google Scholar 

  • Brunetti M, Belardinelli P, Caulo M, Del Gratta C, Della Penna S, Ferretti A, Lucci G, Moretti A, Pizzella V, Tartaro A, Torquati K, Olivetti Belardinelli M, and Romani GL (2005) Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study. Human Brain Mapping 26:251–261.

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Raichle ME, and Petersen SE (1995) Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. Journal of Neurophysiology 74:2163–2173.

    CAS  PubMed  Google Scholar 

  • Bushara KO, Weeks RA, Ishii K, Catalan MJ, Tian B, Rauschecker JP, and Hallett M (1999) Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nature Neuroscience 2:759–766.

    Article  CAS  PubMed  Google Scholar 

  • Chavis DA and Pandya DN (1976) Further observations on corticofrontal connections in the rhesus monkey. Brain Research 117:369–386.

    Article  CAS  PubMed  Google Scholar 

  • Chevillet MA, Riesenhuber M, and Rauschecker JP (2007) Functional localization of the auditory “what” stream hierarchy. Society for Neuroscience Abstracts 33:174.9.

    Google Scholar 

  • Degerman A, Rinne T, Salmi J, Salonen O, and Alho K (2006) Selective attention to sound location or pitch studied with fMRI. Brain Research 1:123–134

    Article  CAS  Google Scholar 

  • Demb JB, Desmond JE, Wagner AD, Vaidya CJ, Glover GH, and Gabrieli JD (1995) Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. Journal of Neuroscience 15:5870–5878.

    CAS  PubMed  Google Scholar 

  • Deouell LY, Heller AS, Malach R, D’Esposito M, and Knight RT (2007) Cerebral responses to change in spatial location of unattended sounds. Neuron 55:985–996.

    Article  CAS  PubMed  Google Scholar 

  • Desimone R (1991) Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience 3:1–8.

    Article  Google Scholar 

  • Desimone R and Schein SJ (1987) Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. Journal of Neurophysiology 57:835–868.

    CAS  PubMed  Google Scholar 

  • Doupe AJ (1997) Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development. Journal of Neuroscience 17:1147–1167.

    CAS  PubMed  Google Scholar 

  • Ehret G and Schreiner CE (1997) Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex. Journal of Comparative Physiology A 181:635–650.

    Article  CAS  Google Scholar 

  • Esser K-H, Condon CJ, Suga N, and Kanwal JS (1997) Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii. Proceedings of the National Academy of Sciences of the United States of America 94:14019–14024.

    Article  CAS  PubMed  Google Scholar 

  • Fecteau S, Armony JL, Joanette Y, and Belin P (2005) Sensitivity to voice in human prefrontal cortex. Journal of Neurophysiology 94:2251–2254.

    Article  Google Scholar 

  • Fiez JA, Raife EA, Balota DA, Schwarz JP, Raichle ME, and Petersen SE (1996) A positron emission tomography study of the short-term maintenance of verbal information. Journal of Neuroscience 16:808–822.

    CAS  PubMed  Google Scholar 

  • Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, and Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869.

    Article  CAS  PubMed  Google Scholar 

  • Friederici AD, Ruschemeyer SA, Hahne A, and Fiebach CJ (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cerebral Cortex 13:170–177.

    Article  PubMed  Google Scholar 

  • Gabrieli JDE, Poldrack RA, and Desmond JE (1998) The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences of the United States of America 95:906–913.

    Article  CAS  PubMed  Google Scholar 

  • Ghazanfar AA, Chandrasekaran C, and Logothetis NK (2008) Interactions between the superior temporal sulcus and auditory cortex mediate dynamic face/voice integration in rhesus monkeys. Journal of Neuroscience 28:4457–4469.

    Article  CAS  PubMed  Google Scholar 

  • Gifford GW, III, Hauser MD, and Cohen YE (2003) Discrimination of functionally referential calls by laboratory-housed rhesus macaques: Implications for neuroethological studies. Brain Behavior and Evolution 61:213–224.

    Article  Google Scholar 

  • Goldman-Rakic, PS (1996). The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society, London. B Biological Sciences 351:1445–1453.

    Article  CAS  Google Scholar 

  • Goldman PS and Rosvold HE (1970) Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Experimental Neurology 27:291–304.

    Article  CAS  PubMed  Google Scholar 

  • Gross CG (1963) A comparison of the effects of partial and total lateral frontal lesions on test performance by monkeys. Journal of Comparative Physiological Psychology 56:41–47.

    Article  Google Scholar 

  • Gross CG and Weiskrantz L (1962) Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. Experimental Neurology 5:453–476.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, De La Mothe LA, Ulbert I, Karmos G, Smiley J, and Schroeder CE (2007) Multisensory convergence in auditory cortex, II. Thalamocortical connections of the caudal superior temporal plane. Journal of Comparative Neurology 502:924–952.

    Article  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1999) Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research 817:45–58.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1998a) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 394:475–495.

    Article  CAS  PubMed  Google Scholar 

  • Hackett TA, Stepniewska I, and Kaas JH (1998b) Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 400:271–286.

    Article  CAS  PubMed  Google Scholar 

  • Hauser MD (1996) The Evolution of Communication. MIT Press, Cambridge.

    Google Scholar 

  • Hikosaka K, Iwai E, Saito H, and Tanaka K (1988) Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. Journal of Neurophysiology 60:1615–1637.

    CAS  PubMed  Google Scholar 

  • Howard MA, Volkov IO, Abbas PJ, Damasio H, Ollendieck MC, and Granner M (1996) A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Research 724:260–264.

    Article  CAS  PubMed  Google Scholar 

  • Howard MA, Volkov IO, Mirsky R, Garell PC, Noh MD, Granner M, Damasio H, Steinschneider M, Reale RA, Hind JE, and Brugge JF (2000) Auditory cortex on the human posterior superior temporal gyrus. Journal of Comparative Neurology 416:79–92.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH and Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology (London) 160:106–154.

    Google Scholar 

  • Gifford GGW, Maclean KA, Hauser MD, and Cohen YE (2005) The neurophysiology of functionally meaningful categories: macaque ventrolateral prefrontal cortex plays a critical role in spontaneous categorization of species-specific vocalizations. Journal of Cognitive Neuroscience 17:1471–1482.

    Article  PubMed  Google Scholar 

  • Ito SI (1982) Prefrontal unit activity of macaque monkeys during auditory and visual reaction time tasks. Brain Research 247:39–47.

    Article  CAS  PubMed  Google Scholar 

  • Iversen SD and Mishkin M (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Experimental Brain Research 11:376–386.

    Article  CAS  Google Scholar 

  • Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, and Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the United States of America 101:6809–6814.

    Article  PubMed  Google Scholar 

  • Jones EG, Dell’Anna ME, Molinari M, Rausell E, and Hashikawa T (1995) Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. Journal of Comparative Neurology 362:153–170.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH and Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America 97:11793–11799.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH and Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiology & Neuro-Otology 3:73–85.

    Article  CAS  Google Scholar 

  • Kikuchi Y, Horwitz B, and Mishkin M (2007) Auditory response properties in the rostral and caudal stations of the auditory stimulus processing stream of the macaque superior temporal cortex. Society for Neuroscience Abstracts 33:278.16.

    Google Scholar 

  • Kikuchi Y, Horwitz B, and Mishkin M (2004) A patch of neurons in the monkey’s rostral superior temporal gyrus are activated by conspecific calls. Society for Neuroscience Abstracts 30:650:10.

    Google Scholar 

  • Kikuchi Y, Rauschecker JP, Mishkin M, Augath M, Logothetis NK, and Petkov CI (2008) Voice region connectivity in the monkey assessed with microstimulation and functional imaging. Society for Neuroscience Abstracts 34:850.2.

    Google Scholar 

  • Kikuchi-Yorioka Y and Sawaguchi T (2000) Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nature Neuroscience 3:1075–1076.

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI (1983) Subdivisions of the inferior colliculus in the barn owl (Tyto alba). Journal of Comparative Neurology 218:174–186.

    Article  CAS  PubMed  Google Scholar 

  • Kosaki H, Hashikawa T, He J, and Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. Journal of Comparative Neurology 386:304–316.

    Article  CAS  PubMed  Google Scholar 

  • Krumbholz K, Schonwiesner M, Rübsamen R, Zilles K, Fink GR, and von Cramon DY (2005a) Hierarchical processing of sound location and motion in the human brainstem and planum temporale. The European Journal of Neuroscience 21:230–238.

    Article  PubMed  Google Scholar 

  • Krumbholz K, Schonwiesner M, von Cramon DY, Rübsamen R, Shah NJ, Zilles K, and Fink GR (2005b) Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cerebral Cortex 15:317–324.

    Article  PubMed  Google Scholar 

  • Kusmierek P and Rauschecker JP (2006) Selectivity for environmental sounds and conspecific vocalizations in the anterolateral auditory belt cortex of the awake rhesus monkey. Society for Neuroscience Abstract 32:798.10.

    Google Scholar 

  • Kusmierek P and Rauschecker JP (2007) Response properties of medial belt neurons in rhesus monkey auditory cortex. Society for Neuroscience Abstracts 33:174.8.

    Google Scholar 

  • Leaver A, Chevillet MA, Renier L, Purcell JJ, and Rauschecker JP (2007) Visualization of multiple tonotopic fields in human auditory cortex. Society for Neuroscience Abstracts 33:174.1.

    Google Scholar 

  • Leinonen L, Hyvärinen J, and Sovijarvi AR (1980) Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Experimental Brain Research 39:203–215.

    Article  CAS  Google Scholar 

  • Lomber SG and Malhotra S (2008) Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience 11:609–616.

    Article  CAS  PubMed  Google Scholar 

  • Lucchetti C, Lanzilotto M, and Bon L (2008) Auditory-motor and cognitive aspects in area 8B of macaque monkey’s frontal cortex: a premotor ear-eye field (PEEF). Experimental Brain Research 186:131–141.

    Article  CAS  Google Scholar 

  • Maeder PP, Meuli RA, Adriani M, Bellmann A, Fornari E, Thiran JP, Pittet A, and Clarke S (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816.

    Article  CAS  PubMed  Google Scholar 

  • Margoliash D and Fortune ES (1992) Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc. Journal of Neuroscience, 12:4309–4326.

    CAS  PubMed  Google Scholar 

  • Merzenich MM and Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Research 50:275–296.

    Article  CAS  PubMed  Google Scholar 

  • Morel A, Garraghty PE, and Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology 335:437–459.

    Article  CAS  PubMed  Google Scholar 

  • Movshon JA and Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. Journal of Neuroscience 16:7733–7741.

    CAS  PubMed  Google Scholar 

  • Newman JD and Lindsley DF (1976) Single unit analysis of auditory processing in squirrel monkey frontal cortex. Experimental Brain Research 25:169–181.

    Article  CAS  Google Scholar 

  • Obleser J, Boecker H, Drzezga A, Haslinger B, Hennenlotter A, Roettinger M, Eulitz C, and Rauschecker JP (2006) Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping 27:562–571.

    Article  PubMed  Google Scholar 

  • Obleser J, Boecker H, Drzezga A, Haslinger B, Hennenlotter A, Roettinger M, Eulitz C, and Rauschecker JP (2005) Vowel sound extraction in anterior superior temporal cortex. Human Brain Mapping 7:562–571.

    Google Scholar 

  • Ohl FW and Scheich H (1997) Orderly cortical representation of vowels based on formant interaction. Proceedings of the National Academy of Sciences of the United States of America 94:9440–9444.

    Article  CAS  PubMed  Google Scholar 

  • O’Scalaidhe SP, Wilson FA, and Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278:1135–1138.

    Article  Google Scholar 

  • O’Scalaidhe SP, Wilson FA, and Goldman-Rakic PG (1999) Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cerebral Cortex 9:459–475.

    Article  Google Scholar 

  • Pandya DN, Hallett M, and Mukherjee SK (1969) Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Research 14:49–65.

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN and Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Research 13:13–36.

    Article  CAS  PubMed  Google Scholar 

  • Petkov CI, Kayser C, Augath M, and Logothetis NK (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. Public Library of Science Biology 4:e215.

    Google Scholar 

  • Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, and Logothetis NK (2008) A voice region in the monkey brain. Nature Neuroscience 11:367–374.

    Article  CAS  PubMed  Google Scholar 

  • Petrides M (1986) The effect of periarcuate lesions in the monkey on the performance of symmetrically and asymmetrically reinforced visual and auditory go, no-go tasks. Journal of Neuroscience 6:2054–2063.

    CAS  PubMed  Google Scholar 

  • Petrides M and Pandya DN (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. Journal of Comparative Neurology 273:52–66.

    Article  CAS  PubMed  Google Scholar 

  • Petrides M and Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. European Journal of Neuroscience 16:291–310.

    Article  CAS  PubMed  Google Scholar 

  • Poremba A, Malloy M, Saunders RC, Carson RE, Herscovitch P, and Mishkin M (2004) Species-specific calls evoke asymmetric activity in the monkey’s temporal poles. Nature 427:448–451.

    Article  CAS  PubMed  Google Scholar 

  • Poremba A, Saunders RC, Crane AM, Cook M, Sokoloff L, and Mishkin M (2003) Functional mapping of the primate auditory system. Science 299:568–572.

    Article  CAS  PubMed  Google Scholar 

  • Rama P, Poremba A, Sala JB, Yee L, Malloy M, Mishkin M, and Courtney SM (2004) Dissociable functional cortical topographies for working memory maintenance of voice identity and location. Cerebral Cortex 14:768–780.

    Article  PubMed  Google Scholar 

  • Rauschecker JP (2007) Cortical processing of auditory space: pathways and plasticity. In: Mast F and Jäncke L (eds). Spatial Processing in Navigation, Imagery, and Perception. Springer-Verlag, New York, pp. 389–410.

    Chapter  Google Scholar 

  • Rauschecker JP (1998a) Cortical processing of complex sounds. Current Opinion in Neurobiology 8:516–521.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP (1998b) Parallel processing in the auditory cortex of primates. Audiology & Neuro-Otology 3:86–103.

    Article  CAS  Google Scholar 

  • Rauschecker JP (1997) Processing of complex sounds in the auditory cortex of cat, monkey, and man. Acta Oto-Laryngologica Supplement 532:34–38.

    Article  CAS  Google Scholar 

  • Rauschecker JP and Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 91:2578–2589.

    Article  PubMed  Google Scholar 

  • Rauschecker JP and Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 97:11800–11806.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, and Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, Pons T, and Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology 382:89–103.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH (2000) Spatial processing in the auditory cortex of the macaque monkey. Proceedings of the National Academy of Sciences of the United States of America 97:11829–11835.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH, Guard DC, Phan ML, and Su TK (2000) Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. Journal of Neurophysiology 83:2723–2739.

    CAS  PubMed  Google Scholar 

  • Romanski LM (2004) Domain specificity in the primate prefrontal cortex. Cognitive, Affective & Behavioral Neuroscience 4:421–429.

    Article  Google Scholar 

  • Romanski LM (2003) Anatomy and physiology of auditory-prefrontal interactions in non-human primates. In: Ghazanfar AA (ed). Primate Audition: Ethology and Neurobiology. CRC Press, New York, pp. 259–278.

    Google Scholar 

  • Romanski LM (2007) Representation and Integration of Communication Stimuli by the Primate Prefrontal Cortex. Cerebral Cortex 17:61–69.

    Article  Google Scholar 

  • Romanski LM, Averbeck BB, and Diltz M (2005) Neural representation of vocalizations in the primate ventrolateral prefrontal cortex. Journal of Neurophysiology 93:734–747.

    Article  PubMed  Google Scholar 

  • Romanski LM and Goldman-Rakic PS (2002) An auditory domain in primate prefrontal cortex. Nature Neuroscience 5:15–16.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, Bates JF, and Goldman-Rakic PS (1999a) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology 403:141–157.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, and Rauschecker JP (1999b) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience 2:1131–1136.

    Article  CAS  PubMed  Google Scholar 

  • Romo R, Brody CD, Hernandez A, and Lemus L (1999) Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399:470–473.

    Article  CAS  PubMed  Google Scholar 

  • Russ BE, Ackelson AL, Baker AE, and Cohen YE (2008) Coding of auditory-stimulus identity in the auditory non-spatial processing stream. Journal of Neuroscience 99:87–95.

    Google Scholar 

  • Russo GS and Bruce CJ (1989) Auditory receptive fields of neurons in frontal cortex of rhesus monkey shift with direction of gaze. Society for Neuroscience Abstracts 15:120.4.

    Google Scholar 

  • Russo GS and Bruce CJ (1994) Frontal eye field activity preceding aurally guided saccades. Journal of Neurophysiology 71:1250–1253.

    CAS  PubMed  Google Scholar 

  • Scott SK, Blank CC, Rosen S, and Wise RJ (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain: A Journal of Neurology 12:2400–2406.

    Google Scholar 

  • Steinschneider M, Reser D, Schroeder CE, and Arezzo JC (1995) Tonotopic organization of responses reflecting stop consonant place of articulation in primary auditory cortex (A1) of the monkey. Brain Research 674:147–152.

    Article  CAS  PubMed  Google Scholar 

  • Stromswold K, Caplan D, Alpert N, and Rauch S (1996) Localization of syntactic comprehension by positron emission tomography. Brain & Language 52:452–473.

    Article  CAS  Google Scholar 

  • Suga N, O’Neill WE, and Manabe T (1978) Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustache bat. Science 200:778–781.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara T, Diltz MD, Averbeck BB, and Romanski LM (2006) Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex. Journal of Neuroscience 26:11138–11147.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K (1997) Mechanisms of visual object recognition: monkey and human studies. Current Opinion in Neurobiology 7:523–529.

    Article  CAS  PubMed  Google Scholar 

  • Tanila H, Carlson S, Linnankoski I, and Kahila H (1993) Regional distribution of functions in dorsolateral prefrontal cortex of the monkey. Behavioural Brain Research 53:63–71.

    Article  CAS  PubMed  Google Scholar 

  • Tanila H, Carlson S, Linnankoski I, Lindroos F, and Kahila H (1992) Functional properties of dorsolateral prefrontal cortical neurons in awake monkey. Behavioral Brain Research 47:169–180.

    Article  CAS  Google Scholar 

  • Tata MS and Ward LM (2005a) Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway. Experimental Brain Research 167:481–486.

    Article  Google Scholar 

  • Tata MS and Ward LM (2005b) Spatial attention modulates activity in a posterior “where” auditory pathway. Neuropsychologia 43:509–516.

    Article  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 92:2993–3013.

    Article  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (1998) Processing of frequency-modulated sounds in the cat’s posterior auditory field. Journal of Neurophysiology 79:2629–2642.

    CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (1994) Processing of frequency-modulated sounds in the cat’s anterior auditory field. Journal of Neurophysiology 71:1959–1975.

    CAS  PubMed  Google Scholar 

  • Tian B, Reser D, Durham A, Kustov A, and Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293.

    Article  CAS  PubMed  Google Scholar 

  • Tsao DY, Freiwald WA, Tootell RB, and Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674.

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG and Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds). Analysis of Visual Behaviour. MIT Press, Cambridge, pp. 549–586.

    Google Scholar 

  • Vaadia E, Benson DA, Hienz RD, and H. Goldstein MH Jr (1986) Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. Journal of Neurophysiology 56:934–952.

    CAS  PubMed  Google Scholar 

  • Wang X, Merzenich MM, Beitel R, and Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. Journal of Neurophysiology 74:2685–2706.

    CAS  PubMed  Google Scholar 

  • Warren JD, Zielinski BA, Green GGR, Rauschecker JP, and Griffiths TD (2002) Analysis of sound source motion by the human brain. Neuron 34:1–20.

    Article  Google Scholar 

  • Watanabe M (1992) Frontal units of the monkey coding the associative significance of visual and auditory stimuli. Experimental Brain Research 89:233–247.

    Article  CAS  Google Scholar 

  • Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, and Rauschecker JP (2001) Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience 13:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Wilson FA, O’Scalaidhe SP, and Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958.

    Article  CAS  PubMed  Google Scholar 

  • Winter P and Funkenstein HH (1973) The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey. (Saimiri sciureus). Experimental Brain Research 18:489–504.

    Article  CAS  Google Scholar 

  • Young ED, Spirou GA, Rice JJ, Voigt HF, and Rees A (1992) Neural organization and responses to complex stimuli in the dorsal cochlear nucleus [and discussion]. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 336:407–413.

    Article  CAS  Google Scholar 

  • Zatorre RJ, Bouffard M, Ahad P, and Belin P (2002) Where is ‘where’ in the human auditory cortex? Nature Neuroscience 5:905–909.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Bouffard M, and Belin P (2004) Sensitivity to auditory object features in human temporal neocortex. Journal of Neuroscience 24:3637–3642.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Meyer E, Gjedde A, and Evans AC (1996) PET studies of phonetic processing of speech: review, replication, and reanalysis. Cerebral Cortex 6:21–30.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer U and Macaluso E (2005) High binaural coherence determines successful sound localization and increased activity in posterior auditory areas. Neuron 47:893–905.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef P. Rauschecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rauschecker, J.P., Romanski, L.M. (2011). Auditory Cortical Organization: Evidence for Functional Streams. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_4

Download citation

Publish with us

Policies and ethics