Skip to main content

Cortical Speech and Music Processes Revealed by Functional Neuroimaging

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

Economists tell us that wealth is created by trade and exchange. Assuming the same principle holds for intellectual wealth, the interactions between different levels of analysis, and the exchanges across disciplines that characterize contemporary neuroscience should provide us with great riches. Looking at the developments over the past decade in cognitive neuroscience of auditory processing would appear to bear this out. A significant amount of progress has been made, and much of it can be attributed to the possibilities for crossing boundaries afforded by neuroimaging tools. This chapter focuses on recent advances in our understanding of the human auditory cortex in the light of research using functional neuroimaging techniques. We emphasize the processing of music and speech, and how this knowledge complements knowledge drawn from other domains and other species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

primary auditory cortex

BOLD:

blood oxygenated level dependent

EEG:

electroencephalography

fMRI:

functional magnetic resonance imaging

HG:

Heschl’s gyrus

MEG:

magnetoencephalography

MMN:

mismatch negativity

PET:

positron emission tomography

PT:

planum temporale

STG:

superior temporal gyrus

STS:

superior temporal sulcus

References

  • Ahveninen J, Jaaskelainen IP, Raij T, Bonmassar G, Devore S, Hamalainen M, Levanen S, Lin FH, Sams M, Shinn-Cunningham BG, Witzel T, and Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 103:14608–14613.

    Article  CAS  PubMed  Google Scholar 

  • Attneave F and Olson RK (1971) Pitch as a medium: a new approach to psychophysical scaling. American Journal of Psychology 84:147–166.

    Article  CAS  PubMed  Google Scholar 

  • Bangert M, Peschel T, Schlaug G, Rotte M, Drescher D, Hinrichs H, Heinze HJ, and Altenmuller E (2006) Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. NeuroImage 30:917–926.

    Article  PubMed  Google Scholar 

  • Baumann S, Koeneke S, Meyer M, Lutz K, and Jancke L (2005) A network for sensory-motor integration: what happens in the auditory cortex during piano playing without acoustic feedback? Annals of the New York Academy of Sciences 1060:186–188.

    Article  PubMed  Google Scholar 

  • Baumgart F, Gaschler-Markefski B, Woldorff M, Heinze H-J, and Scheich H (1999) A movement-sensitive area in auditory cortex. Nature 400:724–725.

    Article  CAS  PubMed  Google Scholar 

  • Belin P and Zatorre RJ (2000) What, where, and how in auditory cortex. Nature Neuroscience 3:965–966.

    Article  CAS  PubMed  Google Scholar 

  • Belin P and Zatorre RJ (2003) Adaptation to speaker’s voice in right anterior temporal lobe. Neuroreport 14:2105–2109.

    Article  PubMed  Google Scholar 

  • Belin P, Fecteau S, and Bédard C (2004) Thinking the voice: neural correlates of voice perception Trends in Cognitive Sciences 8:129–135.

    Article  PubMed  Google Scholar 

  • Belin P, Zatorre RJ, Hoge R, Evans AC, and Pike B (1999) Event-related fMRI of the auditory cortex. NeuroImage 10:417–429.

    Article  CAS  PubMed  Google Scholar 

  • Belin P, Zatorre RJ, Lafaille P, Ahad P, and Pike B (2000) Voice-selective areas in human auditory cortex. Nature 403:309–312.

    Article  CAS  PubMed  Google Scholar 

  • Belin P, Zilbovicius M, Crozier S, Thivard L, Fontaine A, Masure M-C, and Samson Y (1998) Lateralization of speech and auditory temporal processing. Journal of Cognitive Neuroscience 10:536–540.

    Article  CAS  PubMed  Google Scholar 

  • Bendor D and Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161.

    Article  CAS  PubMed  Google Scholar 

  • Bey C and McAdams S (2002) Schema-based processing in auditory scene analysis. Perception & Psychophysics 64:844–854.

    Google Scholar 

  • Binder J, Frost J, Hammeke T, Cox R, Rao S, and Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience 17:353–362.

    CAS  PubMed  Google Scholar 

  • Binder J, Frost J, Hammeke T, Bellgowan P, Springer J, Kaufman J, and Possing J (2000) Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex 10:512–528.

    Article  CAS  PubMed  Google Scholar 

  • Boemio A, Fromm S, Braun A, and Poeppel D (2005) Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience 8:389.

    Article  CAS  PubMed  Google Scholar 

  • Brechmann A and Scheich H (2005) Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cerebral Cortex 15:578–587.

    Article  PubMed  Google Scholar 

  • Bregman A (1990) Auditory Scene Analysis. MIT Press, Cambridge.

    Google Scholar 

  • Burton MW, Small SL, and Blumstein SE (2000) The role of segmentation in phonological processing: an fMRI investigation. Journal of Cognitive Neuroscience 12:679.

    Article  CAS  PubMed  Google Scholar 

  • Calvert GA, Bullmore ET, Brammer MJ, Campbell R, Williams SCR, McGuire PK, Woodruff PWR, Iversen SD, and David AS (1997) Activation of auditory cortex during silent lipreading. Science 276:593–596.

    Article  CAS  PubMed  Google Scholar 

  • Champod AS and Petrides M (2007) Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes. Proc Natl Acad Sci U S A 104(37):14837–14842.

    Article  CAS  PubMed  Google Scholar 

  • Chen JL, Zatorre RJ, and Penhune VB (2006) Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage 32:1771–1781.

    Article  PubMed  Google Scholar 

  • Cherry C (1957) Human Communication. Wiley, London.

    Google Scholar 

  • Cohen MA, Grossberg S, and Wyse LL (1995) A spectral network model of pitch perception. Journal of the Acoustical Society of America 98:862–879.

    Article  CAS  PubMed  Google Scholar 

  • Culham JC, Cavina-Pratesi C, and Singhal A (2006) The role of parietal cortex in visuomotor control: what have we learned from neuroimaging?. Neuropsychologia 44(13):2668–2684.

    Article  PubMed  Google Scholar 

  • Davis MH and Johnsrude IS (2003) Hierarchical processing in spoken language comprehension. Journal of Neuroscience. 23:3423–3431.

    CAS  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Pallier C, Serniclaes W, Sprenger-Charolles L, Jobert A, and Dehaene S (2005) Neural correlates of switching from auditory to speech perception. NeuroImage 24:21–33.

    Article  PubMed  Google Scholar 

  • Desimone R (1998) Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 353:1245–1255.

    Article  CAS  Google Scholar 

  • Doeller CF, Opitz B, Mecklinger A, Krick C, Reith W, and Schröger E (2003) Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence. NeuroImage 20:1270–1282.

    Article  PubMed  Google Scholar 

  • Dowling WJ (1973) Rhythmic groups and subjective chunks in memory for melodies. Perception & Psychophysics 14:37–40.

    Google Scholar 

  • Dowling WJ and Harwood D (1986) Music Cognition. Academic Press, Orlando.

    Google Scholar 

  • Fishman YI, Arezzo JC, and Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. Journal of the Acoustical Society of America 116:1656–1670.

    Article  PubMed  Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, and Steinschneider M (2001) Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hearing Research 151:167–187.

    Article  CAS  PubMed  Google Scholar 

  • Formisano E, Kim D-S, Di Salle F, van de Moortele P-F, Ugurbil K, and Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869.

    Article  CAS  PubMed  Google Scholar 

  • Foster NE and Zatorre RJ (2009) A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex (Epub doi:10.1093/cercor/bhp199).

    Google Scholar 

  • Friederici AD, Ruschemeyer S-A, Hahne A, and Fiebach CJ (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cerebral Cortex 13:170–177.

    Article  PubMed  Google Scholar 

  • Fritz J, Elhilali M, and Shamma S (2007) Adaptive changes in cortical receptive fields induced by attention to complex sounds. Journal of Neurophysiology 98:2337–2346

    Article  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, and Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience 6:1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, and Shamma SA (2005) Differential dynamic plasticity of a1 receptive fields during multiple spectral tasks. Journal of Neuroscience 25:7623–7635.

    Article  CAS  PubMed  Google Scholar 

  • Gaab N, Gaser C, Zaehle T, Jäncke L, and Schlaug G (2003) Functional anatomy of pitch memory—an fMRI study with sparse temporal sampling. NeuroImage 19:1417–1426.

    Article  PubMed  Google Scholar 

  • Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. Journal of the Acoustical Society of America 54:1496–1516.

    Article  CAS  PubMed  Google Scholar 

  • Golestani N and Zatorre RJ (2004) Learning new sounds of speech: reallocation of neural substrates. NeuroImage 21:494–506.

    Article  PubMed  Google Scholar 

  • Grady CL, Van Meter JW, Maisog JM, Pietrini P, Krasuski J, and Rauschecker JP (1997) Attention-related modulation of activity in primary and secondary auditory cortex. Neuroreport 8:2511–2516.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD (2000) Musical hallucinosis in acquired deafness. Phenomenology and brain substrate. Brain 123:2065–2076.

    Article  PubMed  Google Scholar 

  • Griffiths TD and Warren JD (2002) The planum temporale as a computational hub. Trends in Neuroscience 25:348–353.

    Article  CAS  Google Scholar 

  • Griffiths TD, Buchel C, Frackowiak RJS, and Patterson RD (1998) Analysis of temporal structure in sound by the human brain. Nature Neuroscience 1:422–427.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD, Johnsrude IS, Dean JL, and Green GGR (1999) A common neural substrate for the analysis of pitch and duration pattern in segmented sound? Neuroreport 10:3825–3830.

    Article  CAS  PubMed  Google Scholar 

  • Gutschalk A, Patterson RD, Rupp A, Uppenkamp S, and Scherg M (2002) Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage 15:207–216.

    Article  PubMed  Google Scholar 

  • Gutschalk A, Patterson RD, Scherg M, Uppenkamp S, and Rupp A (2004) Temporal dynamics of pitch in human auditory cortex. NeuroImage 22:755–766.

    Article  PubMed  Google Scholar 

  • Gutschalk A, et al. (2005) Neuromagnetic correlates of streaming in human auditory cortex. Journal of Neuroscience 25:5382–5388.

    Article  CAS  PubMed  Google Scholar 

  • Hall D, Haggard M, Akeroyd M, Palmer A, Summerfield A, Elliott M, Gurney E, and Bowtell R (1999) “Sparse” temporal sampling in auditory fMRI. Human Brain Mapping 7:213–223.

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, and Summerfield AQ (2002) Spectral and temporal processing in human auditory cortex. Cerebral Cortex 12:140–149.

    Article  PubMed  Google Scholar 

  • Halpern AR and Zatorre RJ (1999) When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cerebral Cortex 9:697–704.

    Article  CAS  PubMed  Google Scholar 

  • Halpern AR, Zatorre RJ, Bouffard M, and Johnson JA (2004) Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia 42:1281–1292.

    Article  PubMed  Google Scholar 

  • Hart HC, Palmer AR, and Hall DA (2003) Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex 13:773–781.

    Article  PubMed  Google Scholar 

  • Hernández-Peón R, Scherrer H, and Jouvet M (1956) Modification of electric activity in cochlear nucleus during “attention” in unanesthetized cats. Science 123:331–332.

    Article  PubMed  Google Scholar 

  • Hickok G and Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99.

    Article  PubMed  Google Scholar 

  • Hickok G, Buchsbaum B, Humphries C, and Muftuler T (2003) Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. Journal of Cognitive Neuroscience 15:673–682.

    PubMed  Google Scholar 

  • Hillyard S, Hink R, Schwent V, and Picton T (1973) Electrical signs of selective attention in the human brain. Science 182:177–180.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Henson CO, Rupert A, and Galambos R (1959) Attention units in the auditory cortex. Science 129:1279–1280.

    Article  CAS  PubMed  Google Scholar 

  • Hugdahl K, Bronnick K, Kyllingsbaek S, Law I, Gade A, and Paulson O (1999) Brain activation during dichotic presentations of consonant-vowel and musical instrument stimuli: a 15o-pet study. Neuropsychologia 37:431–440.

    Article  CAS  PubMed  Google Scholar 

  • Huron D (2006) Sweet Anticipation. Music and the Psychology of Expectation. MIT Press, Cambridge.

    Google Scholar 

  • Hyde KL. Peretz I, and Zatorre RJ (2008) Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia 46:632–639.

    Article  PubMed  Google Scholar 

  • Jamison HL, Watkins KE, Bishop DVM, and Matthews PM (2006) Hemispheric specialization for processing auditory nonspeech stimuli. Cerebral Cortex 16:1266–1275.

    Article  PubMed  Google Scholar 

  • Jäncke L, Mirzazade S, and Shah NJ (1999) Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects. Neuroscience Letters 266:125–128.

    Article  PubMed  Google Scholar 

  • Joanisse MF and Gati JS (2003) Overlapping neural regions for processing rapid temporal cues in speech and nonspeech signals. NeuroImage 19:64.

    PubMed  Google Scholar 

  • Joanisse MF, Zevin JD, and McCandliss BD (2007) Brain mechanisms implicated in the preattentive categorization of speech sounds revealed using fMRI and a short-interval habituation trial paradigm. Cerebral Cortex 17:2084–2093.

    Article  PubMed  Google Scholar 

  • Johnson JA and Zatorre RJ (2005) Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cerebral Cortex 15:1609–1620.

    Article  PubMed  Google Scholar 

  • Johnson JA and Zatorre RJ (2006) Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. NeuroImage 31:1673–1681.

    Article  PubMed  Google Scholar 

  • Johnsrude IS, Penhune VB, and Zatorre RJ (2000) Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123:155–163.

    Article  PubMed  Google Scholar 

  • Kaas JH and Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiology & Neurootology 3:73–85.

    Article  CAS  Google Scholar 

  • Kaas JH and Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America 97:11793–11799.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Hackett TA, and Tramo MJ (1999) Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology 9:164–170.

    Article  CAS  PubMed  Google Scholar 

  • Klein DJ, Simon JZ, Depireux DA, and Shamma SA (2006) Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex. Journal of Computational Neuroscience 20:111–136.

    Article  PubMed  Google Scholar 

  • Koelsch S (2005) Neural substrates of processing syntax and semantics in music. Current Opinion in Neurobiology 15:207–212.

    Article  CAS  PubMed  Google Scholar 

  • Kowalski N, Depireux DA, and Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol 76:3503–3523.

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Carrell T, King C, Tremblay K, and Nicol T (1995) Central auditory system plasticity associated with speech discrimination training. Journal of Cognitive Neuroscience 7:25–32.

    Article  Google Scholar 

  • Krumbholz K, Patterson RD, Seither-Preisler A, Lammertmann C, and Lütkenhöner B (2003) Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cerebral Cortex 13:765–772.

    Article  CAS  PubMed  Google Scholar 

  • Krumbholz K, Schönwiesner M, von Cramon DY, Rübsamen R, Shah NJ, Zilles K, and Fink GR (2005) Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cerebral Cortex 15:317–324.

    Article  PubMed  Google Scholar 

  • Krumhansl CL (1990) Cognitive Foundations of Musical Pitch. Oxford University Press, New York.

    Google Scholar 

  • Lahav A, Saltzman E, and Schlaug G (2007) Action representation of sound: audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience 27:308–314.

    Article  CAS  PubMed  Google Scholar 

  • Laurienti PJ, Burdette JH, Wallace MT, Yen Y-F, Field AS, and Stein BE (2002) Deactivation of sensory-specific cortex by cross-modal stimuli. Journal of Cognitive Neuroscience 14:420–429.

    Article  PubMed  Google Scholar 

  • Leopold DA and Logothetis NK (1999) Multistable phenomena: changing views in perception. Trends in Cognitive Sciences 3:254–264.

    Article  PubMed  Google Scholar 

  • Lewis JW, Beauchamp MS, and DeYoe EA (2000) A comparison of visual and auditory motion processing in human cerebral cortex. Cerebral Cortex 10:873–888.

    Article  CAS  PubMed  Google Scholar 

  • Liberman AM and Mattingly IG (1985) The motor theory of speech perception revised. Cognition 21:1–36.

    Article  CAS  PubMed  Google Scholar 

  • Liebenthal E, Binder JR, Piorkowski R, and Remez R (2003a) Short-term reorganization of auditory analysis induced by phonetic experience. Journal of Cognitive Neuroscience 15:549–558.

    Article  PubMed  Google Scholar 

  • Liebenthal E, Binder JR, Spitzer SM, Possing ET, and Medler DA (2005) Neural substrates of phonemic perception. Cerebral Cortex 15:1621–1631.

    Article  PubMed  Google Scholar 

  • Liebenthal E, Ellingson ML, Spanaki MV, Prieto TE, Ropella KM, and Binder JR (2003b) Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. NeuroImage 19:1395–1404.

    Article  PubMed  Google Scholar 

  • Linden JF, Liu RC, Sahani M, Schreiner CE, and Merzenich MM (2003) Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. Journal of Neurophysiology 90:2660–2675.

    Article  PubMed  Google Scholar 

  • Logothetis NK and Wandell BA (2004) Interpreting the bold signal. Annual Review of Physiology 66:735–769.

    Article  CAS  PubMed  Google Scholar 

  • Marco-Pallarés J, Grau C, and Ruffini G (2005) Combined ICA-LORETA analysis of mismatch negativity. NeuroImage 25:471–477.

    Article  PubMed  Google Scholar 

  • Merzenich MM and Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Research 60:315–333.

    Article  Google Scholar 

  • Micheyl C, Tian B, Carlyon RP, and Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48:139–148.

    Article  CAS  PubMed  Google Scholar 

  • Milner A and Goodale M (1995) The Visual Brain in Action. Oxford University Press, Oxford.

    Google Scholar 

  • Molholm S, Martinez A, Ritter W, Javitt DC, and Foxe JJ (2005) The neural circuitry of pre-attentive auditory change-detection: an FMRI study of pitch and duration mismatch negativity generators. Cerebral Cortex 15:545–551.

    Article  PubMed  Google Scholar 

  • Moore BCJ and Gockel H (2002) Factors influencing sequential stream segregation. Acta Acustica/Acustica 88:320–333.

    Google Scholar 

  • Morel A and Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. Journal of Comparative Neurology 318:27–63.

    Article  CAS  PubMed  Google Scholar 

  • Morel A, Garraghty PE, and Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology 335:437–459.

    Article  CAS  PubMed  Google Scholar 

  • Möttönen R, Calvert GA, Jääskeläinen IP, Matthews PM, Thesen T, Tuomainen J, and Sams M (2006) Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus. NeuroImage 30:563–569.

    Article  PubMed  Google Scholar 

  • Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, and Malach R (2005) Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309:951–954.

    Article  CAS  PubMed  Google Scholar 

  • Muller BW, Juptner M, Jentzen W, and Muller SP (2002) Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: a PET study. NeuroImage 17:231–239.

    Article  CAS  PubMed  Google Scholar 

  • Münte TF, Altenmüller E, and Jäncke L (2002) The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience 3:473–478.

    Article  PubMed  CAS  Google Scholar 

  • Näätänen R (1995) The mismatch negativity: a powerful tool for cognitive neuroscience. Ear & Hearing 16:6–18.

    Article  Google Scholar 

  • Näätänen R, Gaillard AW, and Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica (Amsterdam) 42:313–329.

    Article  Google Scholar 

  • Näätänen R, Lehtokoski A, Lennes M, Cheour M, Huotilainen M, Livonen A, Vainio M, Alku P, Ilmoniemi R, Luuk A, Allik J, Sinkkonen J, and Alho K (1997) Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 385:432–434.

    Article  PubMed  Google Scholar 

  • Narain C, Scott SK, Wise RJS, Rosen S, Leff A, Iversen SD, and Matthews PM (2003) Defining a left-lateralized response specific to intelligible speech using fMRI. Cerebral Cortex 13:1362–1368.

    Article  CAS  PubMed  Google Scholar 

  • Obleser J, Zimmermann J, Van Meter J, and Rauschecker JP (2007) Multiple stages of auditory speech perception reflected in event-related FMRI. Cerebral Cortex 17:2251–2257.

    Article  PubMed  Google Scholar 

  • Opitz B, Mecklinger A, von Cramon DY, and Kruggel F (1999) Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology 36:142–147.

    Article  CAS  PubMed  Google Scholar 

  • Opitz B, Rinne T, Mecklinger A, von Cramon DY, and Schröger E (2002) Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage 15:167–174.

    Article  PubMed  Google Scholar 

  • Oxenham AJ, Bernstein JG, and Penagos H (2004) Correct tonotopic representation is necessary for complex pitch perception. Proceedings of the National Academy of Sciences of the United States of America 101:1421–1425.

    Article  CAS  PubMed  Google Scholar 

  • Pandya DN and Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeitschrift für Anatomie und Entwicklungsgeschichte 139:127–161.

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Hoke M, Lütkenhöner B, and Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246:486–488.

    Article  CAS  PubMed  Google Scholar 

  • Pantev C, Engelien A, Candia V, and Elbert T (2003) Representational cortex in musicians. In: Peretz I and Zatorre R (eds). The Cognitive Neuroscience of Music. Oxford University Press, Oxford, pp. 382–395.

    Google Scholar 

  • Patterson RD, Allerhand MH, and Giguère C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. Journal of the Acoustical Society of America 98:1890–1894.

    Article  CAS  PubMed  Google Scholar 

  • Patterson RD, Uppenkamp S, Johnsrude IS, and Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776.

    Article  CAS  PubMed  Google Scholar 

  • Pavani F, Macaluso E, Warren JD, Driver J, and Griffiths TD (2002) A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Current Biology 12:1584–1590.

    Article  CAS  PubMed  Google Scholar 

  • Penagos H, Melcher JR, and Oxenham AJ (2004) A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. Journal of Neuroscience 24:6810–6815.

    Article  CAS  PubMed  Google Scholar 

  • Penhune VB, Zatorre RJ, and Evans AC (1998) Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience 10:752–765.

    Article  CAS  PubMed  Google Scholar 

  • Perry DW, Zatorre RJ, Petrides M, Alivisatos B, Meyer E, and Evans AC (1999) Localization of cerebral activity during simple singing. Neuroreport 10:3979–3984.

    Article  CAS  PubMed  Google Scholar 

  • Petkov CI, Kayser C, Augath M, and Logothetis NK (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. Public Library of Science Biology 4:1213–1226.

    CAS  Google Scholar 

  • Petkov CI, Kang X, Alho K, Bertrand O, Yund EW, and Woods DL (2004) Attentional modulation of human auditory cortex. Nature Neuroscience 7:658–663.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Farmer ME (1990) Acquired word deafness and the temporal grain of sound representation in the primary auditory cortex. Behavioral Brain Research 40:84–90.

    Article  Google Scholar 

  • Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time.’ Speech Communication 41:245–255.

    Article  Google Scholar 

  • Pressnitzer D and Hupé JM (2006) Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology 16:1351–1357.

    Article  CAS  PubMed  Google Scholar 

  • Pugh KR, Shaywitz BA, Shaywitz SE, Fulbright RK, Byrd D, Skudlarski P, Shankweiler DP, Katz L, Constable RT, Fletcher J, Lacadie C, Marchione K, and Gore JC (1996) Auditory selective attention: an fMRI investigation. NeuroImage 4:159–173.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP and Tian B (2000) Mechanisms and streams for processing of "what" and "where" In auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 97:11800–11806.

    Article  CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2002) Functional architecture of auditory cortex. Current Opinion in Neurobiology 12:433–440.

    Article  CAS  PubMed  Google Scholar 

  • Remez RE, Rubin PE, Pisoni DB, and Carrell TD (1981) Speech perception without traditional speech cues. Science 212:947–949.

    Article  CAS  PubMed  Google Scholar 

  • Rinne T, Degerman A, and Alho K (2005) Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study. NeuroImage 26:66–72.

    Article  PubMed  Google Scholar 

  • Rizzolatti G and Craighero L (2004) The mirror-neuron system. Annual Reviews of Neuroscience 27:169–192.

    Article  CAS  Google Scholar 

  • Romanski L, Tian B, Fritz J, Mishkin M, Goldman-Rakic P, and Rauschecker J (2000) Reply to "‘what’, ‘where’ and ‘how’ in auditory cortex." Nature Neuroscience 10:966.

    Article  Google Scholar 

  • Schneider P, Scherg, Dosch G, Specht H, and Gutschalk A (2002) Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience 5:688–694.

    Article  CAS  PubMed  Google Scholar 

  • Schönwiesner M and Zatorre RJ (2009) Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. Proceedings of the National Academy of Sciences of the United States of America 106:14611–14616.

    Article  PubMed  Google Scholar 

  • Schönwiesner M, von Cramon DY, and Rübsamen R (2002) Is it tonotopy after all? NeuroImage 17:1144–1161.

    Article  PubMed  Google Scholar 

  • Schönwiesner M, Rübsamen R, and von Cramon DY (2005) Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. European Journal of Neuroscience 22:1521–1528.

    Article  PubMed  Google Scholar 

  • Schönwiesner M, Krumbholz K, Rübsamen R, Fink GR, and von Cramon DY (2007a) Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex. Cerebral Cortex 17:492–499.

    Article  PubMed  Google Scholar 

  • Schönwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, and Näätänen R (2007b) Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. Journal of Neurophysiology 97:2075–2082.

    Article  PubMed  Google Scholar 

  • Scott SK and Johnsrude IS (2003) The neuroanatomical and functional organization of speech perception. Trends in Neurosciences 26:100–107.

    Article  CAS  PubMed  Google Scholar 

  • Scott SK, Blank CC, Rosen S, and Wise RJS (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123:2400–2406.

    Article  PubMed  Google Scholar 

  • Sen K, Theunissen FE, and Doupe AJ (2001) Feature analysis of natural sounds in the songbird auditory forebrain. Journal of Neurophysiology 86:1445–1458.

    CAS  PubMed  Google Scholar 

  • Shamma S (2004) Topographic organization is essential for pitch perception. Proceedings of the National Academy of Sciences of the United States of America 101:1114–1115.

    Article  CAS  PubMed  Google Scholar 

  • Shepard RN (1982) Geometrical approximations to the structure of musical pitch. Psychological Reviews 89:305–333.

    Article  CAS  Google Scholar 

  • Singh PG (1987) Perceptual organization of complex-tone sequences: a tradeoff between pitch and timbre?. Journal of the Acoustical Society of America 82:886–899.

    Article  CAS  PubMed  Google Scholar 

  • Snyder JS and Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychological Bulletin 133:780–799.

    Article  PubMed  Google Scholar 

  • Stewart L, von Kriegstein K, Warren JD, and Griffiths TD (2006) Music and the brain: disorders of musical listening. Brain 129:2533–2553.

    Article  PubMed  Google Scholar 

  • Swisher L and Hirsh IJ (1972) Brain damage and the ordering of two temporally successive stimuli. Neuropsychologia 10:137–152.

    Article  CAS  PubMed  Google Scholar 

  • Talavage T, Sereno M, Melcher J, Ledden P, Rosen B, and Dale A (2004) Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. Journal of Neurophysiology 91:1282–1296.

    Article  PubMed  Google Scholar 

  • Talavage TM, Ledden PJ, Benson RR, Rosen BR, and Melcher JR (2000) Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hearing Research 150:225–244.

    Article  CAS  PubMed  Google Scholar 

  • Tallal P, Miller S and Fitch R (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Annals of the New York Academy of Sciences 682:27–47.

    Article  CAS  PubMed  Google Scholar 

  • Tervaniemi M, Medvedev S, Alho K, Pakhomov S, Roudas M, van Zuijen T, and Näätänen R (2000) Lateralized automatic auditory processing of phonetic versus musical information: a pet study. Human Brain Mapping 10:74–79.

    Article  CAS  PubMed  Google Scholar 

  • Thivard L, Belin P, Zilbovicius M, Poline J, and Samson Y (2000) A cortical region sensitive to auditory spectral motion. Neuroreport 11:2969–2972.

    Article  CAS  PubMed  Google Scholar 

  • Tillmann B, Koelsch S, Escoffier N, Bigand E, Lalitte P, Friederici AD, and von Cramon DY (2006) Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. NeuroImage 31:1771–1782.

    Article  CAS  PubMed  Google Scholar 

  • Tzourio N, Massioui FE, Crivello F, Joliot M, Renault B, and Mazoyer B (1997) Functional anatomy of human auditory attention studied with PET. NeuroImage 5:63–77.

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider L and Haxby J (1994) "What" and "where" in the human brain. Current Biology 4:157–165.

    CAS  Google Scholar 

  • van Noorden LPAS (1975) Temporal coherence in the perception of tone sequences. University of Technology, Eindhoven.

    Google Scholar 

  • Versnel H and Shamma SA (1998) Spectral-ripple representation of steady-state vowels in primary auditory cortex. Journal of the Acoustical Society of America 103:2502–2514.

    Article  CAS  PubMed  Google Scholar 

  • Vliegen J and Oxenham AJ (1999) Sequential stream segregation in the absence of spectral cues. Journal of the Acoustical Society of America 105:339–346.

    Article  CAS  PubMed  Google Scholar 

  • Voisin J, Bidet-Caulet A, Bertrand O, and Fonlupt P (2006) Listening in silence activates auditory areas: a functional magnetic resonance imaging study. Journal of Neuroscience 26:273–278.

    Article  CAS  PubMed  Google Scholar 

  • von Kriegstein K, Eger E, Kleinschmidt A, and Giraud A-L (2003) Modulation of neural responses to speech by directing attention to voices or verbal content. Cognitive Brain Research 17:48–55.

    Article  Google Scholar 

  • Warren JD, Uppenkamp S, Patterson RD, and Griffiths TD (2003) Separating pitch chroma and pitch height in the human brain. Proceedings of the National Academy of Sciences of the United States of America 100:10038–10042.

    Article  CAS  PubMed  Google Scholar 

  • Warren JD, Zielinski BA, Green GG, Rauschecker JP, and Griffiths TD (2002) Perception of sound-source motion by the human brain. Neuron 34:139–148.

    Article  CAS  PubMed  Google Scholar 

  • Warren JD, Jennings AR, and Griffiths TD (2005a) Analysis of the spectral envelope of sounds by the human brain. NeuroImage 24:1052.

    Article  CAS  PubMed  Google Scholar 

  • Warren JD, Scott SK, Price CJ, and Griffiths TD (2006) Human brain mechanisms for the early analysis of voices. NeuroImage 31:1389–1397.

    Article  CAS  PubMed  Google Scholar 

  • Warren JE, Wise RJ, and Warren JD (2005b) Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends in Neuroscience 28:636–643.

    CAS  Google Scholar 

  • Watkins S, Dalton P, Lavie N, and Rees G (2007) Brain mechanisms mediating auditory attentional capture in humans. Cerebral Cortex 17:1694–1700.

    Article  PubMed  Google Scholar 

  • Wilson EC, Melcher JR, Micheyl C, Gutschalk A, and Oxenham AJ (2007) Cortical fMRI activation to sequences of tones alternating in frequency: relationship to perceived rate and streaming. Journal of Neurophysiology 97:2230–2238.

    Article  PubMed  Google Scholar 

  • Wilson SM and Iacoboni M (2006) Neural responses to non-native phonemes varying in producibility: evidence for the sensorimotor nature of speech perception. NeuroImage 33:316–325.

    Article  PubMed  Google Scholar 

  • Wilson SM, Saygin AP, Sereno MI, and Iacoboni M (2004) Listening to speech activates motor areas involved in speech production. Nature Neuroscience 7:701–702.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (2006) Decoding the auditory corticofugal system. Hearing Research 212:1–8.

    Article  PubMed  Google Scholar 

  • Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, and Bloom FE (1993a) Modulation of early sensory processing in human auditory cortex during selective attention. Proceedings of the National Academy of Sciences of the United States of America 90:8722–8726.

    Article  CAS  PubMed  Google Scholar 

  • Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, and Bloom FE (1993b) Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proceedings of the National Academy of Sciences of the United States of America 90:8722–8726.

    Article  CAS  PubMed  Google Scholar 

  • Woolley SM, Fremouw TE, Hsu A, and Theunissen FE (2005) Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience 8:1371–1379.

    Article  CAS  PubMed  Google Scholar 

  • Yost WA, Patterson R, and Sheft S (1996) A time domain description for the pitch strength of iterated rippled noise. Journal of the Acoustical Society of America 99:1066–1078.

    Article  CAS  PubMed  Google Scholar 

  • Zacks JM (2008) Neuroimaging studies of mental rotation: a meta-analysis and review. Journal of Cognitive Neuroscience 20:1–19.

    Article  PubMed  Google Scholar 

  • Zaehle T, Wustenberg T, Meyer M, and Jancke L (2004) Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study. European Journal of Neuroscience 20:2447–2456.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ (1988) Pitch perception of complex tones and human temporal-lobe function. Journal of the Acoustical Society of America 84:566–572.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ and Halpern AR (1993) Effect of unilateral temporal-lobe excision on perception and imagery of songs. Neuropsychologia 31:221–232.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ and Penhune VB (2001) Spatial localization after excision of human auditory cortex. Journal of Neuroscience 21:6321–6328.

    CAS  PubMed  Google Scholar 

  • Zatorre RJ and Belin P (2001) Spectral and temporal processing in human auditory cortex. Cerebral Cortex 11:946–953.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ and Halpern AR (2005) Mental concerts: musical imagery and auditory cortex. Neuron 47:9–12.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ and Gandour JT (2008) Neural specializations for speech and pitch: moving beyond the dichotomies. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 363:1087–1104.

    Article  Google Scholar 

  • Zatorre RJ, Evans AC, and Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. Journal of Neuroscience 14:1908–1919.

    CAS  PubMed  Google Scholar 

  • Zatorre RJ, Belin P, and Penhune VB (2002a) Structure and function of auditory cortex: Music and speech. Trends in Cognitive Sciences 6:37–46.

    Article  PubMed  Google Scholar 

  • Zatorre RJ, Bouffard M, and Belin P (2004) Sensitivity to auditory object features in human temporal neocortex. Journal of Neuroscience 24:3637–3642.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Chen JL, and Penhune VB (2007) When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience 8:547–558.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Halpern AR, Bouffard M (2010) Mental reversal of imagined melodies: a role for the posterior parietal cortex. Journal of Cognitive Neuroscience 22:775–789.

    Article  PubMed  Google Scholar 

  • Zatorre RJ, Evans AC, Meyer E, and Gjedde A (1992) Lateralization of phonetic and pitch processing in speech perception. Science 256:846–849.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Meyer E, Gjedde A, and Evans AC (1996) Pet studies of phonetic processing of speech: review, replication, and re-analysis. Cerebral Cortex 6:21–30.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ, Bouffard M, Ahad P, and Belin P (2002b) Where is ‘where’ in the human auditory cortex? Nature Neuroscience 5:905–909.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Schönwiesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zatorre, R.J., Schönwiesner, M. (2011). Cortical Speech and Music Processes Revealed by Functional Neuroimaging. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_31

Download citation

Publish with us

Policies and ethics