Skip to main content

Functional Specialization in Primary and Non-primary Auditory Cortex

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

A long-term goal of auditory neuroscience is to elucidate the behavioral “division of labor” within cat auditory cortex and determine the relative contributions that the different auditory fields make to acoustic behaviors. Here we outline some recent work using reversible cooling deactivation to examine sound localization encoding and the functional cartography of cat auditory cortex. These results, when combined with investigations of underlying cerebral connections and neural function, will constrain hierarchical or network theories that best explain processing in auditory cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2DG:

2-deoxyglucose

AAF or A:

anterior auditory field

AES:

auditory field of the anterior ectosylvian sulcus

AI:

primary auditory cortex

AII:

second auditory cortical area

D:

dorsal

dPE or EPD:

dorsal posterior ectosylvian

DZ:

dorsal zone of auditory cortex

FAES:

auditory field of the anterior ectosylvian sulcus

IN:

insular region

iPE or EPI:

intermediate posterior ectosylvian

P:

posterior

PAF or P:

posterior auditory field

PE:

posterior ectosylvian

PS:

posterior suprasylvian sulcus

SIV:

fourth somatotopic cortical representation

SMI-32:

monoclonal antibody to subunits of neurofilament proteins

SPL:

sound pressure level

T:

temporal region

TI:

temporal-insular

V:

ventral

VPAF or VP:

ventral posterior auditory field

vPE or EPV:

ventral posterior ectosylvian

SST:

somatostatin

STG:

superior temporal gyrus

References

  • Adriani M, Maeder P, Meuli R, Thiran AB, Frischknecht R, Villemure J-G, Mayer J, Annoni J-M, Bogousslavsky J, Fornari E, Thiran J-P, and Clarke S (2003) Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions. Experimental Brain Research 221:591–604.

    Article  Google Scholar 

  • Beitel RE and Kaas JH (1993) Effects of bilateral and unilateral ablation of auditory cortex in cats on the unconditioned head orienting response to acoustic stimuli. Journal of Neurophysiology 70:351–369.

    CAS  PubMed  Google Scholar 

  • Beneyto M, Winer JA, Larue DT, and Prieto JJ (1998) Auditory connections and neurochemistry of the sagulum. Journal of Comparative Neurology 401:329–351.

    Article  CAS  PubMed  Google Scholar 

  • Bénita M and Condé H (1972) Effects of local cooling upon conduction and synaptic transmission. Brain Research 36:133–151.

    Article  Google Scholar 

  • Bisiach E, Luzzatti C, and Perani D (1979) Unilateral neglect, representational schema and consciousness. Brain 102:609–618.

    Article  CAS  PubMed  Google Scholar 

  • Bizley JK, Nodal FR, Parsons CH and King AJ (2007) Role of auditory cortex in sound localization in the midsagittal plane. Journal of Neurophysiology 98:1763–1774.

    Article  PubMed  Google Scholar 

  • Bowman EM and Olson CR (1988a) Visual and auditory association areas of the cat’s posterior ectosylvian gyrus: cortical afferents. Journal of Comparative Neurology 272:30–42.

    Article  CAS  PubMed  Google Scholar 

  • Bowman EM and Olson CR (1988b) Visual and auditory association areas of the cat’s posterior ectosylvian gyrus: thalamic afferents. Journal of Comparative Neurology 272:15–29.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw J and Rogers L (1993) The evolution of lateral asymmetries, language, tool use, and intellect. Academic Press, New York.

    Google Scholar 

  • Brooks VB (1983) Study of brain function by local, reversible cooling. Reviews of Physiology. Biochemistry & Pharmacology 95:1–109.

    Article  Google Scholar 

  • Casseday JH and Diamond IT (1977) Symmetrical lateralization of function in the auditory system of the cat: Effects of unilateral ablation of cortex. Annals of the New York Academy of Sciences 299:255–263.

    Article  CAS  PubMed  Google Scholar 

  • Cavina-Pratesi C, Goodale MA, and Culham JC (2007) fMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. Public Library of Science ONE 5:1–14.

    Google Scholar 

  • Clarey JC and Irvine DRF (1986) Auditory response properties of neurons in the anterior ectosylvian sulcus of the cat. Brain Research 386:12–19.

    Article  CAS  PubMed  Google Scholar 

  • Clarke S, Bellmann A, Meuli RA, Assal G, and Steck AJ (2000) Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways. Neuropsychologia 38:797–807.

    Article  CAS  PubMed  Google Scholar 

  • Clascá F, Llamas A, and Reinoso-Suárez F (1997) Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. Journal of Comparative Neurology 384:456–482.

    Article  PubMed  Google Scholar 

  • Clascá F, Llamas A, and Reinoso-Suárez F (2000) Cortical connections of the insular and adjacent parieto-temporal fields in the cat. Cerebral Cortex 4:371–399.

    Article  Google Scholar 

  • Colavita FB (1972) Auditory cortical lesions and visual pattern discrimination in cat. Brain Research 39:437–447.

    Article  CAS  PubMed  Google Scholar 

  • Colavita FB, Szeligo FV, and Zimmer SD (1974) Temporal pattern discrimination in cats with insular-temporal lesions. Brain Research 79:153–156.

    Article  CAS  PubMed  Google Scholar 

  • Cornwell P (1967) Loss of auditory pattern discrimination following insular-temporal lesions in cats. Journal of Comparative and Physiological Psychology 63:165–168.

    Article  CAS  PubMed  Google Scholar 

  • Cornwell P, Nudo R, Straussfogel D, Lomber SG, and Payne BR (1998) Dissociation of visual and auditory pattern discrimination functions within the cat’s temporal cortex. Behavioral Neuroscience 112:800–811.

    Article  CAS  PubMed  Google Scholar 

  • Courtney SM, Ungerleider LG, Keil K, and Haxby JV (1996) Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex 6:39–49.

    Article  CAS  PubMed  Google Scholar 

  • Cranford J, Ravizza R, Diamond IT, and Whitfield IC (1971) Unilateral ablation of the auditory cortex in the cat impairs complex sound localization. Science 172:286–288.

    Article  CAS  PubMed  Google Scholar 

  • Dewson J (1964) Speech sound discrimination by cats. Science 144:555–556.

    Article  PubMed  Google Scholar 

  • Dewson JH, Pribram KH, and Lynch JC (1969) Effects of ablations of temporal cortex upon speech sound discrimination in the monkey. Experimental Neurology 24:579–591.

    Article  PubMed  Google Scholar 

  • Diamond IT and Neff WD (1957) Ablation of temporal cortex and discrimination of auditory patterns. Journal of Neurophysiology 20: 300–315.

    CAS  PubMed  Google Scholar 

  • Driver J and Mattingley JB (1998) Parietal neglect and visual awareness. Nature Neuroscience 1:17–22.

    Article  CAS  PubMed  Google Scholar 

  • Girden E (1939) Cerebral determinants of auditory localization. The American Journal of Psychology 51:1–15.

    Article  Google Scholar 

  • Goodale MA and Milner AD (1992) Separate visual pathways for perception and action. Trends in Neurosciences 15:20–25.

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA, Milner AD, Jakobson LS, and Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Goodale MA and Westwood DA (2004) An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. Current Opinion in Neurobiology 14:203–211.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths TD and Warren JD (2004) What is an auditory object? Nature Reviews Neuroscience 5:887–892.

    Article  CAS  PubMed  Google Scholar 

  • Heilman KM, Watson RT, and Valenstein E (1993) Neglect and related disorders. In: Heilman KM and Valenstein E (eds). Clinical Neuropsychology, 3rd edition. Oxford University Press, New York, pp. 296–346.

    Google Scholar 

  • Heffner H (1978) Effect of auditory cortex ablation on localization and discrimination of brief sounds. Journal of Neurophysiology 41:963–976.

    CAS  PubMed  Google Scholar 

  • Heffner HE (1997) The role of Macaque auditory cortex in sound localization. Acta Oto-Laryngologica. Supplementum 532:22–27.

    Article  CAS  PubMed  Google Scholar 

  • Heffner HE and Heffner RS (1990) Effect of bilateral auditory cortex lesions on sound localization in Japanese Macaques. Journal of Neurophysiology 64:915–931.

    CAS  PubMed  Google Scholar 

  • Heffner H and Masterton B (1975) Contribution of auditory cortex to sound localization in the Monkey (Macaca mulatta). Journal of Neurophysiology 38:1340–1358.

    CAS  PubMed  Google Scholar 

  • Horsley V and Clarke RH (1908) The structure and function of the cerebellum examined by a new method. Brain 31:45–124.

    Article  Google Scholar 

  • Imig TJ, Reale RA, and Brugge JF (1982) The auditory cortex: patterns of corticocortical projections related to physiological maps in the cat. In: Woolsey CN (ed). Cortical Sensory Organization, volume 3, Multiple Auditory Areas. Humana Press, New Jersey, pp. 1–42.

    Google Scholar 

  • Jasper H, Shacter DG, and Montplaisir J (1970) The effect of local cooling upon spontaneous and evoked electrical activity of cerebral cortex. Canadian Journal of Physiology and Pharmacology 48:640–652.

    CAS  PubMed  Google Scholar 

  • Jenkins WM and Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. Journal of Neurophysiology 47:987–1016

    CAS  PubMed  Google Scholar 

  • Jenkins WM and Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. Journal of Neurophysiology 57:819–847.

    Google Scholar 

  • Kavanagh GL and Kelly JB (1986) Midline and lateral field sound localization in the albino rat (Rattus norvegicus). Behavioral Neuroscience 100:200–205.

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh GL and Kelly JB (1987) Contribution of auditory cortex to sound localization by the ferret (Mustela putorius). Journal of Neurophysiology 57:1746–1766.

    CAS  PubMed  Google Scholar 

  • Kelly JB (1973) The effects of insular and temporal lesions in cats on two types of auditory pattern discrimination. Brain Research 62:71–87.

    Article  CAS  PubMed  Google Scholar 

  • Kelly JB (1980) Effects of auditory cortical lesions on sound localization by the rat. Journal of Neurophysiology 44:1161–1174.

    CAS  PubMed  Google Scholar 

  • Kelly JB and Glazier SJ (1978) Auditory cortex lesions and discrimination of spatial location by the rat. Brain Research 145:315–321.

    Article  CAS  PubMed  Google Scholar 

  • Kelly JB and Kavanagh GL (1986) Effects of auditory cortical lesions on pure-tone sound localization by the albino rat. Behavioral Neuroscience 100:569–575.

    Article  CAS  PubMed  Google Scholar 

  • Knight PL (1977) Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Research 130:447–467.

    Article  CAS  PubMed  Google Scholar 

  • Kolb B and Whishaw IQ (1996) Fundamentals of Human Neuropsychology, 4th edition. W.H. Freeman, New York.

    Google Scholar 

  • Korte M and Rauschecker JP (1993) Auditory tuning of cortical neurons is sharpened in cats with early blindness. Journal of Neurophysiology 70:1717–1721.

    CAS  PubMed  Google Scholar 

  • Lomber SG (1999) The advantages and limitations of permanent or reversible deactivation techniques in the assessment of neural function. Journal of Neuroscience Methods 86:109–117.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG and Malhotra S (2008) Double dissociation of “what” and “where” processing in auditory cortex. Nature Neuroscience 11:609–616.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG and Payne BR (1996) Removal of two halves restores the whole: reversal of visual hemineglect during bilateral cortical or collicular inactivation in the cat. Visual Neuroscience 13:1143–1156.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG and Payne BR (2000) Translaminar differentiation of visually-guided behaviors revealed by restricted cerebral cooling deactivation. Cerebral Cortex 10:1066–1077.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, Payne BR, and Horel JA (1999) The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function. Journal of Neuroscience Methods 86: 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, Payne BR, and Cornwell P (1996a) Learning and recall of form discriminations during reversible cooling deactivation of ventral-posterior suprasylvian cortex in the cat. Proceedings of the National Academy of Sciences of the United States of America 93:1654–1658.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, Payne BR, Cornwell P, and Long KD (1996b) Perceptual and cognitive visual functions of parietal and temporal cortices in the cat. Cerebral Cortex 6:673–695.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, Cornwell P, Sun JS, MacNeil MA, and Payne BR (1994) Reversible inactivation of visual processing operations in middle suprasylvian cortex of the behaving cat. Proceedings of the National Academy of Sciences of the United States of America 91:2999–3003.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, Malhotra S, and Hall AJ (2007) Functional specialization in non-primary auditory cortex of the cat: areal and laminar contributions to sound localization. Hearing Research 229:31–45.

    Article  PubMed  Google Scholar 

  • Malhotra S and Lomber SG (2007) Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat. Journal of Neurophysiology 97:26–43.

    Article  PubMed  Google Scholar 

  • Malhotra S, Hall AJ, and Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. Journal of Neurophysiology 92:1625–1643.

    Article  PubMed  Google Scholar 

  • Malhotra S, Stecker GC, Middlebrooks JC and Lomber SG (2008) Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. Journal of Neurophysiology 99:1628–1642.

    Article  PubMed  Google Scholar 

  • Masterton RB and Diamond IT (1964) Effects of auditory cortex ablation on discrimination of small binaural time differences. Journal of Neurophysiology 27:15–36.

    CAS  PubMed  Google Scholar 

  • Mellott JG, Van der Gucht E, Lee CC, Carrasco A, Winer JA, and Lomber SG (2010) Areas of the cat auditory cortex as defined by neurofilament proteins expressing SMI-32. Hearing Research 267:119–136.

    CAS  Google Scholar 

  • Meredith MA and Clemo HR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. Journal of Comparative Neurology 289:687–707.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC (2002) Auditory space processing: here, there or everywhere? Nature Neuroscience 5:824–826.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC and Zook JM (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex. Journal of Neuroscience 1:203–224.

    Google Scholar 

  • Middlebrooks JC, Clock AE, Xu L, and Green DM (1994) A panoramic code for sound localization by cortical neurons. Science 264:842–844.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Xu L, Furukawa S, and Macpherson EA (2002) Cortical neurons that localize sounds. The Neuroscientist 8:73–83.

    Article  PubMed  Google Scholar 

  • Mori A, Fuwa T, Kawai A, Yoshimoto T, Hiraba Y, Uchiyama Y, and Minejima T (1996) The ipsilateral and contralateral connections of the fifth somatosensory area (SV) in the cat cerebral cortex. NeuroReport 7:2385–2387.

    Article  CAS  PubMed  Google Scholar 

  • Mucke L, Norita M, Benedek G, and Creutzfeldt O (1982) Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat. Experimental Brain Research 46:1–11.

    Article  CAS  Google Scholar 

  • Neff WD (1968) Localization and lateralization of sound in space. In: de Reuch AVS and Knight J (eds). Ciba Foundation Symposium on Hearing Mechanisms in Vertebrates. J. and A. Churchill Ltd, London, pp. 207–231.

    Google Scholar 

  • Neff WD, Fisher JF, Diamond IT, and Yela M (1956) Role of auditory cortex in discrimination requiring localization of sound in space. Journal of Neurophysiology 19:500–512.

    PubMed  Google Scholar 

  • Nelken I, Bar-Yosef O, and Young ED (1997) Responses of field AES neurons to virtual space stimuli. In: Palmer AR, Rees A, Summerfield AQ, and Meddis R (eds). Psychophysical and Physiological Advances in Hearing. Whurr Publisher, London, pp. 504–512.

    Google Scholar 

  • Niimi K and Matsuoka H (1979) Thalamocortical organization of the auditory system in the cat studied by retrograde and axonal transport of horseradish peroxidase. Advances in Anatomy, Embryology and Cell Biology 57:1–56.

    CAS  Google Scholar 

  • Olson CR and Graybiel AM (1983) An outlying visual area in the cerebral cortex of the cat. Progress in Brain Research 58:239–245.

    Article  CAS  PubMed  Google Scholar 

  • Olson CR and Graybiel AM (1987) Ectosylvian visual area of the cat: location, retinotopic organization, and connections. Journal of Comparative Neurology 261:277–294.

    Article  CAS  PubMed  Google Scholar 

  • Paula-Barbosa MM, Feyo PB, and Sousa-Pinto A (1975) The association connexions of the suprasylvian fringe (SF) and other areas of the cat auditory cortex. Experimental Brain Research 23:535–554.

    Article  CAS  Google Scholar 

  • Payne BR and Lomber SG (1999) A method to assess the functional impact of cerebral connections on target populations of neurons. Journal of Neuroscience Methods 86:195–208.

    Article  CAS  PubMed  Google Scholar 

  • Petrides M (2000) Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. Journal of Neuroscience 20:7496–7503.

    CAS  PubMed  Google Scholar 

  • Phillips DP and Irvine DR (1982) Properties of single neurons in the anterior auditory field (AAF) of cat cerebral cortex. Brain Research 248:237–244.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Orman SS (1984) Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. Journal of Neurophysiology 51:147–163.

    CAS  PubMed  Google Scholar 

  • Populin LC and Yin TCT (1998) Behavioral studies of sound localization in the cat. Journal of Neuroscience 6:2147–2160.

    Google Scholar 

  • Rauschecker JP (1997) Processing of complex sounds in the auditory cortex of cat, monkey and man. Acta Otolaryngologica Supplement 532:34–38.

    Article  CAS  Google Scholar 

  • Rauschecker JP (1998a) Parallel processing in the auditory cortex of primates. Audiology and Neurootology 3:86–103.

    Article  CAS  Google Scholar 

  • Rauschecker JP (1998b) Cortical processing of complex sounds. Current Opinion in Neurobiology 8:516–521.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP and Korte M (1993) Auditory compensation for early blindness in cat cerebral cortex. Journal of Neuroscience 13:4538–4548.

    CAS  PubMed  Google Scholar 

  • Rauschecker JP and Kniepert U (1994) Auditory localization behaviour in visually deprived cats. European Journal of Neuroscience 6:149–160.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP and Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 97:11800–11806.

    Article  CAS  PubMed  Google Scholar 

  • Rauschecker JP, Tian B, Pons T, and Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology 382:89–103.

    Article  CAS  PubMed  Google Scholar 

  • Ravizza R and Diamond IT (1974) Role of auditory cortex in sound localization: a comparative ablation study of hedgehog and bushbaby. Federation Proceedings 33:1917–1919.

    CAS  PubMed  Google Scholar 

  • Ravizza RJ and Masterton B (1972) Contribution of neocortex to sound localization in opossum (Didelphis virginiana). Journal of Neurophysiology 35:344–356.

    CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2002) Functional architecture of auditory cortex. Current Opinion in Neurobiology 12:433–440.

    Article  CAS  PubMed  Google Scholar 

  • Reale RA and Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 192:265–291.

    Article  CAS  PubMed  Google Scholar 

  • Reinoso-Suárez F (1961) Topographical atlas of the cat brain for experimental-physiological research. Merck, Darmstadt.

    Google Scholar 

  • Ribaupierre F de (1997) Acoustical information processing in the auditory thalamus and cerebral cortex. In: Ehret G and Romand R (eds). The Central Auditory System. Oxford University Press, New York, pp. 317–397.

    Google Scholar 

  • Riss W (1959) Effect of Bilateral temporal cortical ablation on discrimination of sound direction. Journal of Neurophysiology 22:374–384.

    CAS  PubMed  Google Scholar 

  • Robertson LC (1989) Anomalies in the laterality of omissions in left unilateral visual field neglect: implications for an attentional theory of neglect. Neuropsychologia 27:157–165.

    Article  CAS  PubMed  Google Scholar 

  • Robertson LC, Lamb MR, and Knight RT (1988) Effects of lesions of temporo-parietal junction on perceptual and attentional processing in humans. Journal of Neuroscience 8:3757–3769.

    Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, and Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience 2:1131–1136.

    Article  CAS  PubMed  Google Scholar 

  • Smith AL, Parsons CH, Lanyon RG, Bizley JK, Akerman CJ, Baker GE, Dempster AC, Thompson ID, and King AJ (2004) An investigation of the role of auditory cortex in sound localization using muscimol-releasing Elvax. European Journal of Neuroscience 19:3059–3072.

    Article  PubMed  Google Scholar 

  • Stepien I, Stepien L, and Lubinska E (1990) Function of dog’s auditory cortex in tests involving auditory location cues and directional instrumental response. Acta Neurobiologiae Experimentalis 50:1–12.

    CAS  PubMed  Google Scholar 

  • Stecker GC, Mickey BJ, Macpherson EA, and Middlebrooks JC (2003) Spatial sensitivity in field PAF of cat auditory cortex. Journal of Neurophysiology 89:2889–2903.

    Article  PubMed  Google Scholar 

  • Stecker GC, Harrington IA, Macpherson EA, and Middlebrooks JC (2005) Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. Journal of Neurophysiology 94:1267–1280.

    Article  PubMed  Google Scholar 

  • Strominger NL (1969a) Subdivisions of auditory cortex and their role in localization of sound in space. Experimental Neurology 24:348–362.

    Article  CAS  PubMed  Google Scholar 

  • Strominger NL (1969b) Localization of sound in space after unilateral and bilateral ablation of auditory cortex. Experimental Neurology 25:521–533.

    Article  CAS  PubMed  Google Scholar 

  • Thompson GC and Cortez AM (1983) The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behavioural Brain Research 8:211–216.

    Article  CAS  PubMed  Google Scholar 

  • Thompson RF and Welker WI (1963) Role of auditory cortex in reflex head orientation by cats to auditory stimuli. Journal of Comparative and Physiological Psychology 56:996–1002.

    Article  CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (1998) Processing of frequency-modulated sounds in the cat’s posterior auditory field. Journal of Neurophysiology 79:2629–2642.

    CAS  PubMed  Google Scholar 

  • Tian B, Reser D, Durham A, Kustov A, and Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293.

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG and Haxby JV (1994) “What” and “where” in the human brain. Current Opinion in Neurobiology 4:157–165.

    Article  CAS  PubMed  Google Scholar 

  • Ungerleider LG and Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, and Mansfield RJW (eds). Analysis of Visual Behavior. MIT Press, Cambridge, pp. 486–549.

    Google Scholar 

  • Updyke BV (1986) Retinotopic organization within the cat’s posterior suprasylvian sulcus and gyrus. Journal of Comparative Neurology 246:265–280.

    Article  CAS  PubMed  Google Scholar 

  • Vanduffel W, Payne BR, Lomber SG, and Orban GA (1997) Functional impact of cerebral connections. Proceedings of the National Academy of Sciences of the United States of America 94:7617–7620.

    Article  CAS  PubMed  Google Scholar 

  • Wegener JG (1964) Auditory brain discrimination behavior of brain damaged monkeys. Journal of Auditory Research 4:227–254.

    Google Scholar 

  • Whitfield IC, Cranford J, Ravizza R, and Diamond IT (1972) Effects of unilateral ablation of auditory cortex in cat on complex sound localization. Journal of Neurophysiology 35:718–731.

    CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and primary auditory cortex. In: Webster DB, Popper AN, and Fay RE (eds). Springer Handbook of Auditory Research, volume 1: The Mammalian Auditory Pathway: Neuroanatomy. Springer, New York, pp. 222–409.

    Google Scholar 

  • Winters BD, Forwood SE, Cowell RA, Saksida LM, and Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. Journal of Neuroscience 24:5901–5908.

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN (1960) Organization of cortical auditory system: A review and synthesis. In: Rasmussen GL and Windle WF (eds). Neural Mechanisms of the Auditory and Vestibular Systems. CC Thomas, Springfield, pp. 165–180.

    Google Scholar 

  • Woolsey CN (1961) Organization of cortical auditory system. In: Rosenblith WA (ed). Sensory Communication. MIT Press, Cambridge, pp. 235–257.

    Google Scholar 

  • Yang XF, Kennedy BR, Lomber SG, Schmidt RE, and Rothman SM (2006) Cooling produces minimal neuropathology in neocortex and hippocampus. Neurobiology of Disease 23:637–643.

    Article  CAS  PubMed  Google Scholar 

  • Zatorre RJ and Penhune VB (2001) Spatial localization after excision of human auditory cortex. Journal of Neuroscience 21:6321–6328.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Erin Woller, Shveta Malhotra, and Jeff Mellott for help with various phases of the work described. This work was supported by grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and the Hearing Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Lomber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lomber, S.G., McMillan, A.J. (2011). Functional Specialization in Primary and Non-primary Auditory Cortex. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_18

Download citation

Publish with us

Policies and ethics