Skip to main content

A Semantic Concept of Auditory Cortex Function and Learning

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

Auditory cortex (AC) differs from subcortical auditory nuclei due to its prominent learning-related plasticity (e.g., Suga and Ma 2003; Weinberger 2004; Irvine and Wright 2005; Ohl and Scheich 2005; Scheich et al. 2007) and the dominance of descending inputs from other cortical areas (Budinger et al. 2000b, 2006, 2008; Scheich et al. 2007). Thus, AC can be considered a bottom-up/top-down interface with its function comprising more than simply refining identification and discrimination of auditory stimulus properties for use in cognitive and behavioral tasks elsewhere. AC appears to be an active participant in such tasks (Scheich et al. 2006; Scheich et al. 2010). This role would require various learning strategies. While it is known that AC processing is modifiable by learning (see Chapters 22 and 4), the role of learning-induced changes in a behavioral and cognitive context is still uncertain. Considerations of the special nature of environmental sounds as information source in shaping auditory system evolution lead us to propose a semantic hypothesis of auditory cortex function and learning: AC processing and learning promotes behaviorally meaningful interpretations of sounds. It is not the sound event itself, but its presumed cause and/or behavioral consequence toward which the concern of the listener is ultimately directed. The semantics of any sound may not be explicitly available in AC. Rather, auditory cortical stimulus representations and their plasticity reflect implicit rules and cognitive strategies in auditory tasks through interactions with other cortical areas that attach meaning to sounds and predict behavioral performance. Similar processes may occur in other sensory modalities, but we propose that attributing behavioral meaning to a sound requires learning phenomena that are particularly salient in auditory cortex. In that sense, our proposal is an extension of the concept of auditory scene analysis (Bregman 1990) toward the semantic nature of auditory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

auditory cortex

AI:

primary auditory cortex

AM:

amplitude modulation

BF:

best frequency

CM:

caudo-medial field

EEG:

electroencephalogram

FM:

frequency modulation

fMRI:

functional magnetic resonance imaging

PET:

positron emission tomography

References

  • Altmann CF, Bledowski C, Wibral M, and Kaiser J (2007) Processing of location and pattern changes of natural sounds in the human auditory cortex. Neuroimage 41:69–79.

    Google Scholar 

  • Barbour DL and Wang X (2003) Contrast tuning in auditory cortex. Science 299:1073–1075.

    CAS  PubMed  Google Scholar 

  • Bartlett EL and Wang X (2005) Long-lasting modulation by stimulus context in primate auditory cortex. Journal of Neurophysiology 94:83–104.

    PubMed  Google Scholar 

  • Basole A, Kreft-Kerekes V, White LE, and Fitzpatrick D (2006) Cortical cartography revisited: a frequency perspective on the functional architecture of visual cortex. Progress in Brain Research 154:121–134.

    PubMed  Google Scholar 

  • Bee MA and Klump GM (2004) Primitive auditory stream segregation: a neurophysiological study in the songbird forebrain. Journal of Neurophysiology 92: 1088–1104.

    PubMed  Google Scholar 

  • Bee MA and Klump GM (2005) Auditory stream segregation in the songbird forebrain: effects of time intervals on responses to interleaved tone sequences. Brain, Behavior, and Evolution 66:197–214.

    Google Scholar 

  • Beitel RE, Schreiner CE, Cheung SW, Wang X, and Merzenich MM (2003) Reward-dependent plasticity in the primary auditory cortex of adult monkeys trained to discriminate temporally modulated signals. Proceedings of the National Academy of Sciences of the United States of America 100:11070–11075.

    CAS  PubMed  Google Scholar 

  • Brechmann A and Scheich H (2005) Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cerebral Cortex 15:578–587.

    PubMed  Google Scholar 

  • Brechmann A, Gaschler-Markefski B, Sohr M, Yoneda K, Kaulisch T, and Scheich H (2007) Working memory-specific activity in auditory cortex: potential correlates of sequential processing and maintenance. Cerebral Cortex 17:2544–2552.

    PubMed  Google Scholar 

  • Bregman AS and Rudnicky AI (1975) Auditory segregation: stream or streams? Journal of Experimental Psychology, Human Perception and Performance 1: 263–267.

    CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press, Cambridge.

    Google Scholar 

  • Brosch M, Schulz A, and Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. Journal of Neurophysiology 82:1542–1559.

    CAS  PubMed  Google Scholar 

  • Brosch M and Schreiner CE (2000) Sequence sensitivity of neurons in cat primary auditory cortex. Cerebral Cortex 10:1155–1167.

    CAS  PubMed  Google Scholar 

  • Brosch M and Scheich H (2003) Neural representation of sound patterns in the auditory cortex of monkey. In: Ghazanfar AA (ed). Primate Audition. Ethology and Neurobiology. CRC Press, Boca Raton, pp.151–175.

    Google Scholar 

  • Brosch M, Selezneva E, Bucks C, and Scheich H (2004) Macaque monkeys discriminate pitch relationships. Cognition 91:259–272.

    PubMed  Google Scholar 

  • Brosch M, Selezneva E, and Scheich H (2005) Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience 25:6797–6806.

    CAS  PubMed  Google Scholar 

  • Brosch M and Scheich H (2008) Tone-sequence analysis in the auditory cortex of awake macaque monkeys. Experimental Brain Research 184:349–361.

    Google Scholar 

  • Brosch M, Selezneva E, and Scheich H (2010) Formation of associations in auditory cortex by slow changes of tonic firing. Hearing Research, doi:10.1016/j.heares.2010.05.003.

    Google Scholar 

  • Budinger E, Heil P, and Scheich H (2000a) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience 12:2425–2451.

    CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, and Scheich H (2000b) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. European Journal of Neuroscience 12:2452–2474.

    CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, Hess A, and Scheich H (2006) Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems. Neuroscience 143:1065–1083.

    CAS  PubMed  Google Scholar 

  • Budinger E, Laszcz A, Lison H, Scheich H, and Ohl FW (2008) Non-sensory cortical and subcortical connections of the primary auditory cortex in Mongolian gerbils: bottom-up and top-down processing of neuronal information via field AI. Brain Research 1220:2–32.

    CAS  PubMed  Google Scholar 

  • Butts DA, Goldman MS (2006) Tuning curves, neuronal variability, and sensory coding. Public Library of Science Biology 4:1–8.

    Google Scholar 

  • Cahill L, Ohl F, and Scheich H (1996) Alteration of auditory cortex activity with a visual stimulus through conditioning: a 2-deoxyglucose analysis. Neurobiology of Learning and Memory 65:213–222.

    Google Scholar 

  • Carlyon RP (2004) How the brain separates sounds. Trends in Cognitive Sciences 8:465–471.

    PubMed  Google Scholar 

  • Chklovskii DB and Koulakov AA (2004) Maps in the brain: what can we learn from them? Annual Reviews of Neuroscience 27:369–392.

    Google Scholar 

  • Clarey JC, Barone P, and Imig TJ (1992) Physiology of thalamus and cortex. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, volume 2, The Mammalian Auditory Pathway: Neurophysiology. Springer-Verlag, New York, pp. 232–334.

    Google Scholar 

  • Darwin CJ, Turvey MT, and Crowder RG (1972) An auditory analogue of the Sperling partial report procedure: evidence for brief auditory storage. Cognitive Psychology 3:255–267.

    Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M, and Simmons JA (1993) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology 70:1988–2009.

    CAS  PubMed  Google Scholar 

  • Deike S, Gaschler-Markefski B, Brechmann A, and Scheich H (2004) Auditory stream segregation relying on timbre involves left auditory cortex. Neuroreport 15:1511–1514.

    Google Scholar 

  • Eggermont JJ (1998a) Is there a neural code? Neuroscience and Biobehavioral Reviews 22:355–720.

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1998b) Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. Journal of Neurophysiology 80:2743–2764.

    CAS  PubMed  Google Scholar 

  • Ernst SM and Verhey JL (2008) Peripheral and central aspects of auditory across-frequency processing. Brain Research 1220:246–255.

    CAS  PubMed  Google Scholar 

  • Estes WK (1996) Classification and Cognition. Oxford University Press, Oxford.

    Google Scholar 

  • Fishbach A, Nelken I, and Yeshurun Y (2001) Auditory edge detection: a neural model for physiological and psychoacoustical responses to amplitude transients. Journal of Neurophysiology 85:2303–2323.

    CAS  PubMed  Google Scholar 

  • Fishman YI, Arezzo JC, and Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. Journal of the Acoustical Society of America 116:1656–1670.

    PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhiali M, and Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience 6:1216–1223.

    CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, and Shamma SA (2005) Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience 25:7623–7635.

    CAS  PubMed  Google Scholar 

  • Froemke RC, Merzenich MM, and Schreiner CE (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450:425–429.

    CAS  PubMed  Google Scholar 

  • Ghazanfar AA and Schroeder CE (2006) Is neocortex essentially multisensory? Trends in Cognitive Science 10:278–285.

    Google Scholar 

  • Ghose GM (2004) Learning in mammalian sensory neocortex. Current Opinions in Neurobiology 14:513–518.

    CAS  Google Scholar 

  • Ghose GM, Yang T, and Maunsell JHR (2001) Physiological correlates of perceptual learning in monkey V1 and V2. Journal of Neurophysiology 87:1867–1888.

    Google Scholar 

  • Gonzalez-Lima F and Scheich H (1986). Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. II. Auditory cortex plasticity. Behavioral Brain Research 20:281–293.

    CAS  Google Scholar 

  • Griffiths TD and Warren JD (2004) What is an auditory object? Nature Reviews Neuroscience 5:887–892.

    CAS  PubMed  Google Scholar 

  • Griffiths TD, Warren JD, Scott SK, Nelken I, and King AJ (2004) Cortical processing of complex sound. A way forward. Trends in Neurosciences 27:181–185.

    CAS  PubMed  Google Scholar 

  • Hall JW, Haggard MP, and Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. Journal of the Acoustical Society of America 76:50–56.

    CAS  PubMed  Google Scholar 

  • Handel S (1989) Listening: An Introduction to the Perception of Auditory Events. The MIT Press, Cambridge.

    Google Scholar 

  • Handel S (2006) Perceptual Coherence. Hearing and Seeing. Oxford University Press, Oxford.

    Google Scholar 

  • Happel MF, Jeschke M, and Ohl FW (2010) Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. Journal of Neuroscience 30:11114–111127.

    Google Scholar 

  • Harper NS and McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686.

    CAS  PubMed  Google Scholar 

  • Hartline HK (1949) Inhibition of activity of visual receptors by illuminating nearby retinal areas in the Limulus eye. Federal Proceedings 8:69.

    Google Scholar 

  • Heil P, Rajan R, and Irvine DR (1992) Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: organization of response properties along the ‘isofrequency’ dimension. Hearing Research 63:135–156.

    CAS  PubMed  Google Scholar 

  • Heil P, Rajan R, and Irvine DR (1994) Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hearing Research 76:188–202.

    CAS  PubMed  Google Scholar 

  • Hose B, Langner G, and Scheich H (1987) Topographic representation of periodicities in the forebrain of the mynah bird: one map for pitch and rhythm? Brain Research 422:367–373.

    CAS  PubMed  Google Scholar 

  • Hubel DH and Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160:106–154.

    PubMed  Google Scholar 

  • Imig TJ, Irons WA, and Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. Journal of Neurophysiology 63:1448–1466.

    CAS  PubMed  Google Scholar 

  • Irvine DRF and Wright BA (2005) Plasticity of spectral processing. International Reviews in Neurobiology 70:435–472.

    Google Scholar 

  • Jeschke M, Lenz D, Budinger E, Herrmann CS, and Ohl FW (2008) Gamma oscillations in gerbil auditory cortex during a target-discrimination task reflect matches with short-term memory. Brain Research 1220:70–80.

    CAS  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, and Rees A (2004) Neural processing of amplitude-modulated sounds. Physiological Reviews 84:541–577.

    CAS  PubMed  Google Scholar 

  • Kaas JH and Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America 97:11793–11799.

    CAS  PubMed  Google Scholar 

  • Kadia SC and Wang X (2003) Spectral integration in A1 of awake primates: neurons with single- and multipeaked tuning characteristics. Journal of Neurophysiology 89:1603–1622.

    PubMed  Google Scholar 

  • Komatsu LK (1992) Recent views of conceptual structure. Psychological Bulletin 112:500–526.

    Google Scholar 

  • Kraus N and Disterhoft JF (1982) Response plasticity of single neurons in rabbit auditory association cortex during tone-signalled learning. Brain Research 246:205–215.

    CAS  PubMed  Google Scholar 

  • Kuffler SW (1952) Neurons in the retina; organization, inhibition and excitation problems. Cold Spring Harbor Symposium on Quantitative Biology 17:281–292.

    CAS  Google Scholar 

  • Kurt S, Deutscher A, Crook JM, Ohl FW, Budinger E, Moeller CK, Scheich H, and Schulze H (2008) Auditory cortical contrast enhancing by global winner-take-all inhibitory interactions. Public Library of Science ONE 3:e1735.

    PubMed  Google Scholar 

  • Lange-Malecki B, Poppinga J, and Creutzfeldt OD (1990) The relative contribution of retinal and cortical mechanisms to simultaneous contrast. Naturwissenschaften 77:394–398.

    CAS  PubMed  Google Scholar 

  • Langner G, Bonke D, and Scheich H (1981) Neuronal discrimination of natural and synthetic vowels in field L of trained mynah birds. Experimental Brain Research 43:11–24.

    CAS  Google Scholar 

  • Linden JF and Schreiner CE (2003) Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cerebral Cortex 13:83–89.

    PubMed  Google Scholar 

  • Lu T and Wang X (2000) Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. Journal of Neurophysiology 84:236–246.

    CAS  PubMed  Google Scholar 

  • Machens CK, Wehr MS, and Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. Journal of Neuroscience 24:1089–1100.

    CAS  PubMed  Google Scholar 

  • Mendelson JR, Schreiner CE, Sutter ML, and Grasse KL (1993) Functional topography of cat primary auditory cortex: responses to frequency-modulated sweeps. Experimental Brain Research 94:65–87.

    CAS  Google Scholar 

  • Middlebrooks JC, Dykes RW, and Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Research 181:31–48

    CAS  PubMed  Google Scholar 

  • Moore BC (1990) Co-modulation masking release: spectro-temporal pattern analysis in hearing. British Journal of Audiology 24:131–137.

    CAS  PubMed  Google Scholar 

  • Näätänen R and Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin 125:826–859.

    PubMed  Google Scholar 

  • Nelken I (2002) Feature detection by the auditory cortex. In: Oertel D, Fay RR, and Popper AN (eds). Springer Handbook of Auditory Research, volume 15, Integrative Functions in the Mammalian Auditory Pathway. Springer-Verlag, New York, pp. 358–416.

    Google Scholar 

  • Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Current Opinions in Neurobiology 14:474–480.

    CAS  Google Scholar 

  • Nelken I, Rotman Y, and Bar Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154–157.

    CAS  PubMed  Google Scholar 

  • Nelken I, Fishbach A, Las L, Ulanovsky N, and Farkas D (2003) Primary auditory cortex of cats: feature detection or something else? Biological Cybernetics 89:397–406.

    PubMed  Google Scholar 

  • Nelson ME and Bower JM (1990) Brain maps and parallel computers. Trends in Neurosciences 13:403–408.

    CAS  PubMed  Google Scholar 

  • Ohl FW and Scheich H (1996) Differential frequency conditioning enhances spectral contrast sensitivity of units in the auditory cortex (field AI) of the alert Mongolian gerbil. European Journal of Neuroscience 8:1001–1017.

    CAS  PubMed  Google Scholar 

  • Ohl FW and Scheich H (1997a) Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. Journal of Comparative Physiology A 181:685–696.

    CAS  Google Scholar 

  • Ohl FW and Scheich H (1997b) Orderly cortical representation of vowels based on formant interaction. Proceedings of the National Academy of Sciences of the United States of America 94:9440–9444.

    CAS  PubMed  Google Scholar 

  • Ohl FW, Wetzel W, Wagner T, Rech A, and Scheich H (1999) Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. Learning and Memory 6:347–362.

    CAS  PubMed  Google Scholar 

  • Ohl FW, Schulze H, Scheich H, and Freeman WJ (2000) Spatial representation of frequency-modulated tones in gerbil auditory cortex revealed by epidural electrocorticography. Journal of Physiology, Paris 94:549–554.

    CAS  PubMed  Google Scholar 

  • Ohl FW, Scheich H, and Freeman WJ (2001) Change in pattern of ongoing cortical activity with auditory category learning. Nature 412:733–736.

    CAS  PubMed  Google Scholar 

  • Ohl FW and Scheich H (2004) Fallacies in behavioural interpretation of auditory cortex plasticity. Nature Reviews Neuroscience, online correspondence doi:10.1038/nrn1366-c1.

    Google Scholar 

  • Peterson GE and Barney HL (1952) Control methods used in a study of the vowels. Journal of the Acoustical Society of America 24:175–184.

    Google Scholar 

  • Phillips DP and Cynader MS (1985) Some neural mechanisms in the cat’s auditory cortex underlying sensitivity to combined tone and wide-spectrum noise stimuli. Hearing Research 18:87–102.

    CAS  PubMed  Google Scholar 

  • Phillips DP, Mendelson JR, Cynader MS, and Douglas RM (1985) Responses of single neurons in cat auditory cortex to time-varying stimuli: frequency-modulated tones of narrow excursion. Experimental Brain Research 58:443–454.

    CAS  Google Scholar 

  • Phillips DP, Semple MN, Calford MB, and Kitzes LM (1994) Level-dependent representation of stimulus frequency in cat primary auditory cortex. Experimental Brain Research 102:210–226.

    CAS  Google Scholar 

  • Plack CJ and Viemeister NF (1993) Suppression and the dynamic range of hearing. Journal of the Acoustical Society of America 93:976–982.

    CAS  PubMed  Google Scholar 

  • Priebe NJ and Ferster D (2008) Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57:482–497.

    CAS  PubMed  Google Scholar 

  • Qin L, Sakai M, Chimoto S, and Sato Y (2004) Spectral-edge sensitivity of primary auditory cortex neurons in alert cats. Brain Research 1014:1–13.

    CAS  PubMed  Google Scholar 

  • Qin L, Sakai M, Chimoto S, and Sato Y (2005) Interaction of excitatory and inhibitory frequency-receptive fields in determining fundamental frequency sensitivity of primary auditory cortex neurons in awake cats. Cerebral Cortex 15:1371–1383.

    PubMed  Google Scholar 

  • Raiguel S, Vogels R, Mysore SG, and Orban GA (2006) Learning to see the difference specifically alters the most informative V4 neurons. Journal of Neuroscience 26:6589–6602.

    CAS  PubMed  Google Scholar 

  • Rasch RA (1978) The perception of simultaneous notes such as in polyphonic music. Acustica 40: 21–33.

    Google Scholar 

  • Rauschecker JP, Tian B, Pons T, and Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. Journal of Comparative Neurology 382:89–103.

    CAS  PubMed  Google Scholar 

  • Rauschecker JP and Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 91:2578–2589.

    PubMed  Google Scholar 

  • Recanzone GH, Schreiner CE, and Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience 13:87–103.

    CAS  PubMed  Google Scholar 

  • Read HL, Winer JA, and Schreiner CE (2002) Functional architecture of auditory cortex. Current Opinions in Neurobiology 12:433–440.

    CAS  Google Scholar 

  • Rohde WS and Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, volume 2: The Mammalian Auditory Pathway: Neurophysiology. Springer-Verlag, New York, pp. 94–152.

    Google Scholar 

  • Riquimaroux H, Gaioni SJ, and Suga N (1991) Cortical computational maps control auditory perception. Science 251:565–568.

    CAS  PubMed  Google Scholar 

  • Sachs MB and Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. Journal of the Acoustical Society of America 66:470–479.

    CAS  PubMed  Google Scholar 

  • Scheich H, Langner G, and Bonke D (1979) Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species specific calls and synthetic stimuli. II. Discrimination of iambus-like calls. Journal of Comparative Physiology 132:257–276.

    Google Scholar 

  • Scheich H, Baumgart F, Gaschler-Markefski B, Tegeler C, Tempelmann C, Heinze HJ, Schindler F, and Stiller D (1998) Functional magnetic resonance imaging of a human auditory cortex area involved in foreground-background decomposition. European Journal of Neuroscience 10:803–809.

    Google Scholar 

  • Scheich H (1991) Auditory cortex: comparative aspects of maps and plasticity. Current Opinions in Neurobiology 1:236–47.

    CAS  Google Scholar 

  • Scheich H, Ohl FW, Schulze H, Hess A, and Brechmann A (2006) What is reflected in sensory cortical activity: external stimuli or what the cortex does with them? In: van Hemmen JL and Sejnowski TJ (eds). 23 Problems in Systems Neuroscience. Oxford University Press, Oxford, pp. 343–366.

    Google Scholar 

  • Scheich H, Brechmann A, Brosch M, Budinger E, and Ohl FW (2007) The cognitive auditory cortex: task-specificity of stimulus representations. Hearing Research 229:213–224.

    PubMed  Google Scholar 

  • Scheich H, Brechmann A, Brosch M, Budigner E, Ohl FW, Selezneva E, Stark H, Tischmeyer W, and Wetzel W (2010) Behavioral semantics of learning and crossmodal processing in auditory cortex: The semantic processor concept. Hearing Research (epub ahead of print).

    Google Scholar 

  • Schoups A, Vogels RNQ, and Orban G (2001) Practising orientation identification improves orientation coding in V1 neurons. Nature 412:549–553.

    CAS  PubMed  Google Scholar 

  • Schreiner CE (1995) Order and disorder in auditory cortical maps. Current Opinions in Neurobiology 5:489–496.

    CAS  Google Scholar 

  • Schreiner CE (1998) Spatial distribution of responses to simple and complex sounds in the primary auditory cortex. Audiology and Neurootology 3:104–122.

    CAS  Google Scholar 

  • Schreiner CE and Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hearing Research 32:49–63.

    CAS  PubMed  Google Scholar 

  • Schreiner CE and Winer JA (2007) Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–365.

    CAS  PubMed  Google Scholar 

  • Schulze H, Hess A, Ohl FW, and Scheich H (2002) Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil. European Journal of Neuroscience 15:1077–1084.

    PubMed  Google Scholar 

  • Selezneva E, Scheich H, and Brosch M (2006) Dual time scales for categorical decision making in auditory cortex. Current Biology 16:2428–2433.

    CAS  PubMed  Google Scholar 

  • Shamma SA, Fleshman JW, Wiser PR, and Versnel H (1993) Organization of response areas in ferret primary auditory cortex. Journal of Neurophysiology 69:367–383.

    CAS  PubMed  Google Scholar 

  • Smith EC and Lewicki MS (2006) Efficient auditory coding. Nature 439:978–982.

    CAS  PubMed  Google Scholar 

  • Snyder JS, Alain C, and Picton TW (2006) Effects of attention on neuroelectric correlates of auditory stream segregation. Journal of Cognitive Neuroscience 18:1–13.

    PubMed  Google Scholar 

  • Sperling G (1960) The information available in brief visual presentations. Psychological Monographs 74:1–29.

    Google Scholar 

  • Suga N (1990) Cortical computational maps for auditory imaging. Neural Networks 3:3–21.

    Google Scholar 

  • Suga N and Jen PH (1976) Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. Science 194:542–544.

    CAS  PubMed  Google Scholar 

  • Suga N and Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience 4:783–794.

    CAS  PubMed  Google Scholar 

  • Sutter ML and Schreiner CE (1991) Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. Journal of Neurophysiology 65:1207–1226.

    CAS  PubMed  Google Scholar 

  • Sutter ML, Schreiner CE, McLean M, O’Connor KN, and Loftus WC (1999) Organization of inhibitory frequency receptive fields in cat primary auditory cortex. Journal of Neurophysiology 82:2358–2371.

    CAS  PubMed  Google Scholar 

  • Takagaki K, Lippert MT, Dann B, Wanger T, and Ohl FW (2008) Normalization of voltage-sensitive dye signal with functional activity measures. Public Library of Science ONE 3:e4041.

    PubMed  Google Scholar 

  • Tan AY, Zhang LI, Merzenich MM, and Schreiner CE (2004) Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. Journal of Neurophysiology 92:630–643.

    PubMed  Google Scholar 

  • Thivard L, Belin P, Zilbovicius M, Poline JB, and Samson Y (2000) A cortical region sensitive to auditory spectral motion. Neuroreport 11:2969–2972.

    CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 92:2993–3013.

    PubMed  Google Scholar 

  • Ulanovsky N, Las L, and Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nature Neuroscience 6:391–398.

    CAS  PubMed  Google Scholar 

  • Verhey JL, Pressnitzer D, and Winter IM (2003) The psychophysics and physiology of comodulation masking release. Experimental Brain Research 153:405–517.

    Google Scholar 

  • Wehr M and Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446.

    CAS  PubMed  Google Scholar 

  • Weinberger NM, Hopkins W, and Diamond DM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behavioral Neuroscience 98:171–188.

    CAS  PubMed  Google Scholar 

  • Weinberger NM (2004a) Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience 5:279–290.

    CAS  PubMed  Google Scholar 

  • Weinberger NM (2004b) Correcting misconceptions of tuning shifts in auditory cortex. Nature Reviews Neuroscience online correspondence doi:10.1038/nrn1366-c2.

    Google Scholar 

  • Weinberger NM (2007a) Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. Learning and Memory 14:1–16.

    PubMed  Google Scholar 

  • Weinberger NM (2007b) Auditory associative memory and representational plasticity in the primary auditory cortex. Hearing Research 229:54–68.

    PubMed  Google Scholar 

  • Weinberger NM (2007c) Associative representational plasticity in the auditory cortex: resolving conceptual and empirical problems. Debates in Neuroscience 1:85–98.

    Google Scholar 

  • Wetzel W, Wagner T, Ohl FW, and Scheich H (1998) Categorical discrimination of direction in frequency-modulated tones by Mongolian gerbils. Behavioral Brain Research 91:29–39.

    CAS  Google Scholar 

  • Winter Y and Stich KP (2005) Foraging in a complex naturalistic environment: capacity of spatial working memory in flower bats. Journal of Experimental Biology 208:539–548.

    PubMed  Google Scholar 

  • von Békésy G (1967) Mach band type lateral inhibition in different sense organs. Journal of General Physiology 50:519–532.

    Google Scholar 

  • Wetzel W, Ohl FW, and Scheich H (2008) Global vs. local processing of frequency-modulated tones in gerbils: an animal model of lateralized auditory cortex functions in humans. Proceedings of the National Academy of Sciences of the United States of America 105:6753–6758.

    CAS  PubMed  Google Scholar 

  • Witte RS and Kipke DR (2005) Enhanced contrast sensitivity in auditory cortex as cats learn to discriminate sound frequencies. Cognitive Brain Research 23:171–184.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG SFB 779, DFG SFB-TR31, DFG SFB-TR62), the German Ministry for Education and Research (BMBF 01GW0621, BMBF BioFuture 0311891, Bernstein grants (01GQ0733, 01GQ0702), the Volkwagen-Stiftung (VW I77356) and the European IST Programme (Project FP6-0027787). We thank Conny Bucks and Kathrin Ohl for technical assistance during the experiments. We also like to thank Drs. Michael Brosch and Peter Heil for critical reading of a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Ohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scheich, H., Ohl, F.W. (2011). A Semantic Concept of Auditory Cortex Function and Learning. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_17

Download citation

Publish with us

Policies and ethics