Skip to main content

Cortical Representation of Auditory Space

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

It has been known for many years that an intact auditory cortex is necessary for the normal ability of carnivores and primates, including humans, to localize sound sources. As such, the auditory cortex plays an essential part in one of the most important functions of hearing, which is critical to the way in which these species perceive and interact with their environments. For example, the ability to determine the direction of sound-producing objects or events is often used to find potential mates or prey or to avoid and escape from approaching predators. Sound localization also contributes in important ways to the process by which different sound sources are segregated from one another and therefore aids source identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAF:

anterior auditory field

AI:

primary auditory cortex

AII:

secondary auditory cortex

AES:

anterior ectosylvian sulcus

DZ:

dorsal zone

IC:

inferior colliculus

ILD:

interaural level difference

ITD:

interaural time difference

PAF:

posterior auditory field

SC:

superior colliculus

References

  • Adriani M, Maeder P, Meuli R, Thiran AB, Frischknecht R, Villemure JG, Mayer J, Annoni JM, Bogousslavsky J, Fornari E, Thiran JP, and Clarke S (2003) Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions. Experimental Brain Research 153:591–604.

    Article  Google Scholar 

  • Alain C, Arnott SR, Hevenor S, Graham S, and Grady CL (2001) “What” and “where” in the human auditory system. Proceedings of the National Academy of Sciences of the United States of America 98:12301–12306.

    Article  CAS  PubMed  Google Scholar 

  • Bajo VM, Nodal FR, Moore DR, and King AJ (2010) The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience 13:253–260.

    Article  CAS  Google Scholar 

  • Barrett DJ and Hall DA (2006) Response preferences for “what” and “where” in human non-primary auditory cortex. Neuroimage 32:968–977.

    Article  PubMed  Google Scholar 

  • Beitel RE and Kaas JH (1993) Effects of bilateral and unilateral ablation of auditory cortex in cats on the unconditioned head orienting response to acoustic stimuli. Journal of Neurophysiology 70:351–369.

    CAS  PubMed  Google Scholar 

  • Bizley JK and King AJ (2008) Visual-auditory spatial processing in auditory cortical neurons. Brain Research 1242:24–36.

    Article  CAS  PubMed  Google Scholar 

  • Bizley JK, Nodal FR, Parsons CH, and King AJ (2007) Role of auditory cortex in sound localization in the midsagittal plane. Journal of Neurophysiology 98:1763–1774.

    Article  PubMed  Google Scholar 

  • Bizley JK, Walker KM, Silverman BW, King AJ, and Schnupp JWH (2009) Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. Journal of Neuroscience 29:2064–2075.

    Article  CAS  PubMed  Google Scholar 

  • Brown CH and May BJ (2005) Comparative mammalian sound localization. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, volume 25, Sound Source Localization. Springer, New York, pp. 124–178.

    Google Scholar 

  • Brugge JF, Reale RA, and Hind JE (1996) The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. Journal of Neuroscience 16:4420–4437.

    CAS  PubMed  Google Scholar 

  • Brugge JF, Reale RA, and Hind JE (1998) Spatial receptive fields of primary auditory cortical neurons in quiet and in the presence of continuous background noise. Journal of Neurophysiology 80:2417–2432.

    CAS  PubMed  Google Scholar 

  • Brugge JF, Reale RA, Hind JE, Chan JC, Musicant AD, and Poon PW (1994) Simulation of free-field sound sources and its application to studies of cortical mechanisms of sound localization in the cat. Hearing Research 73:67–84.

    Article  CAS  PubMed  Google Scholar 

  • Campbell RAA, Schnupp JWH, Shial A, and King AJ (2006) Binaural-level functions in ferret auditory cortex: evidence for a continuous distribution of response properties. Journal of Neuroscience 95:3742–3755.

    Google Scholar 

  • Chase SM and Young ED (2006) Spike-timing codes enhance the representation of multiple simultaneous sound-localization cues in the inferior colliculus. Journal of Neuroscience 26:3889–3898.

    Article  CAS  PubMed  Google Scholar 

  • Dahmen JC and King AJ (2007) Learning to hear: plasticity of auditory cortical processing. Current Opinion in Neurobiology 17:456–464.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1998) Azimuth coding in primary auditory cortex of the cat. II. Relative latency and interspike interval representation. Journal of Neurophysiology 80:2151–2161.

    CAS  PubMed  Google Scholar 

  • Fitzpatrick DC, Kuwada S, Kim DO, Parham K, and Batra R (1999) Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. Journal of the Acoustical Society of America 106:3460–3472.

    Article  CAS  PubMed  Google Scholar 

  • Fu KM, Shah AS, O’Connell MN, McGinnis T, Eckholdt H, Lakatos P, Smiley J, and Schroeder CE (2004) Timing and laminar profile of eye-position effects on auditory responses in primate auditory cortex. Journal of Neurophysiology 92:3522–3531.

    Article  PubMed  Google Scholar 

  • Furukawa S and Middlebrooks JC (2001) Sensitivity of auditory cortical neurons to locations of signals and competing noise sources. Journal of Neurophysiology 86:226–240.

    CAS  PubMed  Google Scholar 

  • Furukawa S and Middlebrooks JC (2002) Cortical representation of auditory space: information-bearing features of spike patterns. Journal of Neurophysiology 87:1749–1762.

    PubMed  Google Scholar 

  • Furukawa S, Xu L, and Middlebrooks JC (2000) Coding of sound-source location by ensembles of cortical neurons. Journal of Neuroscience 20:1216–1228.

    CAS  PubMed  Google Scholar 

  • Ghazanfar AA and Schroeder CE (2006) Is neocortex essentially multisensory? Trends in Cognitive Sciences 10:278–285.

    Article  PubMed  Google Scholar 

  • Harrington IA, Stecker GC, Macpherson EA, and Middlebrooks JC (2008) Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hearing Research 240:22–41.

    Article  PubMed  Google Scholar 

  • Heffner H (1978) Effect of auditory cortex ablation on localization and discrimination of brief sounds. Journal of Neurophysiology 41:963–976.

    CAS  PubMed  Google Scholar 

  • Heffner H (1997) The role of macaque auditory cortex in sound localization. Acta Otolaryngologia Supplement 532:22–27.

    Article  CAS  Google Scholar 

  • Heffner HE and Heffner RS (1990) Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques. Journal of Neurophysiology 64:915–931.

    Google Scholar 

  • Heffner H and Masterton B (1975) Contribution of auditory cortex to sound localization in the monkey (Macaca mulatta). Journal of Neurophysiology 38:1340–1358.

    CAS  PubMed  Google Scholar 

  • Huang CL and Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology 427:302–331.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Adrian HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Research 138:241–257.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Irons WA, and Samson FR (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. Journal of Neurophysiology 63:1448–1466.

    CAS  PubMed  Google Scholar 

  • Irvine DRF, Rajan R, and Aitkin LM (1996) Sensitivity to interaural intensity differences of neurons in primary auditory cortex of the cat. I. types of sensitivity and effects of variations in sound pressure level. Journal of Neurophysiology 75:75–96.

    CAS  PubMed  Google Scholar 

  • Jenison RL (2000) Correlated cortical populations can enhance sound localization performance. Journal of the Acoustical Society of America 107:414–421.

    Article  CAS  PubMed  Google Scholar 

  • Jenison RL, Schnupp JWH, Reale RA, and Brugge JF (2001) Auditory space-time receptive field dynamics revealed by spherical white-noise analysis. Journal of Neuroscience 21:4408–4415.

    CAS  PubMed  Google Scholar 

  • Jenkins WM and Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. Journal of Neurophysiology 47:987–1016.

    CAS  PubMed  Google Scholar 

  • Jenkins WM and Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. Journal of Neurophysiology 52:819–847.

    CAS  PubMed  Google Scholar 

  • Kacelnik O, Nodal FR, Parsons CH, and King AJ (2006) Training-induced plasticity of auditory localization in adult mammals. Public Library of Science Biology 4:627–638.

    Google Scholar 

  • Kavanagh GL and Kelly JB (1987) Contributions of auditory cortex to sound localization in the ferret (Mustela putorius). Journal of Neurophysiology 57:1746–1766.

    CAS  PubMed  Google Scholar 

  • King AJ (2005) The superior colliculus. Current Biology 14:R335-R338.

    Article  CAS  Google Scholar 

  • King AJ (2009) Visual influences on auditory spatial learning. Philosophical Transactions of the Royal Society B Biological Sciences 364:331–339.

    Article  Google Scholar 

  • King AJ, Bajo VM, Bizley JK, Campbell RAA, Nodal FR, Schulz AL, and Schnupp JWH (2007) Physiological and behavioral studies of spatial coding in the auditory cortex. Hearing Research 229:106–115.

    Article  PubMed  Google Scholar 

  • King AJ and Hutching ME (1987) Spatial response properties of acoustically responsive neurons in the superior colliculus of the ferret: a map of auditory space. Journal of Neurophysiology 57:596–624.

    CAS  PubMed  Google Scholar 

  • King AJ and Palmer AR (1983) Cells responsive to free-field auditory stimuli in guinea-pig superior colliculus: distribution and response properties. Journal of Physiology 342:361–381.

    CAS  PubMed  Google Scholar 

  • Las L, Shapira AH, and Nelken I (2008) Functional gradients of auditory sensitivity along the anterior ectosylvian sulcus of the cat. Journal of Neuroscience 28:3657–3667.

    Article  CAS  PubMed  Google Scholar 

  • Lee C-C, Macpherson EA, and Middlebrooks JC (2008) Task-dependence of spatial sensitivity in cat auditory cortex: area A1 vs DZ. Association of Research in Otolaryngology Abstracts 31:1204.

    Google Scholar 

  • Lewald J, Riederer KA, Lentz T, and Meister IG (2008) Processing of sound location in human cortex. European Journal of Neuroscience 27:1261–1270.

    Article  PubMed  Google Scholar 

  • Litovsky RY, Colburn HS, Yost WA, and Guzman SJ (1999) The precedence effect. Journal of the Acoustical Society of America 106:1633–1654.

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG and Malhotra S (2008) Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience 11:609–616.

    Article  CAS  PubMed  Google Scholar 

  • MacPherson EA, Stecker GC, Harrington IA, and Middlebrooks JC (2004) Nonlinear processing of spectral cues for sound localization in areas DZ and PAF of cat auditory cortex. Society for Neuroscience Abstracts.

    Google Scholar 

  • Maeder PP, Meuli RA, Adriani M, Bellmann A, Fornari E, Thiran JP, Pittet A, and Clarke S (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. Neuroimage 14:802–816.

    Article  CAS  PubMed  Google Scholar 

  • Makous JC, Middlebrooks JC (1990) Two-dimensional sound localization by human listeners. Journal of the Acoustical Society of America 87:2188–2200.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra S and Lomber SG (2007) Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat. Journal of Neurophysiology 97:26–43.

    Article  PubMed  Google Scholar 

  • Malhotra S, Hall AJ, and Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. Journal of Neurophysiology 92:1625–1643.

    Article  PubMed  Google Scholar 

  • Malhotra S, Stecker GC, Middlebrooks JC, and Lomber SG (2008) Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone. Journal of Neurophysiology 99:1628–1642.

    Article  PubMed  Google Scholar 

  • Malone BJ, Scott BH, and Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. Journal of Neuroscience 22:4625–4638.

    CAS  PubMed  Google Scholar 

  • May BJ and Huang AY (1996) Sound orientation behavior in cats. I. Localization of broadband noise. Journal of the Acoustical Society of America 100:1059–1069.

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D and Grothe B (2003) Sound localization and delay lines--do mammals fit the model? Trends in Neurosciences 26:347–350.

    Article  CAS  PubMed  Google Scholar 

  • Meredith MA and Clemo HR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (Field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. Journal of Comparative Neurology 289:687–707.

    Article  CAS  PubMed  Google Scholar 

  • Mickey BJ and Middlebrooks JC (2003) Representation of auditory space by cortical neurons in awake cats. Journal of Neuroscience 23:8649–8663.

    CAS  PubMed  Google Scholar 

  • Mickey BJ and Middlebrooks JC (2005) Sensitivity of auditory cortical neurons to the locations of leading and lagging sounds. Journal of Neuroscience 94:979–989.

    Google Scholar 

  • Middlebrooks JC and Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. Journal of Neuroscience 4:2621–2634.

    CAS  PubMed  Google Scholar 

  • Middlebrooks JC and Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. Journal of Neuroscience 1:107–120.

    CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Clock AE, Xu L, and Green DM (1994) A panoramic code for sound location by cortical neurons. Science 264:842–844.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Dykes RW, and Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Research 181:31–48.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Lee C-C, and Macpherson EA (2009) Some brain mechanisms for auditory scene analysis. Journal of the Acoustical Society of America 125:2491.

    Google Scholar 

  • Middlebrooks JC, Xu L, Eddins AC, and Green DM (1998) Codes for soundsource location in nontonotopic auditory cortex. Journal of Neurophysiology 80:863–881.

    CAS  PubMed  Google Scholar 

  • Miller LM and Recanzone GH (2009) Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proceedings of the National Academy Sciences of the United States of America 106:5931–5935.

    Article  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. Journal of the Acoustical Society of America 30:237–246.

    Article  Google Scholar 

  • Morel A and Imig TJ (1987) Thalamic projections to fields A, AI, P, and VP in the cat auditory cortex. Journal of Comparative Neurology 265:119–144.

    Article  CAS  PubMed  Google Scholar 

  • Mrsic-Flogel TD, King AJ, Jenison RL, and Schnupp JWH (2001) Listening through different ears alters spatial response fields in ferret primary auditory cortex. Journal of Neurophysiology 86:1043–1046.

    CAS  PubMed  Google Scholar 

  • Mrsic-Flogel TD, King AJ, and Schnupp JWH (2005) Encoding of virtual acoustic space stimuli by neurons in ferret primary auditory cortex. Journal of Neurophysiology 93:3489–3503.

    Article  PubMed  Google Scholar 

  • Mrsic-Flogel TD, Schnupp JWH, and King AJ (2003) Acoustic factors govern developmental sharpening of spatial tuning in the auditory cortex. Nature Neuroscience 6:981–988.

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto KT, Jones SJ, and Palmer AR (2008) Descending projections from auditory cortex modulate sensitivity in the midbrain to cues for spatial position. Journal of Neurophysiology 99:2347–2356.

    Article  PubMed  Google Scholar 

  • Nakamoto KT, Zhang J, and Kitzes LM (2004) Response patterns along an isofrequency contour in cat primary auditory cortex (AI) to stimuli varying in average and interaural levels. Journal of Neurophysiology 91:118–135.

    Article  PubMed  Google Scholar 

  • Neff WD, Diamond IT, Fisher JF, and Yela M (1956) Role of auditory cortex in discrimination requiring localization of sound in space. Journal of Neurophysiology 19:500–512.

    PubMed  Google Scholar 

  • Nelken I, Bizley JK, Nodal FR, Ahmed B, King AJ, and Schnupp JWH (2008) Responses of auditory cortex to complex stimuli: functional organization revealed using intrinsic optical signals. Journal of Neurophysiology 99:1928–1941.

    Article  PubMed  Google Scholar 

  • Nelken I, Chechik G, Mrsic-Flogel TD, King AJ, and Schnupp JWH (2005) Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. Journal of Computational Neuroscience 19:199–221.

    Article  PubMed  Google Scholar 

  • Nodal FR, Bajo VM, and King AJ (2010) Role of auditory cortex in acoustic orientation and approach-to-target responses. In: Lopez-Poveda EA, Palmer AR, and Meddis R (eds). Advances in Auditory Physiology, Psychophysics and Models. Springer, New York, pp. 581–596.

    Google Scholar 

  • Nodal FR, Bajo VM, Parsons CH, Schnupp JWH, and King AJ (2008) Sound localization behavior in ferrets: comparison of acoustic orientation and approach-to-target responses. Neuroscience 154:397–408.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP (2008) A perceptual architecture for sound lateralization in man. Hearing Research 238:124–132.

    Article  PubMed  Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF, and McKay J (1990a) Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. Journal of Neurophysiology 64:872–887.

    CAS  PubMed  Google Scholar 

  • Rajan R, Aitkin LM, and Irvine DRF (1990b) Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. Journal of Neurophysiology 64:888–902.

    CAS  PubMed  Google Scholar 

  • Razak KA and Fuzessery ZM (2002) Functional organization of the pallid bat auditory cortex: emphasis on binaural organization. Journal of Neurophysiology 87:72–86.

    PubMed  Google Scholar 

  • Reale RA and Brugge JF (2000) Directional sensitivity of neurons in the primary auditory (AI) cortex of the cat to successive sounds ordered in time and space. Journal of Neurophysiology 84:435–450.

    CAS  PubMed  Google Scholar 

  • Reale RA, Jenison RL, and Brugge JF (2003) Directional sensitivity of neurons in the primary auditory (AI) cortex: effects of sound-source intensity level. Journal of Neurophysiology 89:1024–1038.

    Article  PubMed  Google Scholar 

  • Recanzone GH, Guard DC, Phan ML, and Su TK (2000) Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. Journal of Neurophysiology 83:2723–2739.

    CAS  PubMed  Google Scholar 

  • Rouiller EM, Simm GM, Villa AE, de Ribaupierre Y, and de Ribaupierre F (1991) Auditory corticocortical interconnections in the cat: evidence for parallel and hierarchical arrangement of the auditory cortical areas. Experimental Brain Research 86:483–505.

    Article  CAS  Google Scholar 

  • Rutkowski RG, Wallace MN, Shackleton TM, and Palmer AR (2000) Organisation of binaural interactions in the primary and dorsocaudal fields of the guinea pig auditory cortex. Hearing Research 145:177–189.

    Article  CAS  PubMed  Google Scholar 

  • Sabin AT, Macpherson EA, and Middlebrooks JC (2005) Human sound localization at near-threshold levels. Hearing Research 199:124–134.

    Article  PubMed  Google Scholar 

  • Scott BH, Malone BJ, and Semple MN (2009) Representation of dynamic interaural phase difference in auditory cortex of awake rhesus macaques. Journal of Neurophysiology 101:1781–1799.

    Article  PubMed  Google Scholar 

  • Shackleton TM, Skottun BC, Arnott RH, and Palmer AR (2003) Interaural time difference discrimination thresholds for single neurons in the inferior colliculus of guinea pigs. Journal of Neuroscience 23:716–724.

    CAS  PubMed  Google Scholar 

  • Schnupp JWH, Mrsic-Flogel TD, and King AJ (2001) Linear processing of spatial cues in primary auditory cortex. Nature 414:200–204.

    Article  CAS  PubMed  Google Scholar 

  • Smith AL, Parsons CH, Lanyon RG, Bizley JK, Akerman CJ, Baker GE, Dempster AC, Thompson ID, and King AJ (2004) An investigation of the role of auditory cortex in sound localization using muscimol-releasing Elvax. European Journal of Neuroscience 19:3059–3072.

    Article  PubMed  Google Scholar 

  • Spierer L, Tardif E, Sperdin H, Murray MM, and Clarke S (2007) Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging. Journal of Neuroscience 27:5474–5483.

    Article  CAS  PubMed  Google Scholar 

  • Stecker GC and Middlebrooks JC (2003) Distributed coding of sound locations in the auditory cortex. Biological Cybernetics 89:341–349.

    Article  PubMed  Google Scholar 

  • Stecker GC, Harrington IA, Macpherson EA, and Middlebrooks JC (2005a) Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. Journal of Neurophysiology 94:1267–1280.

    Article  PubMed  Google Scholar 

  • Stecker GC, Harrington IA, and Middlebrooks JC (2005b) Location coding by opponent neural populations in the auditory cortex. Public Library of Science Biology 3:e78.

    Google Scholar 

  • Stecker GC, Mickey BJ, Macpherson EA, and Middlebrooks JC (2003) Spatial sensitivity in field PAF of cat auditory cortex. Journal of Neurophysiology 89:2889–2903.

    Article  PubMed  Google Scholar 

  • Su TI and Recanzone GH (2001) Differential effect of near-threshold stimulus intensities on sound localization performance in azimuth and elevation in normal human subjects. Journal of the Association for Research in Otolaryngology 2:246–256.

    CAS  PubMed  Google Scholar 

  • Tian B, Reser D, Durham A, Kustov A, and Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293.

    Article  CAS  PubMed  Google Scholar 

  • Werner-Reiss and Groh JM (2008) A rate code for sound azimuth in monkey auditory cortex: implications for human neuroimaging studies. Journal of Neuroscience 28:3747–3758.

    Article  CAS  PubMed  Google Scholar 

  • Werner-Reiss U, Kelly KA, Trause AS, Underhill AM, and Groh JM (2003) Eye position affects activity in primary auditory cortex of primates. Current Biology 13:554–562.

    Article  CAS  PubMed  Google Scholar 

  • Wightman FL and Kistler DJ (1993) Sound localization. In: Yost WA, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, volume 3, Human Psychophysics. Springer, New York, pp. 155–192.

    Google Scholar 

  • Winer JA and Schreiner CE (2005) The Inferior Colliculus. Springer, New York.

    Book  Google Scholar 

  • Woods TM, Lopez SE, Long JH, Rahman JE, and Recanzone GH (2006) Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. Journal of Neurophysiology 96:3323–3337.

    Article  PubMed  Google Scholar 

  • Yamada K, Kaga K, Uno A, and Shindo M (1996) Sound lateralization in patients with lesions including the auditory cortex: comparison of interaural time difference (ITD) discrimination and interaural intensity difference (IID) discrimination. Hearing Research 101:173–180.

    Article  CAS  PubMed  Google Scholar 

  • Yin TCT (2002) Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In: Oertel D, Fay RR, and Popper AN (eds). Springer Handbook of Auditory Research, volume 15, Integrative Functions in the Mammalian Auditory Pathway. Springer, New York, pp. 99–159.

    Google Scholar 

  • Young ED and Davis KA (2002) Circuitry and function of the dorsal cochlear nucleus. In: Oertel D, Fay RR, and Popper AN (eds). Springer Handbook of Auditory Research, volume 15, Integrative Functions in the Mammalian Auditory Pathway. Springer, New York, pp. 160–206.

    Google Scholar 

  • Zatorre RJ and Penhune VB (2001) Spatial localization after excision of human auditory cortex. Journal of Neuroscience 21:6321–6328.

    CAS  PubMed  Google Scholar 

  • Zhang J, Nakamoto KT, and Kitzes LM (2004) Binaural interaction revisited in the cat primary auditory cortex. Journal of Neurophysiology 91:101–117.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Andrew King’s research is funded by the Wellcome Trust, the Biotechnology and Biological Sciences Research Council, the Royal National Institute for Deaf People and by Deafness Research UK. John Middlebrooks’s research is supported by the National Institute on Deafness and Other Communication Disorders.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew J. King or John C. Middlebrooks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

King, A.J., Middlebrooks, J.C. (2011). Cortical Representation of Auditory Space. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_15

Download citation

Publish with us

Policies and ethics