Skip to main content

Physiological Properties of Neurons in the Medial Geniculate Body

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

An important synthesis of thalamic organization noted that: ‘…the thalamus has not had good press in the recent past’ (Sherman and Guillery 1996). The functional role of the auditory thalamus (medial geniculate body; MG) has been eclipsed by the enormous effort aimed at dissecting the properties of cortical neurons. In contrast to the visual and somatic sensory somatic sensory systems, the MG differs conspicuously between the richness of the analysis already performed in the various brain stem stations, and the exquisite range of physiological properties embodied by auditory cortex cells. Is there a specific role for the MG or is it a passive relay between brain stem and cortex?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

primary auditory cortex

AHP:

action potential hyperpolarization

AMPA:

a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

AP:

action potential

APV:

aminophosphonovalerate

AS:

azimuth sensitivity

ATP:

adenosine triphosphate

BIC:

brachium of the inferior colliculus

CB:

calbindin

CF:

characteristic frequency

CNIC:

central nucleus of the inferior colliculus

CNQX:

6-cyano-7-nitroquinoxaline-2,3-dione

CR:

conditioned response

CS:

conditioned stimulus

E:

excitatory

EEG:

electroencephalogram

EPSP:

excitatory postsynaptic potential

F:

facilitatory

GABA:

gamma-aminobutyric acid

GAD:

glutamic acid decarboxylase

HRTF:

head-related transfer function

IC:

inferior colliculus

IID:

interaural intensity difference

I:

inhibitory

IPD:

interaural phase difference

IPSP:

inhibitory postsynaptic potential

ITD:

interaural time difference

LSO:

lateral nucleus of the superior olivary complex

LTS:

low threshold spikes

MAP:

microtubule associated protein

MD:

monaural direction

MG:

medial geniculate body

MGd:

dorsal division of the medial geniculate body

MGm:

medial division of the medial geniculate body

MGv:

ventral division of the medial geniculate body

MSO:

medial nucleus of the superior olivary complex

NMDA:

N-methyl-D-aspartate

PIN:

posterior intralaminar nucleus

Pol:

lateral region of the posterior nucleus

PV:

parvalbumin

PS:

paradoxical sleep

RF:

receptive field

SC:

superior colliculus

SG:

suprageniculate nucleus

SPL:

sound pressure level

STRF:

spectrotemporal receptive field

SWS:

slow-wave sleep

TC:

thalamocortical

TRN:

thalamic reticular nucleus

TWIN:

two-way intensity network

W:

waking

References

  • Adrian HO, Lifschitz WM, Tavitas RJ, and Galli FP (1966) Activity of neural units in medial geniculate body of cat and rabbit. Journal of Neurophysiology 29:1046–1060.

    CAS  PubMed  Google Scholar 

  • Aitkin LM (1973) Medial geniculate body of the cat: response to tonal stimuli of neurons in medial division. Journal of Neurophysiology 36:275–283.

    CAS  PubMed  Google Scholar 

  • Aitkin LM and Webster WR (1971) Tonotopic organization in the medial geniculate body of the cat. Brain Research 26:402–405.

    CAS  PubMed  Google Scholar 

  • Aitkin LM and Webster WR (1972) Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. Journal of Neurophysiology 35:365–380.

    CAS  PubMed  Google Scholar 

  • Aitkin LM, Dunlop CW, and Webster WR (1966) Click-evoked response patterns of single units in the medial geniculate body of the cat. Journal of Neurophysiology 29:109–123.

    CAS  PubMed  Google Scholar 

  • Alitto HJ and Usrey WM (2003) Corticothalamic feedback and sensory processing. Current Opinion in Neurobiology 13:440–445.

    Article  CAS  PubMed  Google Scholar 

  • Allon N, Yeshurun Y, and Wollberg Z (1981) Responses of single cells in the medial geniculate body of awake squirrel monkey. Experimental Brain Research 41:222–232.

    Article  CAS  Google Scholar 

  • Andersen RA, Knight PL, and Merzenich MM (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. Journal of Comparative and Physiological Psychology 194:663–701.

    CAS  Google Scholar 

  • Anderson LA, Malmierca MS, Wallace MN, and Palmer AR (2006) Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. European Journal of Neuroscience 24:491–498.

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Chang EF, Woods J, and Merzenich MM (2004) Temporal plasticity in the primary auditory cortex induced by operant perceptual learning. Nature Neuroscience 7:974–981.

    Article  CAS  PubMed  Google Scholar 

  • Barone P, Clarey JC, Irons WA, and Imig TJ (1996) Cortical synthesis of azimuth-sensitive single-unit responses with nonmonotonic level tuning: a thalamocortical comparison in the cat. Journal of Neurophysiology 75:1206–1220.

    CAS  PubMed  Google Scholar 

  • Barth DS and MacDonald KD (1996) Thalamic modulation of high-frequency oscillating potentials in auditory cortex. Nature 383:78–81.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett EL and Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Journal of Neurophysiology 81:1999–2016.

    CAS  PubMed  Google Scholar 

  • Bartlett EL and Smith PH (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience 113:957–974.

    Article  CAS  PubMed  Google Scholar 

  • Birt D and Olds M (1981) Associative response changes in lateral midbrain tegmentum and medial geniculate during differential appetitive conditioning. Journal of Neurophysiology 46:1039–1055.

    CAS  PubMed  Google Scholar 

  • Bordi F and LeDoux J (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Experimental Brain Research 98:261–274.

    Article  CAS  Google Scholar 

  • Bordi F and LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Experimental Brain Research 98:275–286.

    Article  CAS  Google Scholar 

  • Brett B, Krishnan G, and Barth DS (1996) The effects of subcortical lesions on evoked potentials and spontaneous high frequency (gamma-band) oscillating potentials in rat auditory cortex. Brain Research 721:155–166.

    Article  CAS  PubMed  Google Scholar 

  • Brown M, Irvine DRF, and Park VN (2004) Perceptual learning on an auditory frequency discrimination task by cats: association with changes in primary auditory cortex. Cerebral Cortex 14:952–965.

    Article  PubMed  Google Scholar 

  • Cairns BE, McFarlane SA, Fragoso MC, Jia WG, and Soja PJ (1996) Spontaneous discharge and peripherally evoked orofacial responses of trigemino-thalamic tract neurons during wakefulness and sleep. Journal of Neuroscience 16:8149–8159.

    CAS  PubMed  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. Journal of Neuroscience 3:2350–2365.

    CAS  PubMed  Google Scholar 

  • Calford MB (2002) Dynamic representational plasticity in sensory cortex. Neuroscience 111:709–738.

    Article  CAS  PubMed  Google Scholar 

  • Calford MB and Webster WR (1981) The auditory representation within the principal division of cat medial geniculate: an electrophysiological study. Journal of Neurophysiology 45:1013–1028.

    CAS  PubMed  Google Scholar 

  • Calford MB and Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple parallel auditory pathways through thalamus. Journal of Neuroscience 11:2365–2380.

    Google Scholar 

  • Campeau S and Davis M (1995) Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. Journal of Neuroscience 15:2312–2327.

    CAS  PubMed  Google Scholar 

  • Campeau S, Falls WA, Cullinan WE, Helmreich DL, Davis M, and Watson SJ (1997) Elicitation and reduction of fear: behavioural and neuroendocrine indices and brain induction of the immediate-early gene c-fos. Neuroscience 78:1087–1104.

    Article  CAS  PubMed  Google Scholar 

  • Cant NB and Benson CG (2007) Multiple topographically organized projections connect the central nucleus of the inferior colliculus to the ventral division of the medial geniculate nucleus in the gerbil, Meriones unguiculatus. Journal of Comparative Neurology 503:432–453.

    Article  PubMed  Google Scholar 

  • Castro-Alamancos MA (2002) Role of thalamocortical sensory suppression during arousal: focusing sensory inputs in neocortex. Journal of Neuroscience 22:9651–9655.

    CAS  PubMed  Google Scholar 

  • Castro-Alamancos MA and Oldford E (2002) Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses. Journal of Physiology (London) 541:319–331.

    Article  CAS  Google Scholar 

  • Cetas JS, Price RO, Velenovsky DS, Sinex DG, and McMullen NT (2001) Frequency organization and cellular lamination in the medial geniculate body of the rabbit. Hearing Research 155:113–123.

    Article  CAS  PubMed  Google Scholar 

  • Clarey JC, Barone P, and Imig TJ (1992) Physiology of thalamus and cortex. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research. The Mammalian Auditory Pathway, volume 2, Neurophysiology. Springer, New York, pp. 232–334.

    Google Scholar 

  • Clarey JC, Barone P, Irons WA, Samson FK, and Imig T (1995) Comparison of noise and tone azimuth tuning of neurons in cat primary auditory cortex and medial geniculate body. Journal of Neurophysiology 74:961–980.

    CAS  PubMed  Google Scholar 

  • Clerici WJ and Coleman JR (1990) Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. Journal of Comparative Neurology 297:14–31.

    Article  CAS  PubMed  Google Scholar 

  • Clerici WJ, McDonald AJ, Thompson R, and Coleman JR (1990) Anatomy of the rat medial geniculate body: II. Dendritic morphology. Journal of Comparative Neurology 297:32–54.

    Article  CAS  PubMed  Google Scholar 

  • Coenen ALM and Vendrick AJH (1972) Determination of the transfer ratio of cat’s geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Experimental Brain Research 14:227–242.

    Article  CAS  Google Scholar 

  • Conley M, Kupersmith AC, and Diamond IT (1991) The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in Galago. European Journal of Neuroscience 3:1089–1103.

    Article  PubMed  Google Scholar 

  • Cotillon N and Edeline JM (2000) Tone-evoked oscillations in the rat auditory cortex result from interactions between the thalamus and reticular nucleus. European Journal of Neuroscience 12:3637–3650.

    Article  CAS  PubMed  Google Scholar 

  • Cotillon N, Nafati M, and Edeline JM (2000) Characteristics of reliable tone-evoked oscillations in the rat thalamo-cortical auditory system. Hearing Research 142:113–130.

    Article  CAS  PubMed  Google Scholar 

  • Cotillon-Williams N, and Edeline JM (2003) Evoked oscillations in the thalamo-cortical auditory system are present in anesthetized but not in unanesthetized rats. Journal of Neurophysiology 89:1968–1984.

    Article  PubMed  Google Scholar 

  • Cotillon-Williams N, Huetz C, Hennevin E, and Edeline J-M (2008) Topographic control of auditory thalamus frequency tuning by reticular thalamic neurons. Journal of Neurophysiology 99:1137–1151.

    Article  CAS  PubMed  Google Scholar 

  • Crabtree JW (1998) Organization in the auditory sector of the cat’s thalamic reticular nucleus. Journal of Comparative Neurology 390:167–182.

    Article  CAS  PubMed  Google Scholar 

  • Creutzfeldt O, Hellweg FC, and Schreiner C (1980) Thalamocortical transformation of responses to complex auditory stimuli. Experimental Brain Research 39:87–104.

    Article  CAS  Google Scholar 

  • Cruikshank SJ, Killackey HP, and Metherate R (2001) Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 105:553–569.

    Article  CAS  PubMed  Google Scholar 

  • Crunelli V, Leresche N, and Parnavelas JG (1987) Membrane properties of morphologically identified X and Y cells in the lateral geniculate nucleus of the cat in vitro. Journal of Physiology (London) 390:243–256.

    CAS  Google Scholar 

  • de Venecia RK, Smelser CB, Lossman SD, and McMullen NT (1995) Complementary expression of parvalbumin and calbindin D-28 k delineates subdivisions of the rabbit medial geniculate body. Journal of Comparative Neurology 359:595–612.

    Article  PubMed  Google Scholar 

  • Diamond IT, Jones EG, and Powell TPS (1969) The projection of the auditory cortex upon the diencephalon and brain stem in the cat. Brain Research 15:305–340.

    Article  CAS  PubMed  Google Scholar 

  • Disterhoft JF and Olds J (1972) Differentials development of conditioned unit changes in thalamus and cortex of rat. Journal of Neurophysiology 35:665–679.

    CAS  PubMed  Google Scholar 

  • Disterhoft JF and Stuart DK (1976) Trial sequence of changed unit activity in auditory system of alert rat during conditioned response acquisition and extinction. Journal of Neurophysiology 39:266–281.

    CAS  PubMed  Google Scholar 

  • Doron NN and LeDoux JE (1999) Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. Journal of Comparative Neurology 412:383–409.

    Article  CAS  PubMed  Google Scholar 

  • Doron NN and LeDoux JE (2000) Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. Journal of Comparative Neurology 425:257–274.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM (1990) Frequency-specific plasticity of single unit discharges in the rat medial geniculate body. Brain Research 529:109–119.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM (1999) Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology 57:165–224.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research 153:554–572.

    Article  Google Scholar 

  • Edeline JM and Weinberger NM (1991a) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behavioral Neuroscience 105:154–175.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM and Weinberger NM (1991b) Thalamic short term plasticity in the auditory system: associative retuning of receptive fields in the ventral medial geniculate body. Behavioral Neuroscience 105:618–639.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM and Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behavioral Neuroscience 106:81–105.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Dutrieux G, Manunta Y, and Hennevin E (2001) Diversity of receptive field changes in auditory cortex during natural sleep. European Journal of Neuroscience 14:1865–1880.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Dutrieux G, and Neuenschwander-El Massioui N (1988) Multiunit changes in hippocampus and medial geniculate body in free-behaving rats during acquisition and retention of a conditioned response to a tone. Behavioral and Neural Biology 50:61–79.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Manunta Y and Hennevin E (2000) Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold and receptive field size. Journal of Neurophysiology 84:934–952.

    CAS  PubMed  Google Scholar 

  • Edeline JM, Manunta Y, Nodal FR, and Bajo V (1999) Do auditory responses recorded from awake animals reflect the anatomical parcellation of the auditory thalamus? Hearing Research 131:135–152.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Neuenschwander-El Massioui N, and Dutrieux G (1990a) Discriminative long-term retention of rapidly induced multiunit changes in the hippocampus, medial geniculate and auditory cortex. Behavioural Brain Research 39:145–155.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Neuenschwander-El Massioui N, and Dutrieux G (1990b) Frequency-specific cellular changes in the auditory system during acquisition and reversal of discriminative conditioning. Psychobiology 18:382–393.

    Google Scholar 

  • Elhilali M, Fritz JB, Klein DJ, Simon JZ, and Shamma SA (2004) Dynamics of precise spike timing in primary auditory cortex. Journal of Neuroscience 24:1159–1172.

    Article  CAS  PubMed  Google Scholar 

  • Escabi MA and Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. Journal of Neuroscience 22:4114–4131.

    CAS  PubMed  Google Scholar 

  • Fanselow MS and LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232.

    Article  CAS  PubMed  Google Scholar 

  • Franowicz MN and Barth DS (1995) Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex. Journal of Neurophysiology 74:96–112.

    CAS  PubMed  Google Scholar 

  • Fritz JB, Shamma S, Elhilali M, and Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience 6:1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, and Shamma S (2005a) Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hearing Research 206:159–176.

    Article  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, and Shamma SA (2005b) Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience 25:7623–7635.

    Article  CAS  PubMed  Google Scholar 

  • Fukutake T and Hattori T (1998) Auditory illusions caused by a small lesion in the right medial geniculate body. Neurology 51:1469–1471.

    CAS  PubMed  Google Scholar 

  • Funkenstein HH and Winter P (1973) Responses to acoustic stimuli of units in the auditory cortex of awake squirrel monkeys. Experimental Brain Research 18:464–488.

    Article  CAS  Google Scholar 

  • Gabriel M, Saltwick SE, and Miller JD (1975) Conditioning and reversal of short-latency multiple-unit responses in the rabbit medial geniculate nucleus. Science 189:1108–1109.

    Article  CAS  PubMed  Google Scholar 

  • Galambos R (1952) Microelectrode studies on medial geniculate body of cat. III. Response to pure tones. Journal of Neurophysiology 15:381–400.

    CAS  PubMed  Google Scholar 

  • Galambos R, Rose JE, Bromiley RB, and Hughes JR (1952) Microelectrode studies on medial geniculate body of cat. II. Response to clicks. Journal of Neurophysiology 15:359–380.

    CAS  PubMed  Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. Journal of Comparative Neurology 173:629–654.

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM (1972) Some fiber pathways related to the posterior thalamic region in the cat. Brain Behavior and Evolution 6:363–393.

    Article  CAS  Google Scholar 

  • Guido W, Lu SM, Vaughan JW, Godwin DW, and Sherman SM (1995) Receiver operating characteristic (ROC) analysis of neurons in the cat’s lateral geniculate nucleus during tonic and burst response mode. Visual Neuroscience 12:723–741.

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa T, Rausell E, Molinari M, and Jones EG (1991) Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Research 544:335–341.

    Article  CAS  PubMed  Google Scholar 

  • He J (1997) Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. Journal of Neurophysiology 77:896–908.

    CAS  PubMed  Google Scholar 

  • He J (2001) On and off pathways segregated at the auditory thalamus of the guinea pig. Journal of Neuroscience 21:8672–8679.

    CAS  PubMed  Google Scholar 

  • He J (2002) OFF Responses in the auditory thalamus of the guinea pig. Journal of Neurophysiology 88:2377–2386.

    Article  PubMed  Google Scholar 

  • He J (2003a) Slow oscillation in non-lemniscal auditory thalamus. Journal of Neuroscience 23:8281–8290.

    CAS  PubMed  Google Scholar 

  • He J (2003b) Corticofugal modulation of the auditory thalamus. Experimental Brain Research 153:579–590.

    Article  Google Scholar 

  • He J (2003c) Corticofugal modulation on both ON and OFF responses in the nonlemniscal auditory thalamus of the guinea pig. Journal of Neurophysiology 89:367–381.

    Article  PubMed  Google Scholar 

  • He J, Yu YQ, Xiong Y, Hashikawa T, and Chan YS (2002) Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig. Journal of Neurophysiology 88:1040–1050.

    Article  PubMed  Google Scholar 

  • Henkel CK (1983) Evidence of sub-collicular auditory projections to the medial geniculate nucleus in the cat: an autoradiographic and horseradish peroxidase study. Brain Research 259:21–30.

    Article  CAS  PubMed  Google Scholar 

  • Hennevin E and Maho C (2005) Fear conditioning-induced plasticity in auditory thalamus and cortex: to what extent is it expressed during slow-wave sleep? Behavioral Neuroscience 119:1277–1289.

    Article  PubMed  Google Scholar 

  • Hennevin E, Huetz C, and Edeline JM. (2007) Neural representations during sleep: from sensory processing to memory traces. Neurobiology of Learning and Memory 87:416–440.

    Article  PubMed  Google Scholar 

  • Hennevin E, Maho C, and Hars B (1998) Neuronal plasticity induced by fear conditioning is expressed during paradoxical sleep: evidence from simultaneous recordings in the lateral amygdala and the medial geniculate in rats. Behavioral Neuroscience 112:839–862.

    Article  CAS  PubMed  Google Scholar 

  • Hennevin E, Maho C, Hars B, and Dutrieux G (1993) Learning-induced plasticity in the medial geniculate nucleus is expressed during paradoxical sleep. Behavioral Neuroscience 107:1018–1030.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JC, Fourment A, and Marc ME (1983) Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat. Brain Research 259:308–312.

    Article  CAS  PubMed  Google Scholar 

  • Hu B (1995) Cellular basis of temporal synaptic signalling: an in vitro electrophysiological study in rat auditory thalamus. Journal of Physiology (London) 483:167–182.

    CAS  Google Scholar 

  • Hu B, Senatorov V, and Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. Journal of Physiology (London) 479:217–231.

    Google Scholar 

  • Huang CL and Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology 427:302–331.

    Article  CAS  PubMed  Google Scholar 

  • Huang CL, Larue DT, and Winer JA (1999) GABAergic organization of the cat medial geniculate body. Journal of Comparative Neurology 415:368–392.

    Article  CAS  PubMed  Google Scholar 

  • Huetz C and Edeline J-M (2006) From receptive field dynamics to the rate of transmitted information: some facets of the thalamocortical system. Neuroembryology and Aging 3:230–238.

    Article  Google Scholar 

  • Imig TJ and Morel A (1985a) Tonotopic organization in the lateral part of posterior group of thalamic nuclei in the cat. Journal of Neurophysiology 53:836–851.

    CAS  PubMed  Google Scholar 

  • Imig TJ and Morel A (1985b) Tonotopic organization in ventral nucleus of medial geniculate body in the cat. Journal of Neurophysiology 53:309–340.

    CAS  PubMed  Google Scholar 

  • Imig TJ, Poirier P, Irons WA, and Samson FK (1997) Monaural spectral contrast mechanism for neural sensitivity to sound direction in the medial geniculate body of the cat. Journal of Neurophysiology 78:2754–2771.

    CAS  PubMed  Google Scholar 

  • Imig TJ, Bibikov NG, Poirier P, and Samson FK (2000) Directionality derived from pinna-cue spectral notches in cat dorsal cochlear nucleus. Journal of Neurophysiology 83:907–925.

    CAS  PubMed  Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN and Fay RR (eds). Springer Handbook of Auditory Research, volume 2, The Mammalian Auditory Pathway: Neurophysiology. Springer, New York, pp. 153–231.

    Google Scholar 

  • Irvine DRF, Rajan R, and Smith S (2003) Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus. Journal of Comparative Neurology 467:354–374.

    Article  PubMed  Google Scholar 

  • Ivarsson C, de Ribaupierre Y, and de Ribaupierre F (1988) Influence of auditory localization cues on neuronal activity in the auditory thalamus of the cat. Journal of Neurophysiology 59:586–606.

    CAS  PubMed  Google Scholar 

  • Jahnsen H and Llinás R (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. Journal of Physiology (London) 349:205–226.

    CAS  Google Scholar 

  • Jahnsen H and Llinás R (1984b) Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. Journal of Physiology (London) 349:227–247.

    CAS  Google Scholar 

  • Jarrell TW, Gentile CG, McCabe PM, and Schneiderman N (1986a) The role of the medial geniculate region in differential Pavlovian conditioning of bradycardia in rabbits. Brain Research 374:126–136.

    Article  CAS  PubMed  Google Scholar 

  • Jarrell TW, Romanski LW, Gentile CG, McCabe PM, and Schneiderman N (1986b) Ibotenic acid lesions in the medial geniculate region prevent the acquisition of differential Pavlovian conditioning of bradycardia to acoustic stimuli in rabbits. Brain Research 382:199–203.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins WM, Merzenich MM, and Recanzone G (1990) Neocortical representational dynamics in adult primates: implications for neuropsychology. Neuropsychologia 28:573–584.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (1985) The Thalamus. Plenum Press, New York.

    Google Scholar 

  • Jones EG (2000) Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annual Review of Neuroscience 23:1–37.

    Article  CAS  PubMed  Google Scholar 

  • Jones EG and Burton H (1974) Cytoarchitecture and somatic connectivity of thalamic nuclei other than the ventrobasal complex in the cat. Journal of Comparative Neurology 154:395–432.

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, and Rees A (2004) Neural processing of amplitude-modulated sounds. Physiological Reviews 84:541–577.

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Merzenich MM, and Killackey HP (1983) The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annual Review of Neuroscience 6:325–356.

    Article  CAS  PubMed  Google Scholar 

  • Kamke MR, Brown M, and Irvine DRF (2003) Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. Journal of Comparative Neurology 459:355–367.

    Article  PubMed  Google Scholar 

  • Klein DJ, Depireux DA, Simon JZ, and Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. Journal of Computational Neuroscience 9:85–111.

    Article  CAS  PubMed  Google Scholar 

  • Komura Y, Tamura R, Uwano T, Nishijo H, and Ono T (2005) Auditory thalamus integrates visual inputs into behavioral gains. Nature Neuroscience 8:1203–1209.

    Article  CAS  PubMed  Google Scholar 

  • Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, and Ono T (2001) Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412:546–549.

    Article  CAS  PubMed  Google Scholar 

  • Kudo M and Niimi K (1980) Ascending projection of the inferior colliculus in the cat: an autoradiographic study. Journal of Comparative Neurology 191:545–556.

    Article  CAS  PubMed  Google Scholar 

  • Las L, Stern EA, and Nelken I (2005) Representation of tone in fluctuating maskers in the ascending auditory system. Journal of Neuroscience 25:1503–1513.

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE, Ruggiero DA, Forest R, Stornetta R, and Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. Journal of Comparative Neurology 264:123–146.

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Friedberg MH, and Ebner FF (1994) The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. I. Assessment of receptive field changes following thalamic reticular nucleus lesions. Journal of Neurophysiology 71:1702–1715.

    CAS  PubMed  Google Scholar 

  • Linke R and Schwegler H (2000) Convergent and complementary projections of the caudal paralaminar thalamic nuclei to rat temporal and insular cortex. Cerebral Cortex 10:753–771.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald KD, Fifková E, Jones MS, and Barth DS (1998) Focal stimulation of the thalamic reticular nucleus induces focal gamma waves in cortex. Journal of Neurophysiology 79:474–477.

    CAS  PubMed  Google Scholar 

  • Machens CK, Wehr MS, and Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. Journal of Neuroscience 24:1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Maho C and Hennevin E (2002) Appetitive conditioning-induced plasticity is expressed during paradoxical sleep in the medial geniculate, but not in the lateral amygdala. Behavioral Neuroscience 116:807–823.

    Article  PubMed  Google Scholar 

  • Maho C, Hars B, Edeline JM, and Hennevin E (1995) Conditioned changes in the basal forebrain: relations with learning-induced cortical plasticity. Psychobiology 23:10–25.

    Google Scholar 

  • Malmierca MS, Merchán MA, Henkel CK, and Oliver DL (2002) Direct projections from cochlear nuclear complex to auditory thalamus in the rat. Journal of Neuroscience 22:10891–10897.

    CAS  PubMed  Google Scholar 

  • Maren S and Quirk GJ (2004) Neuronal signalling of fear memory. Nature Reviews Neuroscience 5:844–852.

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Yap SA, and Goosens KA (2001) The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. Journal of Neuroscience 21:RC135.

    CAS  PubMed  Google Scholar 

  • Martin EM, West MF, and Bedenbaugh PH (2004) Masking and scrambling in the auditory thalamus of awake rats by Gaussian and modulated noises. Proceedings of the National Academy of Sciences of the United States of America 101:14961–14965.

    Article  CAS  PubMed  Google Scholar 

  • Massaux A and Edeline JM (2003) Bursts in the medial geniculate body: a comparison between anesthetized and unanesthetized states in guinea pig. Experimental Brain Research 153:573–578.

    Article  Google Scholar 

  • Massaux A, Dutrieux G, Cotillon-Williams N, Manunta Y, and Edeline JM (2004) Auditory thalamus bursts in anesthetized and non-anesthetized states: contribution to functional properties. Journal of Neurophysiology 91:2117–2134.

    Article  CAS  PubMed  Google Scholar 

  • McCabe PM, McEchron MD, Green EJ, and Schneiderman N (1993) Electrolytic and ibotenic acid lesions of the medial subnucleus of the medial geniculate prevent the acquisition of classically conditioned heart rate to a single acoustic stimulus in rabbits. Brain Research 619:291–298.

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA and Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience 20:185–215.

    Article  CAS  PubMed  Google Scholar 

  • McEchron MD, Green EJ, Winters RW, Nolen TG, Schneiderman N, and McCabe PM (1996) Changes of synaptic efficacy in the medial geniculate nucleus as a result of auditory classical conditioning. Journal of Neuroscience 16:1273–1283.

    CAS  PubMed  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience 27:1–28.

    Article  CAS  PubMed  Google Scholar 

  • Metherate R and Cruikshank SJ (1999) Thalamocortical inputs trigger a propagating envelope of gamma-band activity in auditory cortex in vitro. Experimental Brain Research 126:160–174.

    Article  CAS  Google Scholar 

  • Miller LM, Escabí MA, Read HL, and Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160.

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Dell'Anna ME, Rausell E, Leggio MG, Hashikawa T, and Jones EG (1995) Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. Journal of Comparative Neurology 362:171–194.

    Article  CAS  PubMed  Google Scholar 

  • Mooney DM, Hu B, and Senatorov VV (1995) Muscarine induces an anomalous inhibition of synaptic transmission in rat auditory thalamic neurons in vitro. Journal of Pharmacology and Experimental Therapeutics 275:838–844.

    CAS  PubMed  Google Scholar 

  • Mooney DM, Zhang L, Basile C, Senatorov VV, Ngsee J, Omar A, and Hu B (2004) Distinct forms of cholinergic modulation in parallel thalamic sensory pathways. Proceedings of the National Academy of Sciences of the United States of America 101:320–324.

    Article  CAS  PubMed  Google Scholar 

  • Morales-Cobas G, Ferreira MI, and Velluti RA (1995) Firing of inferior colliculus neurons in response to low-frequency sound stimulation during sleep and waking. Journal of Sleep Research 4:242–251.

    Article  PubMed  Google Scholar 

  • Morel A, Rouiller E, de Ribaupierre Y, and de Ribaupierre F (1987) Tonotopic organization in the medial geniculate body (MGB) of lightly anesthetized cats. Experimental Brain Research 69:24–42.

    Article  CAS  Google Scholar 

  • Morest DK (1964) The neuronal architecture of the medial geniculate body of the cat. Journal of Anatomy (London) 98:611–630.

    CAS  Google Scholar 

  • Morest DK (1965a) The lateral tegmental system of the midbrain and the medial geniculate body: study with Golgi and Nauta methods in cat. Journal of Anatomy (London) 99:611–634.

    CAS  Google Scholar 

  • Morest DK (1965b) The laminar structure of the medial geniculate body of the cat. Journal of Anatomy (London) 99:143–160.

    CAS  Google Scholar 

  • Morest DK (1971) Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Zeitschrift für Anatomie und Entwicklungsgeschichte 133:216–246.

    Article  CAS  PubMed  Google Scholar 

  • Morest DK (1975) Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. Journal of Comparative Neurology 162:157–193.

    Article  CAS  PubMed  Google Scholar 

  • Morest DK and Winer JA (1986) The comparative anatomy of neurons: homologous neurons in the medial geniculate body of the opossum and the cat. Advances in Anatomy, Embryology and Cell Biology 97:1–96.

    CAS  Google Scholar 

  • Musicant AD and Butler RA (1984) The influence of pinnae-based spectral cues on sound localization. Journal of the Acoustic Society of America 75:1195–1200.

    Article  CAS  Google Scholar 

  • Musicant AD, Chan JC, and Hind JE (1990) Direction-dependent spectral properties of cat external ear: new data and cross-species comparisons. Journal of the Acoustical Society of America 87:757–781.

    Article  CAS  PubMed  Google Scholar 

  • Nelken I, Bizley JK, Nodal FR, Ahmed B, Schnupp JWH, and King AJ (2004) Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals. Journal of Neurophysiology 92:2574–2588.

    Article  PubMed  Google Scholar 

  • O’Connors KN, Allison TL, Rosenfield ME, and Moore JW (1997) Neural activity in the medial geniculate nucleus during auditory trace conditioning. Experimental Brain Research 113:534–556.

    Article  Google Scholar 

  • Ohl F and Scheich H (1996) Differential frequency conditioning enhances spectral contrast sensitivity of units in the auditory cortex (field AI) of the alert Mongolian gerbil. European Journal of Neuroscience 8:1001–1017.

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW and Scheich H (1997) Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. Journal of Comparative Physiology [A] 181:685–696.

    Article  CAS  Google Scholar 

  • Olds J, Disterhoft JF, Segal M, Kornblith DL, and Hirch R (1972) Learning center of rat brain mapped by measuring latencies of conditioned unit responses. Journal of Neurophysiology 35:202–219.

    CAS  PubMed  Google Scholar 

  • Oliver DL (1984) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11:409–424.

    Article  CAS  PubMed  Google Scholar 

  • Orman SS and Humphrey GL (1981) Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Experimental Brain Research 42:475–482.

    Article  CAS  Google Scholar 

  • Pape HC and McCormick DA (1995) Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 68:1105–1125.

    Article  CAS  PubMed  Google Scholar 

  • Pena JL, Pedemonte M, Ribeiro MF, and Velluti R (1992) Single unit activity in the guinea-pig cochlear nucleus during sleep and wakefulness. Archives Italiennes de Biologie 130:179–189.

    PubMed  Google Scholar 

  • Philibert B, Laudanski J, and Edeline JM (2005) Auditory thalamus responses to guinea-pig vocalizations: a comparison between rat and guinea-pig. Hearing Research 209:97–103.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Farmer ME (1990) Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex. Behavioral Brain Research 40:85–94.

    Article  CAS  Google Scholar 

  • Pinault D. (2004) The thalamic reticular nucleus: structure, function and concept. Brain Research Review 46:1–31.

    Article  Google Scholar 

  • Pinault D and Deschênes M (1998) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. European Journal of Neuroscience 10:3462–3469.

    Article  CAS  PubMed  Google Scholar 

  • Poirier P, Samson FK, and Imig TJ (2003) Spectral shape sensitivity contributes to the azimuth tuning of neurons in the cat's inferior colliculus. Journal of Neurophysiology 89:2760–2777.

    Article  PubMed  Google Scholar 

  • Polley DB, Heiser MA, Blake DT, Schreiner CE, and Merzenich MM (2004) Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 101:16351–16356.

    Article  CAS  PubMed  Google Scholar 

  • Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, and Mishkin M (1991) Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252:1857–1860.

    Article  CAS  PubMed  Google Scholar 

  • Poremba A and Gabriel M (2001) Amygdalar efferents initiate auditory thalamic discriminative training-induced neuronal activity. Journal of Neuroscience 21:270–278.

    CAS  PubMed  Google Scholar 

  • Quirk GJ, Armony JL, and LeDoux JE (1997) Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19:613–624.

    Article  CAS  PubMed  Google Scholar 

  • Rajan R and Irvine DRF (1998) Absence of plasticity of the frequency map in dorsal cochlear nucleus of adult cats after unilateral partial cochlear lesions. Journal of Comparative Neurology 399:35–46.

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson D (1996) Changes in the organization of the ventroposterior lateral thalamic nucleus after digit removal in adult raccoon. Journal of Comparative Neurology 364:92–103.

    Article  CAS  PubMed  Google Scholar 

  • Ravizza RJ and Belmore SM (1978) Auditory forebrain: evidence from anatomical and behavioral experiments involving human and animal subjects. In: Masterton RB (ed). Handbook of Behavioral Neurobiology. Plenum Press, New York, pp. 459–501.

    Google Scholar 

  • Recanzone GH, Schreiner CE, and Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience 13:87–103.

    CAS  PubMed  Google Scholar 

  • Redies H and Brandner S (1991) Functional organization of the auditory thalamus in the guinea pig. Experimental Brain Research 86:384–392.

    Article  CAS  Google Scholar 

  • Redies H, Brandner S, and Creutzfeldt OD (1989) Anatomy of the auditory thalamocortical system of the guinea pig. Journal of Comparative Neurology 282:489–511.

    Article  CAS  PubMed  Google Scholar 

  • Robertson D and Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. Journal of Comparative Neurology 282:456–471.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa A, de Ribaupierre F, and Rouiller EM (1989) Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections. Hearing Research 39:103–126.

    Article  CAS  PubMed  Google Scholar 

  • Romanski LM and LeDoux JE (1992) Equipotentiality of thalamoamygdaloid and thalamocorticoamygdaloid circuits in auditory fear conditioning. Journal of Neuroscience 12:4501–4509.

    CAS  PubMed  Google Scholar 

  • Rouiller E and de Ribaupierre F (1982) Neurons sensitive to narrow ranges of repetitive acoustic transients in the medial geniculate body of the cat. Experimental Brain Research 48:323–326.

    Article  CAS  Google Scholar 

  • Rouiller E, de Ribaupierre Y, and de Ribaupierre F (1979) Phase-locked responses to low-frequency tones in the medial geniculate body. Hearing Research 1:213–226.

    Article  Google Scholar 

  • Rouiller E, de Ribaupierre Y, Morel A, and de Ribaupierre F (1983) Intensity functions of single unit responses to tone in the medial geniculate body of cat. Hearing Research 11:235–247.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM and de Ribaupierre F (1985) Origin of afferents to physiologically defined regions of the medial geniculate body of the cat: ventral and dorsal divisions. Hearing Research 19:97–114.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Capt M, Hornung JP, and Streit P (1990) Correlation between regional changes in the distributions of GABA-containing neurons and unit response properties in the medial geniculate body of the cat. Hearing Research 49:249–258.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa AEP, and de Ribaupierre F (1989) Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections. Hearing Research 39:127–142.

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski RG and Weinberger NM (2005) Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 102:13664–13669.

    Article  CAS  PubMed  Google Scholar 

  • Ryugo DK and Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Experimental Neurology 51:377–391.

    Article  CAS  PubMed  Google Scholar 

  • Ryugo DK and Weinberger NM (1978) Differential plasticity of morphologically distinct neuron populations in the medial geniculate body of the cat during classical conditioning. Behavioral Biology 22:275–301.

    Article  CAS  PubMed  Google Scholar 

  • Samson FK, Clarey JC, Barone P, and Imig TJ (1993) Effects of ear plugging on single-unit azimuth sensitivity in cat primary auditory cortex. I. Evidence for monaural directional cues. Journal of Neurophysiology 70:492–511.

    CAS  PubMed  Google Scholar 

  • Samson FK, Barone P, Irons WA, Clarey JC, Poirier P, and Imig TJ (2000) Directionality derived from differential sensitivity to monaural and binaural cues in the cat's medial geniculate body. Journal of Neurophysiology 84:1330–1345.

    CAS  PubMed  Google Scholar 

  • Schafe GE, Doyere V, and LeDoux JE (2005) Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage. Journal of Neuroscience 25:10010–10014.

    Article  CAS  PubMed  Google Scholar 

  • Schafe GE, Nader K, Blair HT and LeDoux JE (2001) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends in Neurosciences 24:540–546.

    Article  CAS  PubMed  Google Scholar 

  • Semple MN and Kitzes LM (1993a) Binaural processing of sound pressure level in cat primary auditory cortex - evidence for a representation based on absolute levels rather than interaural level differences. Journal of Neurophysiology 69:449–461.

    CAS  PubMed  Google Scholar 

  • Semple MN and Kitzes LM (1993b) Focal selectivity for binaural sound pressure level in cat primary auditory cortex - 2-way intensity network tuning. Journal of Neurophysiology 69:462–473.

    CAS  PubMed  Google Scholar 

  • Senatorov VV and Hu B (1997) Differential Na(+)-K(+)-ATPase activity in rat lemniscal and non-lemniscal auditory thalami. Journal of Physiology (London) 502:387–395.

    Article  CAS  Google Scholar 

  • Senatorov VV and Hu B (2002) Extracortical descending projections to the rat inferior colliculus. Neuroscience 115:243–250.

    Article  CAS  PubMed  Google Scholar 

  • Senatorov VV, Mooney D, and Hu B (1997) The electrogenic effects of Na(+)-K(+)-ATPase in rat auditory thalamus. Journal of Physiology (London) 502:375–385.

    Article  CAS  Google Scholar 

  • Sherman SM and Guillery RW (1996) Functional organization of thalamocortical relays. Journal of Neurophysiology 76:1367–1395.

    CAS  PubMed  Google Scholar 

  • Smith PH and Populin LC (2001) Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. Journal of Comparative Neurology 436:508–519.

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Bartlett EL, and Kowalkowski A (2006) Unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body. Journal of Comparative Neurology 496:314–334.

    Article  PubMed  Google Scholar 

  • Soja PJ, Fragoso MC, Cairns BE, and Jia WG (1996) Dorsal spinocerebellar tract neurons in the chronic intact cat during wakefulness and sleep: analysis of spontaneous spike activity. Journal of Neuroscience 16:1260–1272.

    CAS  PubMed  Google Scholar 

  • Spitzer MW, Calford MB, Clarey JC, Pettigrew JD, and Roe AW (2001) Spontaneous and stimulus-evoked intrinsic optical signals in primary auditory cortex of the cat. Journal of Neurophysiology 85:1283–1298.

    CAS  PubMed  Google Scholar 

  • Steriade M (1984) The excitatory-inhibitory response sequence in thalamic and neocortical cells: state-related changes and regulatory systems. In: Edelman GM, Gall WE, and Cowan WM (eds). Dynamic Aspects of Neocortical Functions. Wiley, New York, pp. 107–157.

    Google Scholar 

  • Steriade M (1989) Brain electrical activity and sensory processing during waking and sleep states. In: Kryger MH, Roth T, and Dement WC (eds). Principles and Practices of Sleep Medicine. W.B. Saunders Company, Philadelphia, pp. 86–103.

    Google Scholar 

  • Steriade M and Deschênes M (1984) The thalamus as a neuronal oscillator. Brain Research Reviews 8:1–63.

    Article  Google Scholar 

  • Steriade M and Llinás R (1988) The functional states of the thalamus and the associated neuronal interplay. Physiological Reviews 68:649–742.

    CAS  PubMed  Google Scholar 

  • Steriade M, Contreras D, Curro Dossi R, and Nunez A (1993a) The slow (<1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. Journal of Neuroscience 13:3284–3299.

    CAS  PubMed  Google Scholar 

  • Steriade M, Curro Dossi R, and Contreras D (1993b) Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (approximately 40 Hz) spike-bursts at approximately 1000 Hz during waking and rapid eye movement sleep. Neuroscience 56:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Nunez A, and Amzica F (1993c) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. Journal of Neuroscience 13:3252–3265.

    CAS  PubMed  Google Scholar 

  • Steriade M, Nunez A and Amzica F (1993d) intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience 13:3266–3283.

    CAS  PubMed  Google Scholar 

  • Steriade M, Jones EG, and McCormick DA (1997) Thalamus, volume 1. Elsevier, Amsterdam.

    Google Scholar 

  • Sukov W and Barth DS (2001) Cellular mechanisms of thalamically evoked gamma oscillations in auditory cortex. Journal of Neurophysiology 85:1235–1245.

    CAS  PubMed  Google Scholar 

  • Supple WF and Kapp BS (1989) Response characteristics of neurons in the medial component of the medial geniculate nucleus during Pavlovian differential fear conditioning in rabbits. Behavioral Neuroscience 103:1276–1286.

    Article  PubMed  Google Scholar 

  • Tennigkeit F, Schwarz DWF, and Puil E (1996) Mechanisms for signal transformation in lemniscal auditory thalamus. Journal of Neurophysiology 76:3597–3608.

    CAS  PubMed  Google Scholar 

  • Tennigkeit F, Puil E, and Schwarz DWF (1997) Firing modes and membrane properties in lemniscal auditory thalamus. Acta Otolaryngologica 117:254–257.

    Article  CAS  Google Scholar 

  • Usrey WM (2002) The role of spike timing for thalamocortical processing. Current Opinion in Neurobiology 12:411–417.

    Article  CAS  PubMed  Google Scholar 

  • Velenovsky DS, Cetas JS, Price RO, Sinex DG, and McMullen NT (2003) Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study. Journal of Neuroscience 23:308–316.

    CAS  PubMed  Google Scholar 

  • Victor JD and Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. Journal of Neurophysiology 76:1310–1326.

    CAS  PubMed  Google Scholar 

  • Victor, JD and Purpura K (1997) Metric-space analysis of spike trains: theory, algorithms, and application. Network 8:127–164.

    Article  Google Scholar 

  • Villa AE, Tetko IV, Dutoit P, de Ribaupierre Y and, de Ribaupierre F (1999) Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. Journal of Neuroscience Methods 86:161–178.

    Article  CAS  PubMed  Google Scholar 

  • Villa AEP, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, and de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Experimental Brain Research 86:506–517.

    Article  CAS  Google Scholar 

  • Wang X and Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. Journal of Neurophysiology 86:2616–2620.

    CAS  PubMed  Google Scholar 

  • Warren RA and Jones EG (1994) Glutamate activation of cat thalamic reticular nucleus: effects on response properties of ventroposterior neurons. Experimental Brain Research 100:215–226.

    Article  CAS  Google Scholar 

  • Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience 5:279–290.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM and Diamond DM (1987) Physiological plasticity in auditory cortex: rapid induction by learning. Progress in Neurobiology 29:1–55.

    Article  CAS  PubMed  Google Scholar 

  • Wester K, Irvine DRF, and Hugdahl K (2001) Auditory laterality and attentional deficits after thalamic haemorrhage. Journal of Neurology 248:676–683.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield (1979) The object of the sensory cortex. Brain Behavior and Evolution 16:129–154.

    Article  CAS  Google Scholar 

  • Whitfield IC and Purser D (1972) Microelectrode study of the medial geniculate body in unanaesthetized free-moving cats. Brain Behavior and Evolution 6:311–322.

    Article  Google Scholar 

  • Whitley JM and Henkel CK (1984) Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. Journal of Comparative Neurology 229:257–270.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (1985) The medial geniculate body of the cat. Advances in Anatomy, Embryology and Cell Biology 86:1–98.

    CAS  Google Scholar 

  • Winer JA (1991) Anatomy of the medial geniculate body. In: Altschuler RA, Bobbins RP, Clopton BM and Hoffman DW (eds). Neurobiology of Hearing: The Central Auditory System. Raven Press, New York, pp. 293–333.

    Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and primary auditory cortex. In: Webster DB, Popper AN, and Fay RR (eds). Springer Handbook of Auditory Research, volume 1, The Mammalian Auditory Pathway: Neuroanatomy. Springer, New York, pp. 222–409.

    Google Scholar 

  • Winer JA, Diehl JJ, and Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. Journal of Comparative Neurology 430:27–55.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Morest DK (1983) The medial division of the medial geniculate body of the cat: implications for thalamic organization. Journal of Neuroscience 3:2629–2651.

    CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1987) Patterns of reciprocity in auditory thalamocortical and corticothalamic connections: study with horseradish peroxidase and autoradiographic methods in the rat medial geniculate body. Journal of Comparative Neurology 257:282–315.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA and Larue DT (1996) Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proceedings of the National Academy of Sciences of the United States of America 93:3083–3087.

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Kelly JB, and Larue DT (1999) Neural architecture of the rat medial geniculate body. Hearing Research 130:19–41.

    Article  CAS  PubMed  Google Scholar 

  • Winer JE and Larue DT (1988) Anatomy of glutamic acid decarboxylase immunoreactive neurons and axons in the rat medial geniculate body. Journal of Comparative Neurology 278:47–68.

    Article  CAS  PubMed  Google Scholar 

  • Winter P and Funkenstein HH (1973) The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey. (Saimiri sciureus). Experimental Brain Research 18:489–504.

    Article  CAS  Google Scholar 

  • Wörgötter F, Suder K, Zhao Y, Kerscher N, Eysel UT, and Funke K (1998) State-dependent receptive-field restructuring in the visual cortex. Nature 396:165–168.

    Article  PubMed  Google Scholar 

  • Yeshurun Y, Wollberg Z, and Dyn N (1989) Prediction of linear and non-linear responses of MGB neurons by system identification methods. Bulletin of Mathematical Biology 51:337–346.

    CAS  PubMed  Google Scholar 

  • Yeshurun Y, Wollberg Z, Dyn N, and Allon N (1985) Identification of MGB cells by Volterra kernels. I. Prediction of responses to species specific vocalizations. Biological Cybernetics 51:383–390.

    Article  CAS  PubMed  Google Scholar 

  • Yu YQ, Xiong Y, Chan YS, and He J (2004a) Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. Journal of Neuroscience 24:3060–3069.

    Article  CAS  PubMed  Google Scholar 

  • Yu YQ, Xiong Y, Chan YS, and He J (2004b) In vivo intracellular responses of the medial geniculate neurones to acoustic stimuli in anaesthetized guinea pigs. Journal of Physiology (London) 560:191–205.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by an ANR Neuroscience grant ‘Hearing loss’. I am very grateful to Elizabeth Hennevin and Scott Cruikshank for insightful discussions and helpful comments on earlier versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Edeline .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Edeline, JM. (2011). Physiological Properties of Neurons in the Medial Geniculate Body. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_12

Download citation

Publish with us

Policies and ethics