Skip to main content

Synaptic Integration in Auditory Cortex

  • Chapter
  • First Online:
The Auditory Cortex

Abstract

What does the auditory cortex do? Most would agree that it processes auditory information, but few would assert that we understand just what computations are performed by auditory cortical neurons. If we describe computation as the transformation of information from one representation to another, then which transformations are accomplished by the auditory cortex remains an open question at the heart of the discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

acetylcholine

AI:

primary auditory cortex

AHP:

afterhyperpolarization potential

CF:

characteristic frequency

EPSP:

excitatory postsynaptic potentials

FM:

frequency modulation

FS:

fast-spiking

GABA:

γ-aminobutyric acid

LFP:

local field potential

mAChR:

muscarinic acetylcholine receptor

MGv:

ventral division of the medial geniculate body

nAChR:

nicotinic acetylcholine receptor

NMDA:

N-methyl-d-aspartate

PET:

positron emission tomography

SPL:

sound pressure level

STRF:

spectrotemporal receptive field

References

  • Aitkin LM and Webster WR (1972) Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. Journal of Neurophysiology 35:365–380.

    CAS  PubMed  Google Scholar 

  • Atzori M, Kanold PO, Pineda JC, Flores-Hernandez J, and Paz RD (2005) Dopamine prevents muscarinic-induced decrease of glutamate release in the auditory cortex. Neuroscience 134:1153–1165.

    Article  CAS  PubMed  Google Scholar 

  • Atzori M, Lei S, Evans DI, Kanold PO, Phillips-Tansey E, McIntyre O, and McBain CJ (2001) Differential synaptic processing separates stationary from transient inputs to the auditory cortex. Nature Neuroscience 4:1230–1237.

    Article  CAS  PubMed  Google Scholar 

  • Bakin JS, Kwon MC, Masino SA, Weinberger NM, and Frostig RD (1996) Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging. Cerebral Cortex 6:120–130.

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Chan VT, Zhang LI, and Merzenich MM (2003) Suppression of cortical representation through backward conditioning. Proceedings of the National Academy of Sciences of the United States of America 100:1405–1408.

    Article  CAS  PubMed  Google Scholar 

  • Borg-Graham LJ, Monier C, and Fregnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–373.

    Article  CAS  PubMed  Google Scholar 

  • Bringuier V, Chavane F, Glaeser L, and Fregnac Y (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283:695–699.

    Article  CAS  PubMed  Google Scholar 

  • Brosch M and Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. Journal of Neurophysiology 77:923–943.

    CAS  PubMed  Google Scholar 

  • Brosch M and Schreiner CE (2000) Sequence sensitivity of neurons in cat primary auditory cortex. Cerebral Cortex 10:1155–1167.

    Article  CAS  PubMed  Google Scholar 

  • Brosch M, Schulz A, and Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. Journal of Neurophysiology 82:1542–1559.

    CAS  PubMed  Google Scholar 

  • Brugge JF, Dubrovsky NA, Aitkin LM, and Anderson DJ (1969) Sensitivity of single neurons in auditory cortex of cat to binaural tonal stimulation; effects of varying interaural time and intensity. Journal of Neurophysiology 32:1005–1024.

    CAS  PubMed  Google Scholar 

  • Budinger E, Heil P, and Scheich H (2000) Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. European Journal of Neuroscience 12:2452–2474.

    Article  CAS  PubMed  Google Scholar 

  • Calford MB and Semple MN (1995) Monaural inhibition in cat auditory cortex. Journal of Neurophysiology 73:1876–1891.

    CAS  PubMed  Google Scholar 

  • Calford MB, Webster WR, and Semple MM (1983) Measurement of frequency selectivity of single neurons in the central auditory pathway. Hearing Research 11:395–401.

    Article  CAS  PubMed  Google Scholar 

  • Carandini M, Heeger DJ, and Senn W (2002) A synaptic explanation of suppression in visual cortex. Journal of Neuroscience 22:10053–10065.

    CAS  PubMed  Google Scholar 

  • Caspary DM, Backoff PM, Finlayson PG, and Palombi PS (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. Journal of Neurophysiology 72:2124–2133.

    CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Xue B, Collins D, Pichika R, Bagnera R, Leslie FM, Christian BT, Shi B, Narayanan TK, Potkin SG, and Mukherjee J (2005) Synthesis and evaluation of nicotine alpha4beta2 receptor radioligand, 5-(3'-18F-fluoropropyl)-3-(2-(S)-pyrrolidinylmethoxy)pyridine, in rodents and PET in nonhuman primate. Journal of Nuclear Medicine 46:130–140.

    CAS  PubMed  Google Scholar 

  • Chimoto S, Kitama T, Qin L, Sakayori S, and Sato Y (2002) Tonal response patterns of primary auditory cortex neurons in alert cats. Brain Research 934:34–42.

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Li X, and Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34:437–446.

    Article  CAS  PubMed  Google Scholar 

  • Clarke PB (2004) Nicotinic modulation of thalamocortical neurotransmission. Progress in Brain Research 145:253–260.

    Article  CAS  PubMed  Google Scholar 

  • Clarke PB, Pert CB, and Pert A (1984) Autoradiographic distribution of nicotine receptors in rat brain. Brain Research 323:390–395.

    Article  CAS  PubMed  Google Scholar 

  • Clarke PB, Schwartz RD, Paul SM, Pert CB, and Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. Journal of Neuroscience 5:1307–1315.

    CAS  PubMed  Google Scholar 

  • Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, and Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by a-BTX. Neuron 5:847–856.

    Article  CAS  PubMed  Google Scholar 

  • Cox CL, Metherate R, and Ashe JH (1994) Modulation of cellular excitability in neocortex: muscarinic receptor and second messenger-mediated actions of acetylcholine. Synapse 16:123–136.

    Article  CAS  PubMed  Google Scholar 

  • Creutzfeldt O, Hellweg FC, and Schreiner C (1980) Thalamocortical transformation of responses to complex auditory stimuli. Experimental Brain Research 39:87–104.

    Article  CAS  Google Scholar 

  • Debarbieux F, Brunton J, and Charpak S (1998) Effect of bicuculline on thalamic activity: a direct blockade of IAHP in reticularis neurons. Journal of Neurophysiology 79:2911–2918.

    CAS  PubMed  Google Scholar 

  • Denham SL and Denham MJ (2001). An investigation into the role of cortical synaptic depression in auditory processing. In: Wermter S, Austin JL, and Willshaw D (eds). Lecture Notes in Artificial Intelligence. Springer, New York, pp. 494–506.

    Google Scholar 

  • DeWeese MR and Zador AM (2006) Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. Journal of Neuroscience 26:12206–12218.

    Article  CAS  PubMed  Google Scholar 

  • DeWeese MR, Wehr M, and Zador AM (2003) Binary spiking in auditory cortex. Journal of Neuroscience 23:7940–7949.

    CAS  PubMed  Google Scholar 

  • Ding YS, Fowler JS, Logan J, Wang GJ, Telang F, Garza V, Biegon A, Pareto D, Rooney W, Shea C, Alexoff D, Volkow ND, and Vocci F (2004) 6-[18F]Fluoro-A-85380, a new PET tracer for the nicotinic acetylcholine receptor: studies in the human brain and in vivo demonstration of specific binding in white matter. Synapse 53:184–189.

    Article  CAS  PubMed  Google Scholar 

  • Dykes RW, Landry P, Metherate R, and Hicks TP (1984) Functional role for GABA in primary somatosensory cortex: shaping receptive fields of cortical neurons. Journal of Neurophysiology 52:1066–1093.

    CAS  PubMed  Google Scholar 

  • Easwaramoorthy B, Pichika R, Collins D, Potkin SG, Leslie FM, and Mukherjee J (2007) Effect of acetylcholinesterase inhibitors on the binding of nicotinic alpha4beta2 receptor PET radiotracer, (18)F-nifene: A measure of acetylcholine competition. Synapse 61:29–36.

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Hars B, Maho C, and Hennevin E (1994) Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulations in the rat auditory cortex. Experimental Brain Research 97:373–386.

    Article  CAS  Google Scholar 

  • Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Experimental Brain Research 153:554–572.

    Article  Google Scholar 

  • Edeline JM, Dutrieux G, Manunta Y, and Hennevin E (2001) Diversity of receptive field changes in auditory cortex during natural sleep. European Journal of Neuroscience 14:1865–1880.

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1996) How homogeneous is cat primary auditory cortex? Evidence from simultaneous single-unit recordings. Auditory Neuroscience 2:79–96.

    Article  Google Scholar 

  • Eggermont JJ (1999) The magnitude and phase of temporal modulation transfer functions in cat auditory cortex. Journal of Neuroscience 19:2780–2788.

    CAS  PubMed  Google Scholar 

  • Elhilali M, Fritz JB, Klein DJ, Simon JZ, and Shamma SA (2004) Dynamics of precise spike timing in primary auditory cortex. Journal of Neuroscience 24:1159–1172.

    Article  CAS  PubMed  Google Scholar 

  • Foeller E, Vater M, and Kössl M (2001) Laminar analysis of inhibition in the gerbil primary auditory cortex. Journal of the Association for Research in Otolaryngology 2:279–296.

    CAS  PubMed  Google Scholar 

  • Freeman TC, Durand S, Kiper DC, and Carandini M (2002) Suppression without inhibition in visual cortex. Neuron 35:759–771.

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, and Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience 6:1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Galvan VV, Chen J, and Weinberger NM (2001) Long-term frequency tuning of local field potentials in the auditory cortex of the waking guinea pig. Journal of the Association for Research in Otolaryngology 2:199–215.

    CAS  PubMed  Google Scholar 

  • Gil Z, Connors BW, and Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19:679–686.

    Article  CAS  PubMed  Google Scholar 

  • Haj-Dahmane S and Andrade R (1996) Muscarinic activation of a voltage-dependent cation nonselective current in rat association cortex. Journal of Neuroscience 16:3848–3861.

    CAS  PubMed  Google Scholar 

  • Halliwell JV and Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Research 250:71–92.

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends in Cognitive Science 3:351–359.

    Article  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Current Opinion in Neurobiology 16:710–715.

    Article  CAS  PubMed  Google Scholar 

  • Heil P and Irvine DRF (1997) First-spike timing of auditory-nerve fibers and comparison with auditory cortex. Journal of Neurophysiology 78:2438–2454.

    CAS  PubMed  Google Scholar 

  • Heil P and Irvine DRF (1998) The posterior field P of cat auditory cortex: coding of envelope transients. Cerebral Cortex 8:125–141.

    Article  CAS  PubMed  Google Scholar 

  • Heil P, Langner G, and Scheich H (1992) Processing of frequency-modulated stimuli in the chick auditory cortex analogue: evidence for topographic representations and possible mechanisms of rate and directional sensitivity. Journal of Comparative Physiology A 171:583–600.

    Article  CAS  Google Scholar 

  • Hess A and Scheich H (1996) Optical and FDG mapping of frequency-specific activity in auditory cortex. Neuroreport 7:2643–2647.

    Article  CAS  PubMed  Google Scholar 

  • Hicks TP, Metherate R, Landry P, and Dykes RW (1986) Bicuculline-induced alterations of response properties in functionally identified ventroposterior thalamic neurones. Experimental Brain Research 63:248–264.

    Article  CAS  Google Scholar 

  • Hind JE, Goldberg JM, Greenwood DG, and Rose JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. II. Timing of the discharges and observations on binaural stimulation. Journal of Neurophysiology 26:321–341.

    CAS  PubMed  Google Scholar 

  • Horikawa J, Hosokawa Y, Kubota M, Nasu M, and Taniguchi I (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. Journal of Physiology (London) 497:629–638.

    CAS  Google Scholar 

  • Hounsgaard J (1978) Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus. Experimental Neurology 62:787–797.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CY, Cruikshank SJ, and Metherate R (2000) Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Research 880:51–64.

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ and Morel A (1984) Topographic and cytoarchitectonic organization of thalamic neurons related to their targets in low-, middle-, and high-frequency representations in cat auditory cortex. Journal of Comparative Neurology 227:511–539.

    Article  CAS  PubMed  Google Scholar 

  • Ji W and Suga N (2007) Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. Journal of Neuroscience 27:4910–4918.

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Lazar R, and Metherate R (2004) Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex. Journal of Neurophysiology 91:2551–2567.

    Article  PubMed  Google Scholar 

  • Kawai H, Lazar R, and Metherate R (2007) Nicotinic control of axon excitability regulates thalamocortical transmission. Nature Neuroscience 10:1168–1175.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP and Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718.

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP and Merzenich MM (1999) Distributed representation of spectral and temporal information in rat primary auditory cortex. Hearing Research 134:16–28.

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Donishi T, Sakoda T, Hazama M, and Tamai Y (2003) Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience 117:1003–1016.

    Article  CAS  PubMed  Google Scholar 

  • Kitzes LM, Gibson MM, Rose JE, and Hind JE (1978) Initial discharge latency and threshold considerations for some neurons in cochlear nuclear complex of the cat. Journal of Neurophysiology 41:1165–1182.

    CAS  PubMed  Google Scholar 

  • Krnjevic K, Pumain R, and Renaud L (1971) The mechanism of excitation by acetylcholine in the cerebral cortex. Journal of Physiology (London) 215:247–268.

    CAS  Google Scholar 

  • Kurt S, Crook JM, Ohl FW, Scheich H, and Schulze H (2006) Differential effects of iontophoretic in vivo application of the GABAA-antagonists bicuculline and gabazine in sensory cortex. Hearing Research 212:224–235.

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Picciotto MR, and Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28:216–225.

    Article  CAS  PubMed  Google Scholar 

  • Langner G and Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. Journal of Neurophysiology 60:1799–1822.

    CAS  PubMed  Google Scholar 

  • Lavine N, Reuben M, and Clarke PBS (1997) A population of nicotine receptors is associated with thalamocortical afferents in the adult rat: laminar and areal analysis. Journal of Comparative Neurology 380:175–190.

    Article  CAS  PubMed  Google Scholar 

  • LeBeau FEN, Malmierca MS, and Rees A (2001) Iontophoresis in vivo demonstrates a key role for GABAA and glycinergic inhibition in shaping frequency response areas in the inferior colliculus of guinea pig. Journal of Neuroscience 21:7303–7312.

    CAS  PubMed  Google Scholar 

  • Lee SM, Friedberg MH, and Ebner FF (1994) The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. II. Differential effects of GABAA and GABAB receptor antagonists on responses of VPM neurons. Journal of Neurophysiology 71:1716–1726.

    CAS  PubMed  Google Scholar 

  • Linden JF, Liu RC, Sahani M, Schreiner CE, and Merzenich MM (2003) Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex. Journal of Neurophysiology 90:2660–2675.

    Article  PubMed  Google Scholar 

  • Lui B and Mendelson JR (2003) Frequency modulated sweep responses in the medial geniculate nucleus. Experimental Brain Research 153:550–553.

    Article  CAS  Google Scholar 

  • Machens CK, Wehr MS, and Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. Journal of Neuroscience 24:1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Madison DV, Lancaster B, and Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. Journal of Neuroscience 7:733–741.

    CAS  PubMed  Google Scholar 

  • McCormick DA and Prince DA (1986) Mechanism of action of acetylcholine in the guinea-pig cerebral cortex in vitro. Journal of Physiology (London) 375:169–194.

    CAS  Google Scholar 

  • McKenna TM, Ashe JH, and Weinberger NM (1989) Cholinergic modulation of frequency receptive fields in auditory cortex: I. Frequency-specific effects of muscarinic agonists. Synapse 4:30–43.

    Article  CAS  PubMed  Google Scholar 

  • Mendelson JR and Cynader MS (1985) Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation. Brain Research 327:331–335.

    Article  CAS  PubMed  Google Scholar 

  • Metherate R (2004) Nicotinic acetylcholine receptors in sensory cortex. Learning & Memory 11:50–59.

    Article  Google Scholar 

  • Metherate R and Ashe JH (1993) Ionic flux contributions to neocortical slow waves and nucleus basalis-mediated activation: whole-cell recordings in vivo. Journal of Neuroscience 13:5312–5323.

    CAS  PubMed  Google Scholar 

  • Metherate R and Ashe JH (1994) Facilitation of an NMDA receptor-mediated EPSP by paired-pulse stimulation in rat neocortex via depression of GABAergic IPSPs. Journal of Physiology (London) 481:331–348.

    CAS  Google Scholar 

  • Metherate R, Tremblay N, and Dykes RW (1988) The effects of acetylcholine on response properties of cat somatosensory cortical neurons. Journal of Neurophysiology 59:1231–1251.

    CAS  PubMed  Google Scholar 

  • Metherate R, Cox CL, and Ashe JH (1992) Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. Journal of Neuroscience 12:4701–4711.

    CAS  PubMed  Google Scholar 

  • Miller LM, Escabí MA, and Schreiner CE (2001) Feature selectivity and interneuronal cooperation in the thalamocortical system. Journal of Neuroscience 21:8136–8144.

    CAS  PubMed  Google Scholar 

  • Miller LM, Escabi MA, Read HL, and Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. Journal of Neurophysiology 87:516–527.

    PubMed  Google Scholar 

  • Morley BJ and Happe HK (2000) Cholinergic receptors: dual roles in transduction and plasticity. Hearing Research 147:104–112.

    Article  CAS  PubMed  Google Scholar 

  • Müller CM and Scheich H (1988) Contribution of GABAergic inhibition to the response characteristics of auditory units in the avian forebrain. Journal of Neurophysiology 59:1673–1689.

    PubMed  Google Scholar 

  • Nelken I and Versnel H (2000) Responses to linear and logarithmic frequency-modulated sweeps in ferret primary auditory cortex. European Journal of Neuroscience 12:549–562.

    Article  CAS  PubMed  Google Scholar 

  • Norena A and Eggermont JJ (2002) Comparison between local field potentials and unit cluster activity in primary auditory cortex and anterior auditory field in the cat. Hearing Research 166:202–213.

    Article  PubMed  Google Scholar 

  • Oertel D (1999) The role of timing in the brain stem auditory nuclei of vertebrates. Annual Review of Physiology 61:497–519.

    Article  CAS  PubMed  Google Scholar 

  • Ohl FW, Schulze H, Scheich H, and Freeman WJ (2000) Spatial representation of frequency-modulated tones in gerbil auditory cortex revealed by epidural electrocorticography. Journal of Physiology (Paris) 94:549–554.

    Article  CAS  Google Scholar 

  • Ojima H and Murakami K (2002) Intracellular characterization of suppressive responses in supragranular pyramidal neurons of cat primary auditory cortex in vivo. Cerebral Cortex 12:1079–1091.

    Article  PubMed  Google Scholar 

  • Okamoto H, Stracke H, Wolters CH, Schmael F, and Pantev C (2007) Attention improves population-level frequency tuning in human auditory cortex. Journal of Neuroscience 27:10383–10390.

    Article  CAS  PubMed  Google Scholar 

  • Oswald AM, Schiff ML, and Reyes AD (2006) Synaptic mechanisms underlying auditory processing. Current Opinion in Neurobiology 16:371–376.

    Article  CAS  PubMed  Google Scholar 

  • Palombi PS and Caspary DM (1992) GABAA receptor antagonist bicuculline alters response properties of posteroventral cochlear nucleus neurons. Journal of Neurophysiology 67:738–746.

    CAS  PubMed  Google Scholar 

  • Parkinson D, Kratz KE, and Daw NW (1988) Evidence for a nicotinic component to the actions of acetylcholine in cat visual cortex. Experimental Brain Research 73:553–568.

    Article  CAS  Google Scholar 

  • Phillips DP and Hall SE (1990) Response timing constraints on the cortical representation of sound time structure. Journal of the Acoustical Society of America 88:1403–1411.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP and Hall SE (1992) Multiplicity of inputs in the afferent path to cat auditory cortex neurons revealed by tone-on-tone masking. Cerebral Cortex 2:425–433.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP, Hall SE, and Hollett JL (1989) Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. Journal of the Acoustical Society of America 85:2537–2549.

    Article  CAS  PubMed  Google Scholar 

  • Phillips DP, Mendelson JR, Cynader MS, and Douglas RM (1985) Responses of single neurones in cat auditory cortex to time-varying stimuli: frequency-modulated tones of narrow excursion. Experimental Brain Research 58:443–454.

    Article  CAS  Google Scholar 

  • Pickles JO (1988) An Introduction to the Physiology of Hearing. Academic Press, London, San Diego.

    Google Scholar 

  • Polley DB, Steinberg EE, and Merzenich MM (2006) Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience 26:4970–4982.

    Article  CAS  PubMed  Google Scholar 

  • Polley DB, Heiser MA, Blake DT, Schreiner CE, and Merzenich MM (2004) Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 101:16351–16356.

    Article  CAS  PubMed  Google Scholar 

  • Prusky GT, Shaw C, and Cynader MS (1987) Nicotine receptors are located on lateral geniculate nucleus terminals in cat visual cortex. Brain Research 412:131–138.

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH, Schreiner CE, and Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience 13:87–103.

    CAS  PubMed  Google Scholar 

  • Rhode WS and Smith PH (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. Journal of Neurophysiology 56:261–286.

    CAS  PubMed  Google Scholar 

  • de Ribaupierre F, Goldstein MH, and Yeni-Komshian G (1972) Intracellular study of the cat's primary auditory cortex. Brain Research 48:185–204.

    Article  PubMed  Google Scholar 

  • Rogers SW, Gahring LC, Collins AC, and Marks M (1998) Age-related changes in neuronal nicotinic acetylcholine receptor subunit α4 expression are modified by long-term nicotine administration. Journal of Neuroscience 18:4825–4832.

    CAS  PubMed  Google Scholar 

  • Romanski LM and LeDoux JE (1993) Organization of rodent auditory cortex: anterograde transport of PHA-L from MGv to temporal neocortex. Cerebral Cortex 3:499–514.

    Article  CAS  PubMed  Google Scholar 

  • Rose HJ and Metherate R (2005) Auditory thalamocortical transmission is reliable and temporally precise. Journal of Neurophysiology 94:2019–2030.

    Article  PubMed  Google Scholar 

  • Sahin M, Bowen WD, and Donoghue JP (1992) Location of nicotinic and muscarinic cholinergic and μ-opiate receptors in rat cerebral neocortex: evidence from thalamic and cortical lesions. Brain Research 579:135–147.

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Givens B, and Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Research Reviews 35:146–160.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner CE, Read HL, and Sutter ML (2000) Modular organization of frequency integration in primary auditory cortex. Annual Review of Neuroscience 23:501–529.

    Article  CAS  PubMed  Google Scholar 

  • Schulze H and Langner G (1999) Auditory cortical responses to amplitude modulations with spectra above frequency receptive fields: evidence for wide spectral integration. Journal of Comparative Physiology [A] 185:493–508.

    Article  CAS  Google Scholar 

  • Segal M (1982) Multiple action of acetylcholine at a muscarinic receptor studied in the rat hippocampal slice. Brain Research 246:77–87.

    Article  CAS  PubMed  Google Scholar 

  • Segal M (1989) Presynaptic cholinergic inhibition in hippocampal cultures. Synapse 4:305–312.

    Article  CAS  PubMed  Google Scholar 

  • Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, and Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. Journal of Neuroscience 13:596–604.

    PubMed  Google Scholar 

  • Sillito AM (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. Journal of Physiology (London) 250:305–329.

    CAS  Google Scholar 

  • Sillito AM and Kemp JA (1983) Cholinergic modulation of the functional organization of the cat visual cortex. Brain Research 289:143–155.

    Article  CAS  PubMed  Google Scholar 

  • Sivaramakrishnan S, Sterbing-D’Angelo SJ, Filipovic B, D’Angelo WR, Oliver DL, and Kuwada S (2004) GABAA synapses shape neuronal responses to sound intensity in the inferior colliculus. Journal of Neuroscience 24:5031–5043.

    Article  CAS  PubMed  Google Scholar 

  • Smits E, Gordon DC, Witte S, Rasmusson DD, and Zarzecki P (1991) Synaptic potentials evoked by convergent somatosensory and corticocortical inputs in raccoon somatosensory cortex: substrates for plasticity. Journal of Neurophysiology 66:688–695.

    CAS  PubMed  Google Scholar 

  • Soto G, Kopell N, and Sen K (2006) Network architecture, receptive fields, and neuromodulation: computational and functional implications of cholinergic modulation in primary auditory cortex. Journal of Neurophysiology 96:2972–2983.

    Article  PubMed  Google Scholar 

  • Stark H and Scheich H (1997) Dopaminergic and serotonergic neurotransmission systems are differentially involved in auditory cortex learning: a long-term microdialysis study of metabolites. Journal of Neurochemistry 68:691–697.

    Article  CAS  PubMed  Google Scholar 

  • Sutter ML and Schreiner CE (1995) Topography of intensity tuning in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. Journal of Neurophysiology 73:190–204.

    CAS  PubMed  Google Scholar 

  • Sutter ML and Loftus WC (2003) Excitatory and inhibitory intensity tuning in auditory cortex: evidence for multiple inhibitory mechanisms. Journal of Neurophysiology 90:2629–2947.

    Article  CAS  PubMed  Google Scholar 

  • Sutter ML, Schreiner CE, McLean M, O'Connor KN, and Loftus WC (1999) Organization of inhibitory frequency receptive fields in cat primary auditory cortex. Journal of Neurophysiology 82:2358–2371.

    CAS  PubMed  Google Scholar 

  • Tan AY, Zhang LI, Merzenich MM, and Schreiner CE (2004) Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. Journal of Neurophysiology 92:630–643.

    Article  PubMed  Google Scholar 

  • Tan AYY, Atencio CA, Polley DB, Merzenich MM, and Schreiner CE (2007) Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neuroscience 146:449–462.

    Article  CAS  PubMed  Google Scholar 

  • Ter-Mikaelian M, Sanes DH, and Semple MN (2007) Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. Journal of Neuroscience 27:6091–6102.

    Article  CAS  PubMed  Google Scholar 

  • Tian B and Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. Journal of Neurophysiology 92:2993–3013.

    Article  PubMed  Google Scholar 

  • Trussell LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annual Review of Physiology 61:477–496.

    Article  CAS  PubMed  Google Scholar 

  • Trussell LO (2002) Modulation of transmitter release at giant synapses of the auditory system. Current Opinion in Neurobiology 12:400–404.

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, and Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience 24:10440–10453.

    Article  CAS  PubMed  Google Scholar 

  • Valentino RJ and Dingledine R (1981) Presynaptic inhibitory effect of acetylcholine in the hippocampus. Journal of Neuroscience 1:784–792.

    CAS  PubMed  Google Scholar 

  • Velenovsky DS, Cetas JS, Price RO, Sinex DG, and McMullen NT (2003) Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study. Journal of Neuroscience 23:308–316.

    CAS  PubMed  Google Scholar 

  • Verbny YI, Erdelyi F, Szabo G, and Banks MI (2006) Properties of a population of GABAergic cells in murine auditory cortex weakly excited by thalamic stimulation. Journal of Neurophysiology 96:3194–3208.

    Article  CAS  PubMed  Google Scholar 

  • Volkov IO and Galazjuk AV (1991) Formation of spike response to sound tones in cat auditory cortex neurons: interaction of excitatory and inhibitory effects. Neuroscience 43:307–321.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Caspary D, and Salvi RJ (2000) GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. Neuroreport 11:1137–1140.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, McFadden SL, Caspary D, and Salvi R (2002) Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons. Brain Research 944:219–231.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu T, Snider RK, and Liang L (2005) Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435:341–346.

    Article  CAS  PubMed  Google Scholar 

  • Wehr M and Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446.

    Article  CAS  PubMed  Google Scholar 

  • Wehr M and Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445.

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (2004) Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience 5:279–290.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield IC and Evans EF (1965) Responses of auditory cortical neurons to stimuli of changing frequency. Journal of Neurophysiology 28:655–672.

    CAS  PubMed  Google Scholar 

  • Winer JA, Sally SL, Larue DT, and Kelly JB (1999) Origins of medial geniculate body projections to physiologically defined zones of rat primary auditory cortex. Hearing Research 130:42–61.

    Article  CAS  PubMed  Google Scholar 

  • Wu GK, Li P, Tao HW, and Zhang LI (2006) Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning. Neuron 52:705–715.

    Article  CAS  PubMed  Google Scholar 

  • Xie R, Gittelman JX, and Pollak GD (2007) Rethinking tuning: in vivo whole-cell recordings of the inferior colliculus in awake bats. Journal of Neuroscience 27:9469–9481.

    Article  CAS  PubMed  Google Scholar 

  • Zhang LI, Tan AY, Schreiner CE, and Merzenich MM (2003) Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature 424:201–205.

    Article  CAS  PubMed  Google Scholar 

  • Zoli M, Léna C, Picciotto MR, and Changeux J-P (1998) Identification of four classes of brain nicotinic receptors using β2 mutant mice. Journal of Neuroscience 18:4461–4472.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju Metherate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wehr, M., Metherate, R. (2011). Synaptic Integration in Auditory Cortex. In: Winer, J., Schreiner, C. (eds) The Auditory Cortex. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0074-6_11

Download citation

Publish with us

Policies and ethics