Advertisement

The Historical Development of Ideas About the Auditory Cortex

Chapter

Abstract

The history of studies aimed at defining the location and extent of the auditory cortex in humans and animals is traced from the seventeenth century into the modern era, with an emphasis on the contributions of individual scientists. Progressive advances have resulted from the application of new and refined techniques. At times, physiological techniques have led while at others neuroanatomical approaches have yielded the first insights. Each methodological approach has informed and stimulated the other. The field has at times had significant controversies, especially in the early days when it was difficult to extend the findings of lesion studies in animals to humans, and later, when no obvious structural equivalent of the human auditory cortex could be discerned in animals. Knowledge has accumulated at a growing pace in the recent past and we now have an excellent picture of the parcellation of the auditory regions of the cortex in primates and non-primates. This parcellation into multiple fields has been accomplished by the application of tonotopic mapping and correlated neuroanatomical tracing, and further refined by the revelations of histochemistry and immunocytochemistry. Much has been accomplished in the analysis of pathways and areas that undoubtedly provide the underpinnings for the perception of pitch. Less has been achieved in learning about how these and other regions of the auditory cortex and their input connections participate in the analysis of complex sounds.

Keywords

Auditory Cortex Inferior Colliculus Superior Temporal Gyrus Medial Geniculate Body Dorsal Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ades HW (1941) Connections of the medial geniculate body of the cat. Archives of Neurology and Psychiatry 45:138–144.Google Scholar
  2. Ades HW (1959) Central auditory mechanisms. In: Field J, Magoun HW, and Hall VE (eds). Handbook of Physiology. Section 1: Neurophysiology, Volume I. American Physiological Society, Washington DC, pp. 585–613.Google Scholar
  3. Ades HW and Felder R (1942) The acoustic area of the monkey (Macaca mulatta). Journal of Neurophysiology 5:49–54.Google Scholar
  4. Ades HW (1943) A secondary acoustic area in the cerebral cortex of the cat. Journal of Neurophysiology 6:59–63.Google Scholar
  5. Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, and Nelson JE (1986) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). Journal of Comparative Neurology 252:175–185.PubMedCrossRefGoogle Scholar
  6. Aitkin LM, Kudo M, and Irvine DRF (1988) Connections of the primary auditory cortex in the common marmoset, Callithrix jacchus jacchus. Journal of Comparative Neurology 269:235–248.PubMedCrossRefGoogle Scholar
  7. Anton G (1899) Ueber die Selbstwahrnehmung der Herderkrankungen des Gehirns bei Rindenblindheit und Rindentaubheit. Archiv für Psychiatrie und Nervenkrankheiten 32:86–127.CrossRefGoogle Scholar
  8. Bechterew W von (1911) Die Funktionen der Nervencentra. German translation by Weinberg R. Volume III. Fischer, Jena, pp. 1840–1882.Google Scholar
  9. Bowman EM and Olson CR (1988) Visual and auditory association areas of the cat’s posterior ectosylvian gyrus: thalamic afferents. Journal of Comparative Neurology 272:15–29.PubMedCrossRefGoogle Scholar
  10. Bremer F and Dow RS (1939) The cerebral acoustic area of the cat. A combined oscillographic and cytoarchitectonic study. Journal of Neurophysiology 2:308–318.Google Scholar
  11. Brodmann K (1905) Beiträge zur histologischen Lokalisation des Grosshinrinde dritte Mitteilung: die Rindenfelder der niederen Affen. Journal für Psychologie und Neurologie 4:177–226.Google Scholar
  12. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig.Google Scholar
  13. Brown S and Schäfer EA (1888) An investigation into the functions of the occipital and temporal lobes of the monkey’s brain. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 179:303–327.CrossRefGoogle Scholar
  14. Burton H and Jones EG (1976) The posterior thalamic region and its cortical projection in New World and Old World monkeys. Journal of Comparative Neurology 168:249–301.PubMedCrossRefGoogle Scholar
  15. Cajal S Ramón y (1899a) Estudios sobre la corteza cerebral humana. I. Corteza visual. Revista trimestral Micrográfica 4:1–63.Google Scholar
  16. Cajal S Ramón y (1899b) Estudios sobre la corteza cerebral humana. II. Estructura de la corteza motriz del hombre y mamíferos superiores. Revista trimestral Micrográfica 4:117–200.Google Scholar
  17. Cajal S Ramón y (1900a) Estudios sobre la corteza cerebral humana. II. Corteza motriz (conclusion). Revista trimestral Micrográfica 5:1–11.Google Scholar
  18. Cajal S Ramón y (1900b) Estudios sobre la corteza cerebral humana. III. Corteza acústica. Revista trimestral Micrográfica 5:129–183.Google Scholar
  19. Cajal S Ramón y (1904) Textura Del Sistema Nervioso del Hombre y de Los Vertebrados Volume II, second part. N Moya, Madrid. (2002) English translation by Pasik T and Pasik P. Texture of the Nervous System of Man and the Vertebrates, Volume III. Springer, Wien, New York, Barcelona.Google Scholar
  20. Calford MB and Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. Journal of Neuroscience 3:2365–2380.PubMedGoogle Scholar
  21. Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response of single units. Journal of Neuroscience 3:2350–2364.PubMedGoogle Scholar
  22. Campbell AW (1905) Histological Studies on the Localisation of Cerebral Function. Cambridge University Press, Cambridge.Google Scholar
  23. Casseday JH, Diamond IT, and Harting JK (1976) Auditory pathways to the cortex in Tupaia glis. Journal of Comparative Neurology 166:303–340.PubMedCrossRefGoogle Scholar
  24. Clascá F, Llamas A and Reinoso-Suárez F (1997) Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. Journal of Comparative Neurology 384:456–482.PubMedCrossRefGoogle Scholar
  25. Dejerine J and Dejerine-Klumpke M (1895) Anatomie des Centres Nerveux, Volume 1. Rueff, Paris.Google Scholar
  26. Dejerine J and Dejerine-Klumpke M (1901) Anatomie des Centres Nerveux, Volume 2, Part 1. Rueff, Paris.Google Scholar
  27. Diamond IT, Chow KL, and Neff WD (1958) Degeneration of caudal medial geniculate body following cortical lesions ventral to auditory area II in the cat. Journal of Comparative Neurology 109:349–362.PubMedCrossRefGoogle Scholar
  28. Diamond IT, Jones EG, and Powell TPS (1969) The projection of the auditory cortex upon the diencephalon and brain stem in the cat. Brain Research 15:305–340.PubMedCrossRefGoogle Scholar
  29. Ecker A (1869) Die Hirnwindungen des Menschen. Vieweg, Braunschweig.Google Scholar
  30. Ecker A (1873) On the Convolutions of the Human Brain. Translated by Galton JC. Smith Elder, London.Google Scholar
  31. Economo C von and Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen. Springer, Vienna.Google Scholar
  32. Erulkar SD, Rose JE, and Davies PW (1956) Single unit activity in the auditory cortex of the cat. Bulletin of the Johns Hopkins Hospital 99:55–86.PubMedGoogle Scholar
  33. Ferrier D (1873) Experimental researches in cerebral physiology and pathology. West Riding Lunatic Asylum Medical Reports 3:1–50.Google Scholar
  34. Ferrier D (1876) Functions of the Brain. Smith Elder, London.Google Scholar
  35. Ferrier D (1875) The Croonian lecture: experiments on the brain of monkeys (second series). Philosophical Transactions of the Royal Society of London 165:433–488.CrossRefGoogle Scholar
  36. Ferrier D, Golz F, Cros A, and Yeo G (1881) Discussion on the localization of function in the cortex cerebri. In: MacCormac W (ed). Transactions of the International Medical Congress, Seventh Session, Volume I. Kolckmann, London, pp. 228–242.Google Scholar
  37. Ferrier D and Yeo GF (1884) XIX. A record of experiments on the effects of lesion of different regions of the cerebral hemispheres. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 175:479–564.CrossRefGoogle Scholar
  38. Ferrier D (1886) The Functions of the Brain. Smith Elder, London.Google Scholar
  39. Ferrier D and Turner WA (1894) A record of experiments illustrative of the symptomatology and degenerations following lesions of the cerebellum and its peduncles and related structures in monkeys. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 185:719–778.CrossRefGoogle Scholar
  40. FitzPatrick K and Imig TJ (1978) Projections of auditory cortex upon the thalamus and midbrain in the owl monkey. Journal of Comparative Neurology 177:437–556.CrossRefGoogle Scholar
  41. Flechsig P (1898) Neue Untersuchungen über die Markbildung in den menschlichen Grosshirnlappen. Neurologisches Centralblatt 17:977–996.Google Scholar
  42. Fritsch GT and Hitzig E (1870) Über die elektrische Erregbarkeit des Grosshirns. Archiv für Anatomie und Physiologie 37:300–332.Google Scholar
  43. Galaburda A and Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. Journal of Comparative Neurology 190:597–610.PubMedCrossRefGoogle Scholar
  44. Galaburda AM and Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. Journal of Comparative Neurology 221:169–184.PubMedCrossRefGoogle Scholar
  45. Goldberg JM and Neff WD (1961) Frequency discrimination after bilateral section of the brachium of the inferior colliculus. Journal of Comparative Neurology 116:265–289.PubMedCrossRefGoogle Scholar
  46. Gowers WR (1885) Epilepsy. Wood, London.Google Scholar
  47. Grünbaum ASF and Sherrington CS (1902) Observations on the physiology of the cerebral cortex of some of the highest apes preliminary communication. Proceedings of the Royal Society of London 69:206–209.Google Scholar
  48. Grünbaum ASF, Sherrington CS (1903) observations on the physiology of the cerebral cortex of the anthropoid apes. Proceedings of the Royal Society of London 72:152–155.Google Scholar
  49. Hackett TA, Stepniewska I, and Kaas JH (1998a) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 394:475–495.PubMedCrossRefGoogle Scholar
  50. Hackett TA, Stepniewska I, and Kaas JH (1998b) Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology 400:271–286.PubMedCrossRefGoogle Scholar
  51. Hackett TA, Preuss TM, and Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology 441:197–222.PubMedCrossRefGoogle Scholar
  52. Hashikawa T, Rausell E, Molinari M, Jones EG (1991) Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Research 544:335–341.PubMedCrossRefGoogle Scholar
  53. Hashikawa T, Molinari M, Rausell E, and Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. Journal of Comparative Neurology 362:195–208.PubMedCrossRefGoogle Scholar
  54. Heath CJ and Jones EG (1971a) An experimental study of ascending connections from the posterior group of thalamic nuclei in the cat. Journal of Comparative Neurology 141:397–426.PubMedCrossRefGoogle Scholar
  55. Heath CJ, Jones EG (1971b) The anatomical organization of the suprasylvian gyrus of the cat. Ergebnisse für Anatomie und Entwicklungsgeschichte 45:3–64.Google Scholar
  56. Heffner H (1978) Effect of auditory cortex ablation on localization and discrimination of brief sounds. Journal of Neurophysiology 41:963–976.PubMedGoogle Scholar
  57. Heschl RL (1877) Tiefenwindungen des menschlichen Grosshirns und die Überbrückung der Zentralfurche. Wien Medizinische Wochenschrift 27:985–988.Google Scholar
  58. Hitzig E (1874) Untersuchungen über das Gehirn. Hirschwald, Berlin.Google Scholar
  59. Horsley V and Schäfer EA (1888) A record of experiments upon the functions of the cerebral cortex. Philosophical Transactions of the Royal Society of London, series B, Biological Sciences 179:1–45.CrossRefGoogle Scholar
  60. Imig TJ, Ruggero MA, Kitzes LM, Javel E, and Brugge JF (1977) Organization of auditory cortex in the owl monkey (Aotus trivirgatus). Journal of Comparative Neurology 171:111–128.PubMedCrossRefGoogle Scholar
  61. Jones EG and Leavitt RY (1973) Demonstration of thalamo-cortical connectivity in the cat somato-sensory system by retrograde axonal transport of horseradish peroxidase. Brain Research 63:414–418.CrossRefGoogle Scholar
  62. Jones EG and Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. Journal of Comparative Neurology 168:197–248.PubMedCrossRefGoogle Scholar
  63. Jones EG, Dell’Anna ME, Molinari M, Rausell E, and Hashikawa T (1995) Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. Journal of Comparative Neurology 362:153–170.PubMedCrossRefGoogle Scholar
  64. Jones EG (1998a) A new view of specific and non-specific thalamocortical connections. In: Jasper HH, Descarries L, Castelluci VF, and Rossignol S (eds). Consciousness: At the Frontiers of Neuroscience, Advances in Neurology, Volume 77. Wiley-Liss, New York, pp. 49–73.Google Scholar
  65. Jones EG (1998b) The thalamus of primates. In: Bloom FE, Björklund A, and Hökfelt T (eds). The Primate Nervous System, part II. Elsevier, Amsterdam, pp. 1–298.CrossRefGoogle Scholar
  66. Jones EG (1998c) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–345.PubMedCrossRefGoogle Scholar
  67. Jones EG (2003) Chemically defined parallel pathways in the monkey auditory system. Annals of the New York Academy of Sciences 999:218–233.PubMedCrossRefGoogle Scholar
  68. Jones EG (2007) The Thalamus. Cambridge University Press, Cambridge.Google Scholar
  69. Kelley PE, Frisina RD, Zettel ML, and Walton JP (1992) Differential calbindin-like immunoreactivity in the brain stem auditory system of the chinchilla. Journal of Comparative Neurology 319:196–212.CrossRefGoogle Scholar
  70. Kornmüller AE (1937) Bioelektrische Erscheinungen der Hirnrindenfelder. Thieme, Leipzig.Google Scholar
  71. Kosaki H, Hashikawa T, He J, and Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. Journal of Comparative Neurology 386:304–316.PubMedCrossRefGoogle Scholar
  72. Larionow W (1899) Ueber die musikalischen Centren des Gehirns. Pflügers Archiv European Journal of Physiology 76:608–625.CrossRefGoogle Scholar
  73. Le Gros Clark WE (1936) The thalamic connections of the temporal lobe of the brain in the monkey. Journal of Anatomy (London) 70:447–464.Google Scholar
  74. Licklider JCR and Kryter KD (1942) frequency localization in the auditory cortex of the monkey. Federation Proceedings of the American Society of Experimental Biology 1:51 (abstract).Google Scholar
  75. Luciani L and Tamburini A (1879) Sulle Funzioni del Cervello. Reggio-Emilia: S. Calderini.Google Scholar
  76. Luciani L (1884) On the sensorial localisations in the cortex cerebri. Brain 7:145–160.CrossRefGoogle Scholar
  77. Luethke LE, Krubitzer LA, and Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, Saguinus. Journal of Comparative Neurology 285:487–513.PubMedCrossRefGoogle Scholar
  78. Merzenich MM and Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Research 50:275–296.PubMedCrossRefGoogle Scholar
  79. Merzenich MM, Knight PL and Roth GL (1975) Representation of the cochlea within the primary auditory cortex in the cat. Journal of Neurophysiology 38:231–249.PubMedGoogle Scholar
  80. Mesulam MM and Pandya DN (1973) The projection of the medial geniculate complex within the Sylvian fissure of the rhesus monkey. Brain Research 60:315–353.PubMedCrossRefGoogle Scholar
  81. Mesulam M-M and Mufson EJ (1985) The insula of Reil in man and monkey: architectonics, connectivity, and function. In: Peters A and Jones EG (eds). Cerebral Cortex, Volume 4, Auditory and Association Cortices. Plenum, New York, pp. 179–228.Google Scholar
  82. Mettler FA (1932) Connections of the auditory cortex of the cat. Journal of Comparative Neurology 55:139–183.CrossRefGoogle Scholar
  83. Mills CK (1891) On the localization of the auditory centre. Brain 14:465–472.CrossRefGoogle Scholar
  84. Molinari M, Dell’Anna ME, Rausell E, Leggio MG, Hashikawa T, and Jones EG (1995) Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. Journal of Comparative Neurology 362:171–194.PubMedCrossRefGoogle Scholar
  85. Monakow C von (1895) Experimentelle und pathologisch-anatomische Untersuchungen über die Haubenregion, den Sehhügel und die Regio subthalamica, nebst Beiträgen zur Kentniss früh erworbener Gross- und Kleinhirndefekte. Archiv für Psychiatrie und Nervenkranke 27:1–128, 386–478.CrossRefGoogle Scholar
  86. Morel A and Imig TJ (1987) Thalamic projections to fields A, AI, P, and VP in the cat auditory cortex. Journal of Comparative Neurology 265:119–144.PubMedCrossRefGoogle Scholar
  87. Morel A and Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. Journal of Comparative Neurology 318:27–63.PubMedCrossRefGoogle Scholar
  88. Morel A, Garraghty PE, and Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology 335:437–459.PubMedCrossRefGoogle Scholar
  89. Munk H (1881) Über die Funktionen der Grosshirnrinde. Hirschwald, Berlin.Google Scholar
  90. Neff WD (1961) Neural mechanisms of auditory discrimination. In: Rosenblith WA (ed). Principles of Sensory Communication. MIT Press, Cambridge, pp. 259–278.Google Scholar
  91. Niimi K and Naito F (1974) Cortical projections of the medial geniculate body in the cat. Experimental Brain Research 19:326–342.CrossRefGoogle Scholar
  92. Niimi K and Matsuoka H (1979) Thalamocortical organization of the auditory system in the cat studied by retrograde axonal transport of horseradish peroxidase. Advances in Anatomy, Embryology and Cell Biology 57:1–56.Google Scholar
  93. Norita M, Mucke L, Benedek G, Albowitz B, Katoh Y, and Creutzfeldt OD (1986) Connections of the anterior ectosylvian area (AEV). Experimental Brain Research 62:225–240.CrossRefGoogle Scholar
  94. Oliver DL and Hall WC (1978) The medial geniculate body of the tree shrew, Tupaia glis. II. connections with the neocortex. Journal of Comparative Neurology 182:459–493.CrossRefGoogle Scholar
  95. Pandya DN, Hallett M, and Mukherjee SK (1969) Intra- and interhemispheric connections of the neocortical auditory system in the rhesus monkey. Brain Research 13:13–36.PubMedCrossRefGoogle Scholar
  96. Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Zeitschrift für Anatomie und Entwicklungsgeschichte 139:127–161.PubMedCrossRefGoogle Scholar
  97. Pandya DP, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A and Jones EG (eds). Cerebral Cortex, Volume 4. Association and Auditory Cortices. Plenum, New York, pp. 3–62.Google Scholar
  98. Phillips DP and Irvine DRF (1981) Responses of single neurons in physiologically defined primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity. Journal of Neurophysiology 45:48–58.PubMedGoogle Scholar
  99. Pick A (1892) Beiträge zur Lehre von den Störungen der Sprache. Archiv für Psychiatrie 23:896–918.CrossRefGoogle Scholar
  100. Polyak S (1932) The Main Afferent Fiber Systems of the Cerebral Cortex in Primates. University of California Press, Berkeley.Google Scholar
  101. Pribram KH, Rosner BS, and Rosenblith WA (1954) Electrical responses to acoustic clicks in monkey: extent of neocortex activated. Journal of Neurophysiology 17:336–344.PubMedGoogle Scholar
  102. Rausell E and Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. Journal of Neuroscience 11:226–237.PubMedGoogle Scholar
  103. Rausell E, Bae CS, Viñuela A, Huntley GW, and Jones EG (1992) Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. Journal of Neuroscience 12:4088–4111.PubMedGoogle Scholar
  104. Rauschecker JP, Tian B, and Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114.PubMedCrossRefGoogle Scholar
  105. Reale RA and Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. Journal of Comparative Neurology 192:265–292.PubMedCrossRefGoogle Scholar
  106. Recanzone GH, Schreiner CE, Sutter ML, Beitel RE, and Merzenich MM (1999) Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. Journal of Comparative Neurology 415:460–481.PubMedCrossRefGoogle Scholar
  107. Reinoso-Suárez F and Roda JM (1983) Topographical organization of the thalamic projections to the cortex of the anterior ectosylvian sulcus in the cat. Experimental Brain Research 49:131–139.Google Scholar
  108. Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa A, de Ribaupierre F, and Rouiller EM (1989) Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections. Hearing Research 39:103–125.PubMedCrossRefGoogle Scholar
  109. Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, and Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience 2:1131–1136.PubMedCrossRefGoogle Scholar
  110. Romanski LM, Bates JF, and Goldman-Rakic PS (1999) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology 403:141–157.PubMedCrossRefGoogle Scholar
  111. Rose JE (1949) The cellular structure of the auditory region of the cat. Journal of Comparative Neurology 91:409–440.PubMedCrossRefGoogle Scholar
  112. Rose JE and Woolsey CN (1949) The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. Journal of Comparative Neurology 91:441–466.PubMedCrossRefGoogle Scholar
  113. Rose JE and Woolsey CN (1958) Cortical connections and functional organization of the thalamic auditory system of the cat. In: Harlow HF and Woolsey CN (eds). Biological and Biochemical Bases of Behavior. University Wisconsin Press, Madison, pp. 127–150.Google Scholar
  114. Rouiller EM and de Ribaupierre F (1985) Origin of afferents to physiologically defined regions of the medial geniculate body of the cat: ventral and dorsal divisions. Hearing Research 19:97–114.PubMedCrossRefGoogle Scholar
  115. Rouiller EM, Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa A, and de Ribaupierre (1989) Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections. Hearing Research 39:127–142.PubMedCrossRefGoogle Scholar
  116. Schäfer EA (1888a) Experiments on special sense localisations in the cortex cerebri. Brain 10:362–380.CrossRefGoogle Scholar
  117. Schäfer EA (1888b) On the functions of the temporal and occipital lobes: a reply to Dr Ferrier. Brain 11:145–166.CrossRefGoogle Scholar
  118. Schäfer EA (1900) The cerebral cortex. In: Schäfer EA (ed).Text-Book of Physiology. Young Pentland, Edinburgh, pp. 697–782.Google Scholar
  119. Schreiner CE and Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. Journal of Neurophysiology 51:1284–1305.PubMedGoogle Scholar
  120. Sérieux P and Mignot PV (1901) Surdité corticale avec paralexie et hallucinations de l’ouvië due à des kystes hydatides du cerveau. Nouvelle Iconographie de la Salpêtrière. L’Année Biologique: Comptes Rendus Annuels des Travaux de Biologie, p. 560.Google Scholar
  121. Shinonaga Y, Takada M, and Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. Journal of Comparative Neurology 340:405–426.PubMedCrossRefGoogle Scholar
  122. Sindberg RM and Thompson RF (1962) Auditory response fields in ventral temporal and insular cortex of cat. Journal of Neurophysiology 25:21–28.PubMedGoogle Scholar
  123. Sousa-Pinto A (1973) Cortical projections of the medial geniculate body in the cat. Advances in Anatomy, Embryology and Cell Biology 48:1–42.Google Scholar
  124. Tunturi AR (1945) Further afferent connections to the acoustic cortex of the dog. American Journal of Physiology 144:389–394.Google Scholar
  125. Vater M and Braun K (1994) Parvalbumin, calbindin D-28 k, and calretinin immunoreactivity in the ascending auditory pathway of horseshoe bats. Journal of Comparative Neurology 341:534–558.PubMedCrossRefGoogle Scholar
  126. Vogt C and Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. Journal für Psychologie und Neurologie 25:279–462.Google Scholar
  127. Vogt O and Vogt C (1902) Neurobiologische Arbeiten. Beiträge der Hirnfaserlehre. Fischer, Leipzig.Google Scholar
  128. Walker AE (1937) A note on the thalamic nuclei of Macaca mulatta. Journal of Comparative Neurology 66:145–155.CrossRefGoogle Scholar
  129. Walker AE (1937) The projection of the medial geniculate body to the cerebral cortex in the macaque monkey. Journal of Anatomy (London) 71:319–331.Google Scholar
  130. Walker AE (1938) The Primate Thalamus. University of Chicago Press, Chicago.Google Scholar
  131. Wallace MN, Kitzes LM, and Jones EG (1991) Chemoarchitectonic organization of the cat primary auditory cortex. Experimental Brain Research 86:518–526.Google Scholar
  132. Waller WH (1934) Topographical relations of cortical lesions to thalamic nuclei in the albino rat. Journal of Comparative Neurology 60:237–269.CrossRefGoogle Scholar
  133. Waller WH and Barris W (1937) Relationship of thalamic nuclei to the cerebral cortex in the cat. Journal of Comparative Neurology 67:317–341.CrossRefGoogle Scholar
  134. Waller WH (1940) Thalamic degeneration induced by temporal lesions in the cat. Journal of Anatomy (London) 74:528–536.Google Scholar
  135. Walzl EM and Woolsey CN (1946) Effects of cochlear lesions on click responses in the auditory cortex of the cat. Bulletin of the Johns Hopkins Hospital 79:309–319.PubMedGoogle Scholar
  136. Wernicke C and Friedlander C (1883) Ein Fall von Taubheit in Folge von doppelseitiger Läsion des Schläfenlappens. Fortschritte der Medizin 1:177–185.Google Scholar
  137. Whitfield IC, Cranford J, Ravizza R, and Diamond IT (1972) Effects of unilateral ablation of auditory cortex in cat on complex sound localization. Journal of Neurophysiology 35:718–731.PubMedGoogle Scholar
  138. Willis T (1664) Cerebri Anatome: Cui Accessit Nervorum Descriptio et Usus. Martyn and Allestry, London.Google Scholar
  139. Willis T (1681) The Remaining Medical Works of that Famous and Renowned Physician, Dr. Thomas Willis. Dring, Harper & Leigh, London.Google Scholar
  140. Wilson ME and Cragg BG (1969) Projections from the medial geniculate body to the cerebral cortex in the cat. Brain Research 13:462–475.CrossRefGoogle Scholar
  141. Winer JA, Diamond IT, and Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: The retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. Journal of Comparative Neurology 176:387–418.PubMedCrossRefGoogle Scholar
  142. Winer JA, Diehl JJ, and Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. Journal of Comparative Neurology 430:27–55.PubMedCrossRefGoogle Scholar
  143. Woollard HH and Harpman A (1939) The cortical projection of the medial geniculate body. Journal of Neurology and Psychiatry 2:35–44.CrossRefGoogle Scholar
  144. Woolsey CN and Walzl EM (1942) Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bulletin of the Johns Hopkins Hospital 71:315–344.Google Scholar
  145. Woolsey CN (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In: Harlow H and Woolsey CN (eds). Biological and Biochemical Bases of Behavior. University Wisconsin Press, Madison, pp. 63–81.Google Scholar
  146. Woolsey CN (1959) Organization of cortical auditory system. In: Rosenblith WA (ed). Principles of Sensory Communication MIT Press, Cambridge, pp. 235–257.Google Scholar
  147. Woolsey CN (1960) Some observations on brain fissuration in relation to cortical localization of function. In: Tower DB and Schadé JPS (eds). Structure and Function of the Cerebral Cortex. Elsevier, Amsterdam, pp. 64–68.Google Scholar
  148. Woolsey CN (1961) Organization of cortical auditory system: review and a synthesis. In: Rasmussen GL and Windle WF (eds). Neural Mechanisms of the Auditory and Vestibular Systems Charles C. Thomas, Springfield, pp. 165–180.Google Scholar
  149. Woolsey CN (1964) Electrophysiological studies on thalamocortical relations in the auditory system. In: Abrams A, Garner HH, and Toman JEP (eds). Unfinished Tasks in the Behavioral Sciences. Williams and Wilkins, Baltimore, pp. 45–57.Google Scholar
  150. Woolsey CN (1971a) Tonotopic organization of the auditory cortex. In: Sachs MB (ed). Physiology of the Auditory System. National Educational Consultants, Baltimore, pp. 271–282.Google Scholar
  151. Woolsey CN (1971b) Dedication of the workshop to the memory of Edward McColgan Walzl. In: Sachs MB (ed). Physiology of the Auditory System. National Educational Consultants, Baltimore, pp. 5–20.Google Scholar
  152. Zettel ML, Carr CE, and O’Neill WE (1991) Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnelli. Journal of Comparative Neurology 313:1–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Neuroscience, University of CaliforniaDavisUSA

Personalised recommendations