Skip to main content

Vibration Control Using Piezoelectric Actuators and Sensors

  • Chapter
  • First Online:
  • 2918 Accesses

Abstract

This chapter presents, through several example case studies and representative systems, the notion and implementation of vibration control using piezoelectric actuators and sensors. Using the modeling developments and derivations in the preceding chapters, a comprehensive treatment is provided for active vibration absorption as well as vibration control using piezoelectric materials for a variety of systems. These include the application of piezoelectric actuators and/or sensors in both axial and transverse configurations as well as piezoelectric control design using lumped-parameters and distributed-parameters representations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The materials in this section may have come directly or collectively from our publication (Jalili and Esmailzadeh 2005, Sect. 23.3.2).

  2. 2.

    The materials in this section may have come directly from our publication (Jalili and Esmailzadeh 2005, Sect. 23.3.2).

  3. 3.

    The materials presented here may have come, directly or collectively, from our recent publication (Vora et al. 2008).

  4. 4.

    The materials presented in this section may have come directly from our publication (Ramaratnam and Jalili 2006).

References

  • Bashash S, Jalili N (2009) Robust adaptive control of coupled parallel piezo-flexural nano-positioning stages. IEEE/ASME Trans Mechatron 14(1):11–20

    Article  Google Scholar 

  • Bashash S, Vora K, Jalili N (2008b) Distributed-parameters modeling and control of rod-like solid-state actuators. J Vibration and Control, submitted for publication

    Google Scholar 

  • Bontsema J, Cartain RF, Schumacher JM (1988) Robust control of flexible systems: A case study, Automatica 24:177–186

    Article  MATH  Google Scholar 

  • Clark WW (2000) Vibration control with state-switched piezoelectric materials. J Intell Mater Syst Struct 11(4):263–271

    Google Scholar 

  • Dadfarnia M, Jalili N, Liu Z, Dawson DM (2004a) An observer-based piezoelectric control of flexible Cartesian robot arms: theory and experiment. Control Eng Pract 12:1041–1053

    Article  Google Scholar 

  • Garcia E, Dosch J, Inman DJ (1992) The application of smart structures to the vibration suppression problem. J Intell Mater Syst Struct 3:659–667

    Article  Google Scholar 

  • Ge SS, Lee TH, Zhu G (1997) A nonlinear feedback controller for a single-link flexible manipulator based on a finite element method. J Robotic Syst 14(3):165–178

    Article  MATH  Google Scholar 

  • Gurjar M, Jalili N (2007) Towards ultrasmall mass detection using adaptive self-sensing piezoelectrically-driven cantilevers. IEEE/ASME Trans Mechatronics 12(6):680–688

    Article  Google Scholar 

  • Hagood NW, Von Flotow A (1991) Damping of structural vibrations with piezoelectric materials and passive electrical networks. J Sound Vib 146(2):243–268

    Article  Google Scholar 

  • Itoh T, Lee C, Suga T (1996) Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O3 microcantilever for dynamic scanning force microscopy. Appl Phys Lett 69(14):2036–2038

    Article  Google Scholar 

  • Jalili N, Olgac N (1998) Time-optimal/sliding mode control implementation for robust tracking of uncertain flexible structures. Int J Mechatron 8(2):121–142

    Article  Google Scholar 

  • Jalili N (2000) A new perspective for semi-automated structural vibration control. J Sound Vib 238(3):481–494

    Article  Google Scholar 

  • Jalili N, Olgac N (2000a) Identification and re-tuning of optimum delayed feedback vibration absorber. AIAA J Guid Control Dyn 23(6):961–970

    Article  Google Scholar 

  • Jalili N (2001a) An infinite dimensional distributed base controller for regulation of flexible robot arms. ASME J Dyn Sys, Measur Cont 123(4):712–719

    Article  Google Scholar 

  • Jalili N, Knowles DW (2004) Structural vibration control using an active resonator absorber: modeling and control implementation. Smart Mater Struct 13(5):998–1005

    Article  Google Scholar 

  • Jalili N, Esmailzadeh E (2005) Vibration control, chapter 23 of the vibration and shock handbook, CRC Press LLC, ISBN/ISSN: 0-84931580, 23:1047–1092

    Google Scholar 

  • Jones L, Gracia E, Waites H (1994) Self-sensing control as applied to a PZT stack actuator used as a micropositioner. Smart Mater Struct 3:147–156

    Article  Google Scholar 

  • Knowles D, Jalili N, Khan T (2001) On the nonlinear modeling and identification of piezoelectric inertial actuators. Proceedings of 2001 international mechanical engineering congress and exposition (IMECE’01), New York, NY, Nov

    Google Scholar 

  • Law WW, Liao W-H, Huang J (2003) Vibration control of structures with self-sensing piezoelectric actuators incorporating adaptive mechanism. Smart Mater Struct 12:720–730

    Article  Google Scholar 

  • Lou ZH (1993) Direct strain feedback control of flexible robot arms: New theoretical and experimental results. IEEE Trans Automat Control 38(11):1610–1622

    Article  MathSciNet  Google Scholar 

  • Matyas J (1965) Random optimization. Autom Remote Control 22:246–253

    MathSciNet  Google Scholar 

  • Meirovitch L (2001) Fundamentals of vibrations, McGraw Hill

    Google Scholar 

  • Moheimani SOR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping, Springer, New York

    MATH  Google Scholar 

  • Olgac N, Holm-Hansen B (1994) Novel active vibration absorption technique: delayed resonator. J Sound Vib 176:93–104

    Article  MATH  Google Scholar 

  • Olgac N, Jalili N (1998) Modal analysis of flexible beams with delayed-resonator vibration absorber: Theory and experiments. J Sound Vib 218(2):307–331

    Article  Google Scholar 

  • Olgac N (1995) Delayed resonators as active dynamic absorbers, United States Patent # 5431261

    Google Scholar 

  • Olgac N, Elmali H, Vijayan S (1996) Introduction to dual frequency fixed delayed resonator (DFFDR). J Sound Vib 189:355–367

    Article  Google Scholar 

  • Olgac N, Elmali H, Hosek M, Renzulli M (1997) Active vibration control of distributed systems using delayed resonator with acceleration feedback. ASME J Dyn Syst Measur Control 119:380–389

    Article  MATH  Google Scholar 

  • Preumont A (2002) Vibration control of active structures: An introduction, 2nd edn. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Ramaratnam A (2004) Semi-active vibration control using piezoelectric-based switched stiffness. Master’s Thesis, Department of Mechanical Engineering, Clemson University

    Google Scholar 

  • Ramaratnam A, Jalili N (2006a) A switched stiffness approach for structural vibration control: Theory and real-time implementation. J Sound Vib 291(1–2):258–274

    Article  MathSciNet  Google Scholar 

  • Ramaratnam A, Jalili N (2006b) Reinforcement of piezoelectric polymers with carbon nanotubes: pathway to development of next-generation sensors. J Intell Mater Syst Struct 17(3):199–208

    Article  Google Scholar 

  • Ramaratnam A, Jalili N, Rajoria H (2004a) Development of a novel strain sensor using nanotube-based materials with applications to structural vibration control. Proceedings of the international society for optical engineering, sixth international conference on vibration measurements by laser techniques: advances and applications, vol 5503. Ancona, Italy, pp 478–485

    Google Scholar 

  • Ramaratnam A, Jalili N, Dawson DM (2004b) Semi-active vibration control using piezoelectric-based switched stiffness. Proceedings of American control conference, Boston, MA

    Google Scholar 

  • Ramaratnam A, Jalili N, Grier M (2003) Piezoelectric vibration suppression of translational flexible beams using switched stiffness, Proceedings of 2003 international mechanical engineering congress and exposition (IMECE 2003-41217), Washington DC

    Google Scholar 

  • Renzulli M, Ghosh-Roy R, Olgac N (1999) Robust control of the delayed resonator vibration absorber. IEEE Trans Control Syst Technol 7(6):683–691

    Article  Google Scholar 

  • Richard D, Guyomar D, Audigier, Ching G (1999), Semi-passive damping using continuous switching of a piezoelectric device, smart structures and materials. Passive Damping Isolation 3672:104–111

    Google Scholar 

  • Rogers L, Manning, Jones M, Sulchek T, Murray K, Beneshott N, Adams J (2003) Mercury vapor detection with self-sensing, resonating, piezoelectric cantilever. Rev Sci Instrum 74:4899

    Article  Google Scholar 

  • Shaw J (1998) Adaptive vibration control by using magnetostrictive actuators. J Intell Mater Syst Struct 9:87–94

    Article  Google Scholar 

  • Shen Z, Shih WY, Shih W-H (2006) Self-exciting, self-sensing PbZr0:53Ti0:47O3=SiO2 piezoelectric microcantilevers with Femtogram/Hertz sensitivity. Appl Phys Lett 89:023506

    Article  Google Scholar 

  • Slotine JJ, Sastry SS (1983) Tracking control of non-linear systems using sliding surface with application to robot manipulators. Int J Control 38:465–492

    Article  MathSciNet  MATH  Google Scholar 

  • Slotine JJ (1984) Sliding controller design for nonlinear systems. Int J Control 40:421–434

    Article  MATH  Google Scholar 

  • Utkin VI (1977) Variable structure systems with sliding modes. IEEE Trans Automat Control 22:212–222

    Article  MathSciNet  MATH  Google Scholar 

  • Vora K, Bashash S, Jalili N (2008) Modeling and forced vibration analysis of rod-like solid-state actuators. Proceedings of the 2008 ASME Dynamic Systems and Control Conference (DSCC’08), Ann Arbor, MI (Oct 20–22, 2008)

    Google Scholar 

  • Xian B, de Queiroz MS, Dawson DM, McIntyre ML (2003) Output feedback variable structure control of nonlinear mechanical systems, Proceedings of IEEE conference on decision and control, Hawaii

    Google Scholar 

  • Yuh J (1987) Application of discrete-time model reference adaptive control to a flexible single-link robot. J Robotic Sys 4:621–630

    Article  Google Scholar 

  • Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M, Ruan G (2003) Self-excited piezoelectric microcantilever for gas detection. Microelectronic Eng 69:37

    Article  Google Scholar 

  • Zhu G, Ge SS, Lee TH (1997) Variable structure regulation of a flexible arm with translational base. Proceedings of 36th IEEE conference on decision and control, San Diego, CA, pp 1361–1366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Jalili .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jalili, N. (2010). Vibration Control Using Piezoelectric Actuators and Sensors. In: Piezoelectric-Based Vibration Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0070-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0070-8_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0069-2

  • Online ISBN: 978-1-4419-0070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics