Hysteretic Characteristics of Piezoelectric Materials

  • Nader Jalili


This chapter presents a brief but self-contained discussion on the origin of hysteresis in piezoelectric materials, some select modeling frameworks and effective compensation techniques. The materials given in this chapter shall prepare the readers for vibration-control systems using piezoelectric actuators and sensors discussed in Chaps. 9 and 3.


  1. Aderiaens H, Koning W, Baning R (2000) Modeling piezoelectric actuators. IEEE/ASME Trans Mechatron 5:331–341CrossRefGoogle Scholar
  2. Ang WT, Garmon FA, Khosla PK, Riviere CN (2003) Rate-dependent hysteresis in piezoelectric actuators. Proceedings of IEEE international conference on intelligent robots and systems, vol 2. 1975–1980, Las Vegas, NVGoogle Scholar
  3. Bashash S, Jalili N (2006a) Underlying memory-dominant nature of hysteresis in piezoelectric materials. J Appl Phys 100:014103CrossRefGoogle Scholar
  4. Bashash S, Jalili N (2007a) Intelligent rules of hysteresis in feedforward trajectory control of piezoelectrically-driven nanostages. J Micromech Microeng 17:342–349CrossRefGoogle Scholar
  5. Bashash S, Jalili N (2007b) Robust multiple-frequency trajectory tracking control of piezoelectrically-driven micro/nano positioning systems. IEEE Trans Control Syst Technol 15:867–878CrossRefGoogle Scholar
  6. Bobbio S, Miano G, Serpico C, Visone C (1997) Models of magnetic hysteresis based on play and stop hysterons. IEEE Trans Magn33:4417–4426Google Scholar
  7. Brokate M, Sprekels J (1996) Hysteresis and phase transitions. Springer, New YorkMATHCrossRefGoogle Scholar
  8. Chaghai R, Lining S, Weibin R, Liguo C (2004) Adaptive inverse control for piezoelectric actuator with dominant hysteresis. Proceedings of IEEE international conference on control applications, vol 2. Taipei, Taiwan, pp 973–976Google Scholar
  9. Friedman A (1982) Foundation of modern analysis. Dover, New YorkGoogle Scholar
  10. Furutani K, Urushibata M, Mohri N (1998) Displacement control of piezoelectric element by feedback of induced charge. Nanotechnology 9:93–98CrossRefGoogle Scholar
  11. Galinaitis WS (1999) Two methods for modeling scalar hysteresis and their use in controlling actuators with hysteresis. PhD Dissertation. Virginia Polytechnic Institute and State University, Blacksburg, VAGoogle Scholar
  12. Ge P, Jouaneh M (1995) Modeling hysteresis in piezoceramic actuators. Precision Eng 17:211–221CrossRefGoogle Scholar
  13. Ge P, Jouaneh M (1997) Generalized Preisach model for hysteresis nonlinearity of piezoceramic actuators. Precision Eng 20:99–111CrossRefGoogle Scholar
  14. Goldfarb M, Celanovic N (1997a) A lumped parameter electromechanical model for describing the nonlinear behavior of piezoelectric actuators. ASME J Dyn Syst Measur Control 119:478–485MATHCrossRefGoogle Scholar
  15. Gorbet RB, Morris KA, Wang DW (2001) Passivity-based stability and control of hysteresis in smart actuators. IEEE Trans Control Syst Technol 9:5–16CrossRefGoogle Scholar
  16. Hu H, Ben-Mrad R (2003) On the classical Preisach model for hysteresis in piezoceramic actuators. Mechatronics 13:85–94CrossRefGoogle Scholar
  17. Hughes D, Wen JT (1997) Preisach modeling of piezoceramic and shape memory alloy hysteresis. Smart Mater Struct 6:287–300CrossRefGoogle Scholar
  18. Ikeda T (1996) Fundamentals of piezoelectricity, Oxford University Press, UKGoogle Scholar
  19. Krasnosel’skii MA, Pokrovskii AV (1989) Systems with hysteresis. Springer, New YorkMATHCrossRefGoogle Scholar
  20. Kuhnen K, Janocha H (2001) Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems. Control Intell Syst 29:74–83Google Scholar
  21. Mayergoyz I (2003) Mathematical models of hysteresis and their applications. Elsevier, New YorkGoogle Scholar
  22. Moheimani SOR, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping, Springer, New YorkMATHGoogle Scholar
  23. Newcomb C, Filnn I (1982) Improving linearity of piezoelectric ceramic actuators. Electron Lett 18:442–444CrossRefGoogle Scholar
  24. Preisach FZ (1935) Physics 94:277CrossRefGoogle Scholar
  25. Salah M, McIntyre M, Dawson DM, Wagner JR (2007) Robust tracking control for a piezoelectric actuator. Proceedings of the American Control Conference, New York, NYGoogle Scholar
  26. Tao G, Kokotovic PV (1996) Adaptive control of systems with actuator and sensor nonlinearities, Wiley, New JerseyMATHGoogle Scholar
  27. Visintin A (1994) Differential models of hysteresis, Springer, Berlin, HeidelbergMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial Engineering373 Snell Engineering Center Northeastern UniversityBostonUSA

Personalised recommendations