Skip to main content

Piezoelectric-Based Nanomechanical Cantilever Sensors

  • Chapter
  • First Online:
Piezoelectric-Based Vibration Control
  • 2779 Accesses

Abstract

This chapter provides a relatively general overview of piezoelectric-based nano- mechanical cantilever sensors (NMCS) with their applications in many cantilever-based imaging and manipulation systems such as atomic force microscopy (AFM) and its varieties. Some new concepts in modeling these systems are also introduced along with highlighting the issues related to nonlinear effects at such small scale, the Poisson’s effect, and piezoelectric materials nonlinearity. More specifically, both linear and nonlinear models of piezoelectric NMCS are presented with their applications in biological and ultrasmall mass sensing and detection.

It might be worth noting that a comprehensive modeling and treatment of these systems including both linear and nonlinear vibration analyses, system identification, as well as practical applications in ultrasmall mass sensing, laser-free imaging, and nanoscale manipulation and positioning, will appear in a new book by the author (Jalili in press). In order to avoid potential overlaps while also keeping this chapter focused, only a small part of the aforementioned book is presented here with a major emphasis on piezoelectric-based nanomechanical cantilever sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The materials in this section may have come, directly or collectively, from our earlier publication (Afshari and Jalili, 2008).

  2. 2.

    Smart Structures and NanoElectroMechanical Systems Laboratory, Mechanical Engineering Department, Clemson University, Clemson, South Carolina, USA.

  3. 3.

    Note that for the beam material, which is a non-piezoelectric material we have c b D = c b E.

  4. 4.

    The “native conditions” of the biological systems refer to the fluidal environment in which almost all biological species would survive.

References

  • Adams JD, Parrott G, Bauer C, Sant T, Manning L, Jones M, Rogers B, McCorkle D, Ferrell TL (2003) Nanowatt chemical vapor detection with a self-sensing piezoelectric microcantilever array. Appl Phys Lett 83(16):3428–3430

    Article  Google Scholar 

  • Afshari M, Jalili N (2007a) Towards nonlinear modeling of molecular interactions arising from adsorbed biological species on the microcantilever surface. Int J Non-Linear Mech. 42(4): 588–595

    Article  Google Scholar 

  • Afshari M, Jalili N (2008) Nanomechanical cantilever biosensors: Conceptual design, recent developments and practical implementation, chapter 13 of biomedical applications of vibration and acoustics for imaging and characterization. ASME Press 13:353–374

    Google Scholar 

  • Arafat HN, Nayfeh AH, Chin C (1998) Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn 15:31–61

    Article  MATH  Google Scholar 

  • Arntz Y, Seelig JD, Lang HP, Zhang J, Hunzicker P, Ramseyer JP, Meyer E, Hegener M, Gerber Ch (2003) Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14(1):86

    Article  Google Scholar 

  • Baselt DR, Lee GU, Colton RJ (1996) Biosensor based on force microscope technology. J Vac Sci Technol B, 14(2):789–793

    Article  Google Scholar 

  • Berger R, Gerber Ch, Gimzewski JK (1996) Thermal analysis using micromechanical calorimeter. Appl Phys Lett 69(1):40–42

    Article  Google Scholar 

  • Berger R, Delamarche E, Lang HP, Gerber C, Gimzewski JK, Meyer E, Guntherodt H-J (1997) Surface stress in the self-assembly of alkanethiols on gold. Science 276:2021–2023

    Article  Google Scholar 

  • Bhadbhade V, Jalili N, Mahmoodi SN (2008) A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J Sound Vib 311:1305–1324

    Article  Google Scholar 

  • Bizet K, Gabrielli C, Perrot H, Therasse J (1998) Validation of antibody-based recognition by piezoelectric transducers through electroacoustic admittance analysis. Biosens Bioelectron 13(3–4):259–269

    Article  Google Scholar 

  • Braun T, Barwich V, Ghatkesar MK, Bredekamp AH, Gerber C, Hegner M, Lang HP (2005) Micromechanical mass sensors for biomolecular detection in a physiological environment. Phys Rev 72:031907

    Google Scholar 

  • Britton CL, Jones RL, Oden PI, Hu Z, Warmack RJ, Smith SF, Bryan WL, Rochelle JM (2000) Multiple-input microcantilever sensors. Ultramicroscopy 82:17–21

    Article  Google Scholar 

  • Chen GY, Thundat T, Wachter EA, Warmack RJ (1995) Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers. J Appl Phys 77(8):3618–3622

    Article  Google Scholar 

  • Corbeil J, Lavrik N, Rajic S, Datskos PG (2002) Self-leveling uncooled microcantilever thermal detector. Appl Phys Lett 81:1306

    Article  Google Scholar 

  • Crespo da Silva MRM, Glynn CC (1978) Nonlinear flexural-flexural-torsional dynamics of inextensional beams: I. Equations of motion J Struct Mech 6(4):437–448

    Article  Google Scholar 

  • Dadfarnia M, Jalili N, Liu Z, Dawson DM (2004a) An observer-based piezoelectric control of flexible Cartesian robot arms: theory and experiment. Control Eng Pract 12:1041–1053

    Article  Google Scholar 

  • Dareing DW, Thundat T (2005) Simulation of adsorption-induced stress of a microcantilever sensor. J Appl Phys 97:043526

    Article  Google Scholar 

  • Datskos PG, Sauers I (1999) Detection of 2-mercaptoethanol using gold-coated micromachined cantilevers. Sens Actuators B 61:75–82

    Article  Google Scholar 

  • Datskos PG, Oden PI, Thundat T, Wachter EA, Warmack RJ, Hunter SR (1996) Remote infrared radiation detection using piezoresistive microcantilevers. Appl Phys Lett 69(20):2986–2988

    Article  Google Scholar 

  • Eslimy-Isfahany SHR, Banerjee JR (2000) Use of generalized mass in the interpretation of dynamic response of bending-torsion coupled beams. J Sound Vib 238(2):295–308

    Article  Google Scholar 

  • Esmailzadeh E, Jalili N (1998a) Optimum design of vibration absorbers for structurally damped Timoshenko beams. ASME J Vib Acous 120(4):833–841

    Article  Google Scholar 

  • Gfeller KY, Nugaeva N, Hegner M (2005) Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli. Appl Environ Microbiol 71(5):2626–2631

    Article  Google Scholar 

  • Gimzewski JK, Gerber Ch, Meyer E, Schlittler RR (1994) Observation of a chemical reaction using a micromechanical sensor. Chem Phys Lett 217:589–594

    Article  Google Scholar 

  • Grigorov AV, Davis ZJ, Rasmussen PA, Boisen A (2004) A longitudinal thermal actuation principle for mass detection using a resonant microcantilever in a fluid medium. Microelectronic Eng 73–74:881–886

    Article  Google Scholar 

  • Gupta A, Akin D, Bashir A (2004a) Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J Vac Sci Technol 32(4):2785–2791

    Google Scholar 

  • Hagan MF, Majumdar A, Chakraborty AK (2004) Nanomechanical forces generated by surface grafted DNA. J Phys Chem B 106:10163–10173

    Article  Google Scholar 

  • Hansen KM, Ji H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73 (7):1567–1571

    Article  Google Scholar 

  • Hsieh S, Shaw SW, Pierre C (1994) Normal modes for large amplitude vibration of a cantilever beam. Int J Solids Struct 31:1981–2014

    Article  MATH  Google Scholar 

  • Huber F, Hegner M, Gerber C, Guntherodt H-J, Lang HP (2006) Label free analysis of transcription factors using microcantilever arrays. Biosens Bioelectron 21:1599–1605

    Article  Google Scholar 

  • Ibach H (1997) The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf Sci Rep 29:193–263

    Article  Google Scholar 

  • Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C,Batt C (2001) Single cell detection with micromechanical oscillators. J Vac Sci Technol B 19(6):2825–2828

    Article  Google Scholar 

  • Ilic B, Czaplewsky D, Craighead HG, Neuzil P, Campagnolo C, Batt C (2000) Mechanical resonant immunospecific biological detector. Appl Phys Lett 77:450–452

    Article  Google Scholar 

  • Ilic B, Yang Y, Craighead HG (2004) Virus detection using nanoelectromechanical devices. Appl Phys Lett 85(13):2604

    Article  Google Scholar 

  • Itoh T, Lee C, Suga T (1996) Deflection detection and feedback actuation using a self-excited piezoelectric Pb(Zr,Ti)O3 microcantilever for dynamic scanning force microscopy. Appl Phys Lett 69(14):2036–2038

    Article  Google Scholar 

  • Jensenius H, Thaysen J, Rasmussen AA, Veje LH, Hansen O, Boisen A (2001) A microcantilever-based alcohol vapor sensor-application and response model. Appl Phys Lett 76(18):2615–2617

    Article  Google Scholar 

  • Ji H-F, Hansen KM, Hu Z, Thundat T (2001) Detection of pH variation using modified microcantilever sensors. Sens Actuators B-Chem 72(3):233–238

    Article  Google Scholar 

  • Kirstein K-U, Li Y, Zimmermann M, Vancura C, Volden T, Song WH, Lichtenberg J, Hierlemannn A (2005) Cantilever-based biosensors in CMOS technology. Proceedings of the design, automation and test in Europe conference and exhibition (DATE’05):1340–1341

    Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003), Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Lang HP, Berger R, Battiston F, Ramseyer J-P, Meyer E, Andreoli C, Brugger J, Vettiger P, Despont M, Mezzacasa T, Scandella L, GĂĽntherodt H-J, Gerber Ch, Gimzewski JK (1998) A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Appl Phys A 66(7):S61–S64

    Article  Google Scholar 

  • Lee D, Ono T, Esashi M (2000) High-speed imaging by electro-magnetically actuated probe with dual spring. J Microelectromech Syst 9(4):419–424

    Article  Google Scholar 

  • Lee J, Hwang K, Park J (2005a) Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron 20:2157

    Article  Google Scholar 

  • Lee JH, Yoon KH, Hwang KS, Park J, Ahn S, Kim TS (2004) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens Bioelectron 20:269–275

    Article  Google Scholar 

  • Liu W, Montana V, Chapman ER, Mohideen U, Parpura, V (2003) Botulinum toxin type B micromechanosensor. Proc Nat Acad Sci USA 100(23):13621–13625

    Article  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405: 827–836

    Article  Google Scholar 

  • Lu P, Shen F, O’Shea SJ, Lee KH, Ng TY (2001) Analysis of surface effects on mechanical properties of microcantilevers. Mater Phys Mech 4:51–55

    Google Scholar 

  • Mahmoodi SN, Khadem SE, Jalili N (2006) Theoretical development and closed-form solution of nonlinear vibrations of a directly excited nanotube-reinforced composite cantilever beam. Arch Appl Mech 75 153–163

    Article  MATH  Google Scholar 

  • Mahmoodi SN, Afshari M, Jalili N (2008a) Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing. J Commun Nonlinear Sci Numer Simul 13:1964–1977

    Article  Google Scholar 

  • Mahmoodi SN, Jalili N (2008) Coupled flexural-torsional nonlinear vibrations of piezoelectrically-actuated microcantilevers with application to friction force microscopy. ASME J Vib Acoust 130(6) 061003:1–10

    Google Scholar 

  • Mahmoodi SN, Jalili N (2007) Nonlinear vibrations and frequency response analysis of piezoelectrically-driven microcantilevers. Int J Non-Linear Mech 42(4):577–587

    Article  Google Scholar 

  • Malatkar P, Nayfeh AH (2002) Calculation of the jump frequencies in the response of SDOF non-linear systems. J Sound Vib 254(5):1005–1011

    Article  Google Scholar 

  • McFarland AW, Poggi MA, Doyle MJ, Bottomley LA, Colton JS (2005) Influence of surface stress on the resonance behavior of microcantilevers. Appl Phys Lett 87:053505

    Article  Google Scholar 

  • McKendry R, Zhang J, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, Guntherodt H-J, Gerber C (2002) Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Nat Acad Sci USA 99(15):9783–9788

    Article  Google Scholar 

  • Meirovitch L (1997) Principles and techniques of vibrations. Prentice Hall, Inc

    Google Scholar 

  • Nagakawa Y, Shafer R, Guntherodt H (1998) Picojoule and submillisecond calorimetry with micromechanical probes. Appl Phys Lett 73:2296

    Article  Google Scholar 

  • Nayfeh AH, Nayfeh JF, Mook DT (1992) On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dynam 3:145–162

    Article  Google Scholar 

  • Nayfeh AH (1973) Perturbation methods, Wiley, New Jersey

    MATH  Google Scholar 

  • Oden PI, Chen GY, Steele RA, Warmack RJ, Thundat T (1999) Viscous drag measurements utilizing microfabricated cantilevers. Appl Phys Lett 68(26):3814–3816

    Article  Google Scholar 

  • Onran AG, Degertekin AG, Hadimioglu B, Sulchek T, Quate CF (2002) Actuation of atomic force microscope cantilevers in fluids using acoustic radiation pressure. Fifteenth IEEE international micro electro mechanical systems conference, Las Vegas, Nevada

    Google Scholar 

  • Pei J, Tian F, Thundat T (2004) Glucose biosensor based on the microcantilever. Anal Chem 76:3194

    Article  Google Scholar 

  • Perazzo T, Mao M, Kwon O, Majumdar A, Varesi JB, Norton P (1999) Infrared vision using uncooled micro-optomechanical camera. Appl Phys Lett 74 (23):3567–3569

    Article  Google Scholar 

  • Preumont A (2002) Vibration control of active structures: An introduction, 2nd edn. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Rabe U, Hirsekorn S, Reinstädtler M, Sulzbach T, Lehrer Ch, Arnold W (2007) Influence of the cantilever holder on the vibrations of AFM cantilevers. Nanotechnology 18:044008

    Article  Google Scholar 

  • Rangelow IW, Grabiec P, Gotszalk T, Edinger K (2002) Piezoresistive SXM Sensors, Surf Interface Anal 33:59–64

    Article  Google Scholar 

  • Rappe AK, Casewit CJ, Colewell KS, Goddard III WA, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024–10035

    Article  Google Scholar 

  • Ren Q, Zhao Y-P (2004) Influence of surface stress on frequency of microcantilever-based biosensors. Microsyst Technol 10:307–314

    Article  Google Scholar 

  • Salehi-Khojin A, Hosseini MR and Jalili N (2009a) Underlying mechanics of active nanocomposites with tunable properties. Composites Sci Technol 69:545–552

    Article  Google Scholar 

  • Savran CA, Burg TP, Fritz J, Manalis SR (2003) Microfabricated mechanical biosensor with inherently differential readout. Appl Phys Lett 83(20):1659

    Article  Google Scholar 

  • Schell-Sorokin AJ, Tromp RM (1990) Mechanical stress in (Sub)monolayer epitaxial films. Phys Rev Lett 64(9):1039–1042

    Article  Google Scholar 

  • Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc 63(5):444–457

    Article  Google Scholar 

  • Stachowiak JC, Yue M, Castelino K, Chakraborty A, Majumdar A (2006) Chemomechanics of surface stresses induced by DNA hybridization. Langmuir 22:263–268

    Article  Google Scholar 

  • Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond A 82:172–175

    Article  Google Scholar 

  • Su M, Li S, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl Phys Lett 82(20):3562

    Article  Google Scholar 

  • Takaway T, Fukudaz T, Takadaz T (1997) Flexural – torsion coupling vibration control of fiber composite cantilevered beam by using piezoceramic actuators. Smart Mater Struct 6:477–484

    Article  Google Scholar 

  • Thundat T, Warmack RJ, Chen GY, Allison DP (1994) Thermal and ambient-induced deflections of scanning force microscope cantilevers. Appl Phys Lett 64:2894–2898

    Article  Google Scholar 

  • Thundat T, Sharp S, Fisher W, Warmack R, Wachter E (1995) Micromechanical radiation dosimeter. Appl Phys Lett 66:1563

    Article  Google Scholar 

  • Tian F, Pei J, Hedden D, Brown G, Thundat T (2004) Observation of the surface stress induced in microcantilevers by electrochemical redox processes. Ultramicroscopy 100:217

    Article  Google Scholar 

  • Townsend PH, Barnett DM, Brunner TA (1987) Elastic relationship in layered composite media with approximation for the case of thin films on a thick substrate. J Appl Phys 62(11): 4438–4444

    Article  Google Scholar 

  • Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32:389

    Article  Google Scholar 

  • Wachter EA, Thundat T (1995) Micromechanical sensors for chemical and physical measurements. Rev Sci Instrum 66(6):3662–3667

    Article  Google Scholar 

  • Weigert S, Dreier M, Hegner M (1996) Frequency shifts of cantilevers vibrating in various media. Appl Phys Lett 69(19):2834–2836

    Article  Google Scholar 

  • Xie WC, Lee HP, Lim SP (2003) Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn 31:243–256.

    Article  MATH  Google Scholar 

  • Yang M, Zhang X, Vafai K, Ozkan CS (2003) High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding. J Micromech Microeng 13:864–872

    Article  Google Scholar 

  • Yue M, Lin H, Dedrick DE, Satyanarayana S, Majumdar A, Bedekar AS, Jenkins JW, Sundaram S (2004) A 2-D microcantilever array for multiplexed biomolecular analysis. J Microelectromech Syst 13(2):290–299

    Article  Google Scholar 

  • Zhang J, Feng H (2004) Antibody-immobilized microcantilever for the detection of Escherichia coli. Anal Sci 20:585

    Article  Google Scholar 

  • Zhang W, Meng G (2005) Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS. Sens Actuators A 119:291

    Article  Google Scholar 

  • Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379:946–959

    Google Scholar 

  • Zurn S, Hsieh M, Smith G, Markus D, Zang M, Hughes G, Nam Y, Arik M, Polla D (2001) Fabrication and structural characterization of a resonant frequency PZT microcantilever. Smart Mater Struct 10:252–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Jalili .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jalili, N. (2010). Piezoelectric-Based Nanomechanical Cantilever Sensors. In: Piezoelectric-Based Vibration Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0070-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0070-8_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0069-2

  • Online ISBN: 978-1-4419-0070-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics