Skip to main content

Applying Nanotechnology to Revolutionary Chemical and Biological Countermeasures

  • Chapter
  • First Online:
  • 947 Accesses

Abstract

Basic research in nanoscience, funded by governments and industries around the world, has grown dramatically in the last decade. Nanotechnology is expected to affect the world in important ways, much as the chemical, semiconductor, and biotechnology industries have done over the past 75 years. There is tremendous interest and commensurate investment in the potential for scientific discovery at the nanoscale to deliver revolutionary breakthroughs in medicine, computing, materials, and consumer goods. As researchers continue to explore and understand the unique physical phenomena of engineered nanomaterials, technologies employing novel nanoscience will begin to impact all technologies, including chemical and biological (CB) defense applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes and References

  1. Schmedake TA, Cunin F, Link JR, Sailor MJ et al (2002) Standoff detection of chemicals using porous silicon “smart dust” particles. Adv. Mater. 14: 1270–1272

    Article  CAS  Google Scholar 

  2. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science. 281: 2013–2016

    Article  CAS  Google Scholar 

  3. Chan WCW, Niw S. (1998) Quantum dot bio-conjugates for ultrasensitive non-isotopic detection. Science. 281: 2016–2018

    Article  CAS  Google Scholar 

  4. Nam JM, Thaxton CS, Mirkin CA et al (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301: 1884–1886

    Article  CAS  Google Scholar 

  5. Alivisatos AP (2004) The use of nanocrystals in biological detection. Nat. Biotech. 22: 47–52

    Article  CAS  Google Scholar 

  6. (2008) Chem. and biological defense program annual report to Congress. US Department of Defense. http://www.acq.osd.mil/cp/cbdreports/cbdreporttocongress2008.pdf

    Google Scholar 

  7. Bernard R. Information paper mission oriented protective posture (MOPP) and chem. protection. US Department of Defense. http://www.gulflink.osd.mil/mopp/

    Google Scholar 

  8. Joint service lightweight integrated suit technology (JSLIST) ensemble. http://www.jpeocbd.osd.mil/page_manager.asp?pg=2&sub=41

    Google Scholar 

  9. Schneider BR (2004) Combat effectiveness in MOPP-4 lessons from the U.S. Army CANE exercises, in The War Next Time: Countering Rogue States and Terrorists Armed with Chem. and Biological Weapons, 2nd edn, Schneider BR, Colonel Davis JA (eds). Air War College, Maxwell AFB, Alabama, pp 173–182. http://www.au.af.mil/au/awc/awcgate/cpc-pubs/war_next_time/schneider2.pdf

    Google Scholar 

  10. Watanabe H, Vendamme R, Kunitake T. (2007) Development of fabrication of giant nanomembranes. Bull. Chem. Soc. Jpn. 80: 433–440.

    Article  CAS  Google Scholar 

  11. Deval J, Umali TA, Spencer BL, Lan EH, Dunn B, Ho CM (2003) Reconfigurable hydrophobic/hydrophilic surfaces based on self-assembled monolayers. Proc. Mater. Res. Soc. 774: 203–208.

    CAS  Google Scholar 

  12. Rowsell J, Yaghi OM (2004) Metal-organic frameworks: A new class of porous mater. Micro. Meso. Mater. 73: 3.

    Article  CAS  Google Scholar 

  13. Ni Z, Yasser A, Antoun T, Yaghi OMJ (2005) Porous metal-organic truncated octahedron constructed from paddle-wheel squares and terthiophene links. Am. Chem. Soc. 127: 12752.

    Article  CAS  Google Scholar 

  14. NSA “Trusted Access Program Office.” http://www.nsa.gov/business/tapo.cfm

    Google Scholar 

  15. IA in action. (2006) Military information technology, Vol. 10. http://www.military-information-technology.com/article.cfm?DocID=1298

    Google Scholar 

  16. For more information, see Rodgers JR, Cebon D (eds.) (2006) Mater. Inform. Mater. Res. Soc. 31 http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=7324&DID=181667

    Google Scholar 

  17. One early research example is Tsujita Y, Yoshimizu H, Okamoto S et al (2005) Smart membrane: Preparation of molecular cavity and preferential sorption of small molecule. J. Mol. Struct. 739: 3–12.

    Article  CAS  Google Scholar 

  18. Ouyang H, Archer M, Fauchet PM (2007) Porous silicon electrical and optical biosensors, in Frontiers in Surface Nanophotonics, in Frontiers in Surface Nanophotonics, Andrews DL and Gaburro Z (eds) pp. 49–72. Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  19. Kim HK, Min J, Kim JH, Chang H et al (2006) Membrane electrode assembly for passive direct methanol fuel cells. J. Power Sources. 162: 497–501.

    Article  CAS  Google Scholar 

  20. DeLuca NW, Elabd YA (2006) Polymer electrolyte membranes for the direct methanol ful cell: A review. J. Polym. Sci. B: Polym. Phys. 44: 2201–2225.

    Article  CAS  Google Scholar 

  21. Michel M, Taylor A, Sekol R, Podsiadlo P, Ho P, Kotov N, Thompson L, et al (2007) High-performance nanostructured membrane electrode assemblies for fuel cells made by layer-by-layer assembly of carbon nanocolloids. Adv. Mater. 19: 3859–3864.

    Article  CAS  Google Scholar 

  22. Fernández JE (2007) Materials for aesthetic, energy-efficient, and self-diagnostic buildings. Science. 315: 1807–1810.

    Article  CAS  Google Scholar 

  23. Jung YC, Bhushan B (2006) Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces. Nanotechnology. 17: 2758–2772.

    Article  Google Scholar 

  24. Nosonovsky M, Bhushan B (2005) Roughness optimization for biomimetic superhydrophobic surfaces. Microsyst. Technol. 11: 535–549.

    Article  CAS  Google Scholar 

  25. Palermo V, Samorì P Molecular self-assembly across multiple length scales. Angew. Chem. Int. Ed. 46: 4428–4432.

    Google Scholar 

  26. Cerulli M (2007) Chemical and biological threat detection systems of the future. Chem-Bio Defense Q. 4:18–21. http://www.jpeocbd.osd.mil/documents/Vol_4_Issue_2.pdf

    Google Scholar 

  27. Improving civilian medical response report. National Research Council. http://www.nap.edu/catalog.php?record_id=6364

    Google Scholar 

  28. Voiculescu I et al (2006) Micropreconcentrator for enhanced trace detection of explosives and Chemical agents. IEEE S. J. 6: 1094–1104.

    Article  CAS  Google Scholar 

  29. Hahm J, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters, 4: 51–54.

    Article  CAS  Google Scholar 

  30. McAlpine MC, Ahmad H, Wang D, Heath JR et al (2007) Highly Ordered Nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6: 379–384.

    Article  CAS  Google Scholar 

  31. Standoff detection report: Existing and potential standoff explosive detection techniques. National Research Council. http://books.nap.edu/openbook.php?record_id=10998

    Google Scholar 

  32. Ward DR, Grady NK, Levin CS, Hals NJ, Wu Y, Nordlander P, Natelson D (2007) Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano. Lett. 7: 1396–1400.

    Article  CAS  Google Scholar 

  33. Knap W, Lusakowski J, Teppe F, Dyakonova N, El Fatimy A et al (2006) Terahertz emission and detection by plasma waves in nanometer size field effect transistors. IEEE Trans. Electron. E89C: 926–930.

    Google Scholar 

  34. Teppe F et al (2006) Room temperature tunable detection of subterahertz radiation by plasma waves in nanometer In GaAs transistors. Appl. Phys. Lett. 89:222109-222123.

    Article  CAS  Google Scholar 

  35. Lu JY et al (2006) Terahertz microchip for illicit drug detection. IEEE Photo. Tech. Lett. 18: 2254–2256.

    Article  Google Scholar 

  36. ChemSentry TM 150C point chemical vapor detection system. BAE Systems. http://www.ids.na.baesystems.com/Products/chemstry/chemsentry_3.htm.

    Google Scholar 

  37. Unattended ground sensors. (2004) Army Magazine. http://www.ausa.org/webpub/DeptArmyMagazine.nsf/byid/CCRN-6CCSE7.

    Google Scholar 

  38. McAlpine MC, Ahmad H, Wang D, Heath JR. (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater. 6:379–384.

    Article  CAS  Google Scholar 

  39. Braun E et al (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 391: 775–778.

    Article  CAS  Google Scholar 

  40. Fischler M et al (2007) Formation of bimetallic Ag-Au nanowires by metallization of artificial DNA duplexes. Small. 3(6): 1049–1055.

    Article  CAS  Google Scholar 

  41. Aherne D et al (2007) Diameter-dependent evolution of failure current density of highly conducting DNA-templated gold nanowires. Nanotechnology. 18: 125205–125210.

    Article  CAS  Google Scholar 

  42. Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA et al (2008) DNA-programmable nanoparticle crystallization. Nature. 451: 553–556.

    Article  CAS  Google Scholar 

  43. Budimir N, Weston DJ, Creaser CS et al (2007) Analysis of pharmaceutical formulations using atmospheric pressure ion mobility spectrometry combined with liquid chromatography and nano-electrospray ionization. Analyst. 132: 34–40.

    Article  CAS  Google Scholar 

  44. Chang HW, Shih JS (2007) Surface acoustic wave immunosensors based on immobilized C60-proteins. Sens. Actuators B Chem. 121: 522–529.

    Article  CAS  Google Scholar 

  45. Yoo BK, Park YW, Kang CY, Yoon SJ, Kim JS et al (2006) Surface acoustic wave sensors to detect volatile gases by measuring output phase shift. J. Electrocer. 17: 1013–1017.

    Article  CAS  Google Scholar 

  46. Rao YL, Zhang GG. (2006) Enhancing the sensitivity of SAW sensors with nanostructures. Curr. NanoSci. 2: 311–318.

    Article  CAS  Google Scholar 

  47. Pinnaduwage LA et al (2004) A sensitive, handheld vapor sensor based on microcantilevers. Rev. Sci. Instrum. 75: 4554–4557.

    Article  CAS  Google Scholar 

  48. Novak JP et al (2003) Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83: 4026–4028.

    Article  CAS  Google Scholar 

  49. Mcgill RA et al (2000) The “NRL-SAWRHINO”: A nose for toxic gases. Sens. Actuators B Chem. 65: 10–13.

    Article  Google Scholar 

  50. Riegner et al. (1997) Qualitative evaluation of field ion spectrometry for chem. warfare agent detection. Proceedings of the 45th ASMS Conference on Mass Spectrometry and Allied Topics 473.

    Google Scholar 

  51. Sheehan PE, Whitman LJ (2005) Detection limits for nanoscale biosensors. Nano. Lett. 5: 803–807.

    Article  CAS  Google Scholar 

  52. Rife JC et al (2003) Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sens. Actuators A Phys. 107: 209–218.

    Article  CAS  Google Scholar 

  53. Derks RJS, Dietzel A, Wimberger-Friedl R, Prins MWJ et al (2007) Magnetic bead manipulation in a sub-microliter fluid volume applicable for biosensing. Micro. Nano. 3: 141–149.

    CAS  Google Scholar 

  54. Zhang DH et al (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano. Lett. 4: 1919–1924.

    Article  CAS  Google Scholar 

  55. Blank K et al (2003) A force-based protein biochip. Proc. Natl. Acad. Sci. USA. 100: 1356–1360.

    Article  CAS  Google Scholar 

  56. Adams JD et al (2005) Piezoelectric self-sensing of adsorption-induced microcantilever bending. Sens. Actuators A Phys. 121: 457–461.

    Article  CAS  Google Scholar 

  57. Pinnaduwage LA, Ji HF, Thundat T et al (2005) Moore’s law in homeland defense: An integrated sensor platform based on silicon microcantilevers. IEEE Sens. J. 5: 774–785.

    Article  CAS  Google Scholar 

  58. Mack NH et al (2007) Optical transduction of chemical forces. Nano. Lett. 7: 733–737.

    Article  CAS  Google Scholar 

  59. Gao L, Song QY, Patterson GE, Cooks RG, Ouyang Z et al (2006) Handheld rectilinear ion trap mass spectrometer. Anal. Chem. 78: 5994–6002.

    Article  CAS  Google Scholar 

  60. Rugar D, Budakian R, Mamin HJ, Chui BW et al (2004) Single spin detection by magnetic resonance force microscopy. Nature. 430: 329–332.

    Article  CAS  Google Scholar 

  61. Mamin HJ, Budakian R, Chui BW, Rugar D et al (2005) Magnetic resonance force microscopy of nuclear spins: Detection and manipulation of statistical polarization. Phys. Rev. B 72: 24,413–24,419.

    Google Scholar 

  62. Yan F, Vo-Dinh T. (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sens. Actuators B Chem. 121: 61–66.

    Article  CAS  Google Scholar 

  63. Mahajan S et al (2007) Tuning plasmons on nano-structured substrates for NIR-SERS. Phys. Chem. Chem. Phys. 9: 104–109.

    Article  CAS  Google Scholar 

  64. Okamoto T, H’Dhili F, Kawata S (2004) Towards plasmonic band gap laser. Appl. Phys. Lett. 85: 3968–3970.

    Article  CAS  Google Scholar 

  65. Moskovits M, Jeong DH, Livneh T, Wu YY, Stucky GD (2006) Engineering nanostructures for single-molecule surface-enhanced Raman spectroscopy. Isr. J. Chem. 46: 283–291.

    CAS  Google Scholar 

  66. Su KH et al (2006) Raman enhancement factor of a single tunable nanoplasmonic resonator. J. Phys. Chem. B 110: 3964–3968.

    Article  CAS  Google Scholar 

  67. Stewart ME et al (2006) Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc. Natl. Acad. Sci. USA. 103: 17143–17148.

    Article  CAS  Google Scholar 

  68. Lim SH, Raorane D, Satyanarayana S, Majumdar A et al (2006) Nano-chemo-mechanical sensor array platform for high-throughput Chem. analysis. Sens. Actuators B Chem. l119: 466–474.

    Article  CAS  Google Scholar 

  69. Reed J, Wilkinson P, Schmit J, Klug W, Gimzewski JK et al (2006) Observation of nanoscale dynamics in cantilever sensor arrays. Nanotechnology. 17: 3873–3879.

    Article  CAS  Google Scholar 

  70. Ancona MG, Snow AW, Foos EE, Kruppa W, Bass R et al (2006) Scaling properties of gold nanocluster chemiresistor sensors. IEEE Sens. J. 6: 1403.

    Article  CAS  Google Scholar 

  71. Lei H, Pitt WG (2007) Selection of polymeric sensor arrays for quantitative analysis. Sen. Actuators B Chem. 120: 386–391.

    Article  CAS  Google Scholar 

  72. Shaffer RE, Rose-Pehrsson SL, Mcgill RA et al (1999) A comparison study of chemical sensor array pattern recognition algorithms. Anal. Chim. Act. 384: 305–317

    Article  CAS  Google Scholar 

  73. Kramer KE, Rose-Pehrsson SL, Hammond MH, Tillett D, Streckert HH et al (2007) Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array. Anal. Chim. Act. 584: 78–88.

    Article  CAS  Google Scholar 

  74. Hammond MH et al (2006) A novel chemical detector using cermet sensors and pattern recognition methods for toxic industrial chemicals. Sens. Actuators B Chem. 116: 135–144.

    Article  CAS  Google Scholar 

  75. Porath D, Bezryadin A, De VS, Dekker C et al (2000) Direct measurement of electrical transport through DNA molecules. Nature. 403: 635–638.

    Article  CAS  Google Scholar 

  76. Kang SJ et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotech. 2: 230–236.

    Article  CAS  Google Scholar 

  77. Lay MD, Novak JP, Snow ES et al (2004) Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano. Lett. 4: 603–606.

    Article  CAS  Google Scholar 

  78. Dunwei Wang D, Sheriff BA, Heath JR (2006) Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett. 6: 1096–1100.

    Article  CAS  Google Scholar 

  79. Patolsky F, Timko BP, Zheng G, Lieber CM et al (2007) Nanowire-based devices in the life Sci.s. MRS Bulletin 32: 142–149

    Article  CAS  Google Scholar 

  80. Rhyner MN et al (2006) Quantum dots and multifunctional nanoparticles: New contrast agents for tumor imaging. Nanome. 1: 209–217.

    Article  CAS  Google Scholar 

  81. Alivisatos P. (2004) The use of nanocrystals in biological detection. Nat. Biotechnol. 22: 47–52.

    Article  CAS  Google Scholar 

  82. Rhyner MN et al (2006) Quantum dots and multifunctional nanoparticles: New contrast agents for tumor imaging. Nanomedicine. 1: 209–217.

    Article  CAS  Google Scholar 

  83. Zimmer JP et al (2006) Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc. 128: 2526–2527.

    Article  CAS  Google Scholar 

  84. Cheng MMC et al. (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Bio. 10: 11–19

    Article  CAS  Google Scholar 

  85. Schmedake TA, Cunin F, Link JR, Sailor MJ. (2002) Standoff detection of chemicals using porous silicon “smart dust” particles.” Adv. Mater. 14: 1270–1272.

    Article  CAS  Google Scholar 

  86. Salem MS, Sailor MJ, Harraz FA, Sakka T, Ogata YH (2006) Electrochemical stabilization of porous silicon multilayers for sensing various chemical compounds. J. Appl. Phys. 100: 083250–7

    Google Scholar 

  87. Sboros V et al (2006) Nanointerrogation of ultrasonic contrast agent microbubbles using atomic force microscopy. Ultrasound Med. Biol. 32: 579–588.

    Article  Google Scholar 

  88. Martin CR (2006) Welcome to nanomedicine. Nanomed. 1: 5–9.

    Article  Google Scholar 

  89. DeHennis AD, Wise KD (2005) A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity. J. Microelectromech. Sys. 14: 12–22.

    Article  Google Scholar 

  90. Lu CJ et al (2005) First-generation hybrid MEMS gas chromatograph. Lab on A Chip. 5: 1123–1131.

    Article  CAS  Google Scholar 

  91. Monaghan PB et al (2007) Bead-based DNA diagnostic assay for chlamydia using nanoparticle-mediated surface-enhanced resonance Raman scattering detection within a lab-on-a-chip format. Anal. Chem. 79: 2844–2849.

    Article  CAS  Google Scholar 

  92. Ligler FS et al (2007) The array biosensor: Portable, automated systems. Anal. Sci. 23: 5–10.

    Article  Google Scholar 

  93. Walt DR (2006) Fiber optic array biosensors. Biotechnology. 41: 529–535.

    Article  CAS  Google Scholar 

  94. Zimmermann M, Delamarche E, Wolf M, Hunziker P et al (2005) Biomed. Microdevices. 7(2): 99–110.

    Article  CAS  Google Scholar 

  95. Lee YH, Yoo JM, Lee JH Ju BK et al (2006) All-carbon nanotube-based junction with virtual source and drain of carbon nanotubes by in situ one-step process for practical integrated nanoelectronics. Appl. Phys. Lett. 89: 243104–243107.

    Article  CAS  Google Scholar 

  96. Choi WB, Kim DH, Choi YC, Huang JY et al (2007) Junction single-wall carbon nanotube electronics. JOM 59: 44–49.

    Article  CAS  Google Scholar 

  97.  97. Bandaru PR (2007) Electrical characterization of carbon nanotube Y-junctions: A foundation for new nanoelectronics. J. Mater. Sci. 42: 1809–1818.

    Article  CAS  Google Scholar 

  98.  98. Avouris P, Chen J (2006) Nanotube electronics and optoelectronics. Mater. Today. 9: 46–54.

    Article  CAS  Google Scholar 

  99.  99. Schmidt M, Eich M, Huebner U, Boucher R et al (2005) Electro-optically tunable photonic crystals. Appl. Phys. Lett. 87: 121110–121119.

    Article  CAS  Google Scholar 

  100. Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens. Bioelectron. 20: 2454–2469.

    Article  CAS  Google Scholar 

  101. Kawazoe T, Yatsui T, Ohtsu M et al (2006) Nanophotonics using optical near fields. J. Non-Cryst. Sol. 352: 2492–2495.

    Article  CAS  Google Scholar 

  102. Huang Y, Duan XF, Lieber CM et al (2005) Nanowires for integrated multicolor nanophotonics. Small. 1: 142–147.

    Article  CAS  Google Scholar 

  103. Zheludev NI (2006) Single nanoparticle as photonic switch and optical memory element. J Optics A Pure Appl. Optics. 8: S1–S8.

    Article  Google Scholar 

  104. Guan MJ, Liao WH (2007) On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Mater. Struct.16: 498–505.

    Article  CAS  Google Scholar 

  105. Wang S et al (2007) Energy harvesting with piezoelectric drum transducer. Appl. Phys. Lett. 90: 113506–113516.

    Article  CAS  Google Scholar 

  106. Wang XD, Song JH, Liu J, Wang ZL et al (2007) Direct-current nanogenerator driven by ultrasonic waves. Science. 316: 102–105.

    Article  CAS  Google Scholar 

  107. Pei Q, Pelrine R, Stanford S, Kornbluh R, Rosenthal M et al (2003) Electroelastomer rolls and their application for biomimetic walking robots. Syn. Met. 135: 129–131.

    Article  CAS  Google Scholar 

  108. Pelrine R, Kornbluh R, Kofod G et al (2000) High-strain actuator material based on dielectric elastomers. Adv. Mater. 12: 1223–1225.

    Article  CAS  Google Scholar 

  109. Nguyen HQ, Cha GY, Yu JB, Huh JS et al (2006) Improvement in sensitivity and recovery of single-walled carbon nanotube-based gas sensors. Rare Metal Mater. Eng. 35: 188–189

    CAS  Google Scholar 

  110. Cho WS et al (2006) Patterned multiwall carbon nanotube films as Mater. of NO2 gas sensors. Sens. Actuators B Chem. 119: 180–185

    Article  CAS  Google Scholar 

  111. Johnson ATC et al (2006) DNA-decorated carbon nanotubes for Chem. sensing. Physica Status Solidi B-Basic Solid State Phys. 243: 3252–3256

    Article  CAS  Google Scholar 

  112. Wang RX, Zhang DJ, Zhang YM, Liu CB et al (2006) Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde. J. Phys. Chem. B 110: 18267–18271.

    Article  CAS  Google Scholar 

  113. Sun ZY et al (2006) Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol. J. Phys. Chem. B 110: 13410–13414

    Article  CAS  Google Scholar 

  114. Choi HN, Yoon SH, Lyu YK, Lee WY et al (2007) Electrogenerated chemiluminese ethanol biosensor based on carbon nanotube-titania-nafion composite film. Electroanalysis. 19: 459–465.

    Article  CAS  Google Scholar 

  115. Ferrer-Anglada N, Kaempgen M, Roth S et al (2006) Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors. Phys. Status Solid B-Basic Solid State Phys. 243: 3519–3523.

    Article  CAS  Google Scholar 

  116. Pumera M, Merkoci A, Alegret S et al (2006) Carbon nanotube-epoxy composites for electrochemical sensing. Sens. Actuators B Chem. 113: 617–622.

    Article  CAS  Google Scholar 

  117. Watts PCP, Lyth SM, Mendoza E, Silva SRP et al (2006) Polymer supported carbon nanotube arrays for field emission and sensor devices. Appl. Phys. Lett. 89: 103113–103124.

    Article  CAS  Google Scholar 

  118. Fujiwara M, Shiokawa K, Hayashi K, Morigaki K, Nakahara Y et al (2007) Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres). J. Biomed. Mater. Res. A 81: 103–112.

    Google Scholar 

  119. Al-Jamal WT, Kostarelos K (2007) Construction of nanoscale multicompartment liposomes for combinatory drug delivery. Int. J. Pharm. 331: 182–185.

    Article  CAS  Google Scholar 

  120. Gomez-Graete C, Tsapis N, Besnard M, Bochot A, Fattal E et al (2007) Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int. J. Pharm. 331: 153–159.

    Article  CAS  Google Scholar 

  121. Cui Y, Wei Q, Park H, Lieber CM et al (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 293: 1289–1292.

    Article  CAS  Google Scholar 

  122. Mahar B, Laslau C, Yip R, Sun Y et al (2007) Development of carbon nanotube-based sensors – A review. IEEE Sens. J. 7: 266–284.

    Article  CAS  Google Scholar 

  123. Cheng MM et al (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10: 11–19.

    Article  CAS  Google Scholar 

  124. Lang HP, Hegner M, Meyer E, Gerber C et al (2002) Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology. 13: R29–R36.

    Article  CAS  Google Scholar 

  125. Snow ES, Perkins FK, Robinson JA et al (2006) Chemical vapor detection using single-walled carbon nanotubes. Chem. Soc. Rev. 35: 790–798.

    Article  CAS  Google Scholar 

  126. Nanotechnology innovation for chemical, biological, radiological, and explosive (CBRE): Detection and protection. 2002. Final workshop report. WTEC and the AVS Science and Technology Society.

    Google Scholar 

  127. Moulton SE, Minett A, Wallace GG et al (2005) Carbon nanotube based electronic and electrochemical sensors. Sens. Lett. 3: 183–193.

    Article  CAS  Google Scholar 

  128. Su KH et al (2006) Raman enhancement factor of a single tunable nanoplasmonic resonator. J. Phys. Chem. B 110: 3964–3968.

    Article  CAS  Google Scholar 

  129. Astilean S (2007) Noble-metal nanostructures for controlling surface plasmons and sensing molecules. Radiat. Phys. Chem. 76: 436–439.

    Article  CAS  Google Scholar 

  130. Yan XD, Ji HF, Thundat T et al (2006) Microcantilever (MCL) biosensing. Curr. Anal. Chem. 2: 297–307.

    Article  CAS  Google Scholar 

  131. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature. 442: 387–393.

    Article  CAS  Google Scholar 

  132. Weibel DB, Whitesides GM (2006) Applications of microfluidics in Chemical Biology. Curr. Opin. Chem. Biol. 10: 584–591.

    Article  CAS  Google Scholar 

  133. Whitesides GM (2006) The origins and the future of microfluidics. Nature. 442: 368–373.

    Article  CAS  Google Scholar 

  134. Kobasa D et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature. 445: 319–323.

    Article  CAS  Google Scholar 

  135. Ringeisen BR, Ray R, Little B et al (2007) A miniature microbial fuel cell operating with an aerobic anode chamber. J. Power Sources. 165: 591–597.

    Article  CAS  Google Scholar 

  136. Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR (2007) A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 22: 1672–1679.

    Article  CAS  Google Scholar 

  137. Wang ZL (2007) Nanopiezotronics. Adv. Mater. 19: 889–892.

    Article  CAS  Google Scholar 

  138. Rearden M, Janin M Nano risk framework. http://www.nanoriskframework.com/page.cfm?tagID=1095.

    Google Scholar 

  139. Ostraat ML, Swain KA, Krajewski JJ et al (2006) Nanoparticle occupational safety and health (NOSH) consortium. 1–38 DuPont.

    Google Scholar 

  140. Mattis DC (2006) Magnetism and superconductivity in nanoarchitectures. Phys. B Condens. Matter. 384: 239–243.

    Article  CAS  Google Scholar 

  141. Mulvaney SP, Mattoussi HM, Whitman LJ et al (2004) Incorporating fluorescent dyes and quantum dots into magnetic microbeads for immunoassays. Biotechnology. 36: 602–609.

    CAS  Google Scholar 

  142. Choi Y, Baker LA, Hillebrenner H, Martin CR et al (2006) Biosensing with conically shaped nanopores and nanotubes. Phys. Chem. Chem. Phys. 8: 4976–4988.

    Article  CAS  Google Scholar 

  143. Silva GA (2007) Nanotech approaches for drug and small molecule delivery across the blood brain barrier. Surg. Neurol. 67: 113–116.

    Article  Google Scholar 

  144. Gross PG, Kartalov EP, Scherer A, Weiner LP et al (2007) Applications of microfluidics for neuronal studies. J. Neurol. Sci. 252: 135–143.

    Article  Google Scholar 

  145. Lieber CM, Wang ZL (2007) Functional nanowires. MRS Bull. 32: 99–108.

    Article  CAS  Google Scholar 

  146. Lucas P et al (2006) Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators B Chem. 119: 355–362.

    Article  CAS  Google Scholar 

  147. Gray SA et al (2001) Design and demonstration of an automated cell-based biosensor. Biosens. Bioelectron. 16: 535–542.

    Article  CAS  Google Scholar 

  148. Patolsky F et al (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science. 313: 1100–1104.

    Article  CAS  Google Scholar 

  149. Khor IW, Lin T, Langedijk JP, Johnson JE, Manchester M et al (2002) Novel strategy for inhibiting viral entry by use of a cellular receptor-plant virus chimera. J. Virol. 76(9): 4412–4419.

    Article  CAS  Google Scholar 

  150. Myc A, Kukowska-Latallo JF, Bielinska AU, Cao P, Myc PP, Janczak K, Sturm TR, Grabinski MS, Landers JJ, Young KS, Chang J, Hamouda T, Olszewski MA, Baker JR (2003) Development of immune response that protects mice from viral pneumonitis after a single intranasal immunization with influenza A virus and nanoemulsion. Vaccine. 21: 3801–3809.

    Article  CAS  Google Scholar 

  151. Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR (2001) A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol. Res. 156: 1–7.

    Article  CAS  Google Scholar 

  152. Richards R, Li W, Decker S, Davidson C, Koper O, Zaikovski V, Volodin A, Rieker T, Klabunde KJ (2000) Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J. Amer. Chem. Soc. 122: 4921–4925.

    CAS  Google Scholar 

  153. Gilliot M et al (2006) Optical properties of cobalt clusters implanted in thin silica layers. Phys. Rev. B 74: 454–465.

    Article  CAS  Google Scholar 

  154. Pauporté T, Bedioui F, Lincot D et al (2005) Nanostructured zinc oxide-chromophore hybrid films with multicolored electrochromic properties. J. Mater. Chem. 15: 1552–1559.

    Article  CAS  Google Scholar 

  155. Suh WH, Jang AR, Suh Y-H, Suslick KS et al Porous, hollow, and ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Adv. Mater. 18: 1832–1837.

    Google Scholar 

  156. Kurth DG, Liu S, Volkmer D, et al (2003) Polyoxometalates in tailored architechtures: From structure to function, in Polyoxometalate Molecular Science, Borrás-Almenar JJ, Coronado E, Muller A, Pope MT (eds). Springer, New York.

    Google Scholar 

  157. Klabunde KJ, Mulukutla R (2001) Chemical and catalytic aspects of nanocrystals, in Nanoscale Materials in Chemistry, Klabunde KJ (ed), pp 223–261. Wiley InterScience, New York.

    Google Scholar 

  158. Koper O, Klabunde J, Marchin G, Klabunde KJ, Stoimenov P, Bohra L et al (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr. Microbiol. 44: 49–55.

    Article  CAS  Google Scholar 

  159. DoD Chemical and Biological Defense Program (CBDP) Transformational Medical technologies Initiative 2008 Report to Congress, http://www.tmti-cbdefense.org/.

    Google Scholar 

  160. National Research Council. (2004) Giving full measure to countermeasures: Addressing problems in the DoD program to develop medical countermeasures against biological warfare agents. Washington, DC: National Academies.

    Google Scholar 

  161. Park KS et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA. 103(27): 10186–10191.

    Article  CAS  Google Scholar 

  162. McAlpine MC, Ahmad H, Wang D and Heath JR (2007) Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6: 379–384.

    Article  CAS  Google Scholar 

  163. Introduction to Nanotechnology, in Nanoscale Materials in Chemistry, Klabunde, KJ (ed). Wiley Interscience, New York (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Kosal .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kosal, M. (2009). Applying Nanotechnology to Revolutionary Chemical and Biological Countermeasures. In: Nanotechnology for Chemical and Biological Defense. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0062-3_3

Download citation

Publish with us

Policies and ethics