Magneto-Optical Properties

  • Gerald F. DionneEmail author


In the previous chapters, the emphasis is placed on the electronic origins of local and collective molecular magnetism in transition-metal oxides and their behavior in alternating magnetic fields. Models of magnetic resonance based on precessing magnetic moments provide a classical analog to quantum mechanical transitions provided that the internal magnetic fields are large enough to produce the Zeeman energy splittings for the particular frequency of interest. In the energy range that can be easily reached by fields from laboratory electromagnets, electron paramagnetic resonance (EPR) and ferromagnetic resonance (FMR) occur in the microwave bands. However, resonances can also occur in magnetically ordered systems at the energies of magnetic exchange. Since the exchange effects occur in the submillimeter and far-infrared bands, but have the properties of a magnetic-dipole stabilization, this topic will serve as a transition to the subject of magneto-optics that is based on magnetically polarized electric-dipole interactions with optical waves.

In the visible and ultraviolet bands, electric-dipole transitions can produce magneto-optical phenomena without the need for large applied magnetic fields. In this regime, the dielectric permittivity tensor with off-diagonal terms can produce nonreciprocal propagation at optical wavelengths analogous to those from magnetic interactions with RF waves. Faraday rotation of the linear polarization of plane-wave transmission and its complementary Kerr reflection effect are of major importance for discrete fiber-optical technology. In later developments, optical waveguides that simulate their microwave counterparts have shown promise for integrated photonics technology that can benefit from the nonreciprocal properties of magneto-optical control devices. To remain within the scope of this volume, the discussion of materials systems will be focused on the room temperature properties of the garnet family of magnetic oxides, first on the basic host compound yttrium iron garnet and then on the dramatic effects of Bi3 + ion substitutions. The discussion will review the work carried out at Lincoln Laboratory and the Department of Physics of the Massachusetts Institute of Technology where the author was an active participant, but is dawn heavily from the pioneering work of scientists at the Mullard Research Laboratories in England and the Philips Research Laboratories in Eindhoven, the Netherlands and Hamburg, Germany.


Orbital Angular Momentum Faraday Rotation Exchange Resonance Yttrium Iron Garnet Tensor Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Chapter 6Google Scholar
  2. 2.
    S. Geschwind and L.R. Walker, J. Appl. Phys. 30, 163S (1959)CrossRefGoogle Scholar
  3. 3.
    G.F. Dionne, J. Appl. Phys. 97, 10F103 (2005)CrossRefGoogle Scholar
  4. 4.
    M. Tinkham, J. Appl. Phys. 33, Suppl. 3, 1248 (1962)Google Scholar
  5. 5.
    G.F. Dionne, J. Appl. Phys. 105, 07A525 (2009)CrossRefGoogle Scholar
  6. 6.
    K.J. Standley and R.A. Vaughn, Electron Spin Relaxation Phenomena in Solids, (Plenum, New York, 1969), Section 1.2Google Scholar
  7. 7.
    A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 73Google Scholar
  8. 8.
    G.F. Dionne, J. Appl. Phys. 79, 5172 (1996)CrossRefGoogle Scholar
  9. 9.
    G.F. Dionne, J. Appl. Phys. 99, 08M913 (2006)CrossRefGoogle Scholar
  10. 10.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Section 6-6Google Scholar
  11. 11.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Section 7-1Google Scholar
  12. 12.
    N. Bloembergen, Proc. IRE 44, 1259 (1956)CrossRefGoogle Scholar
  13. 13.
    Y.R. Shen, Phys. Rev. 133, A511 (1964)CrossRefGoogle Scholar
  14. 14.
    Y.R. Shen and N. Bloembergen, Phys. Rev. 133, A515 (1964)CrossRefGoogle Scholar
  15. 15.
    N. Bloembergen, Nonlinear Optics, (W.A. Benjamin, New York, 1965), p. 27Google Scholar
  16. 16.
    J.C. Suits, IEEE Trans. Magn. 8, 95 (1972)CrossRefGoogle Scholar
  17. 17.
    G.A. Allen and G.F. Dionne, J. Appl. Phys. 73, 6130 (1993)CrossRefGoogle Scholar
  18. 18.
    J.F. Dillon, J. Phys. Radium 20, 374 (1959)CrossRefGoogle Scholar
  19. 19.
    F.J. Kahn, P.S. Pershan, and J.P. Remeika, Phys. Rev. 186, 891 (1969)CrossRefGoogle Scholar
  20. 20.
    G.B. Scott, D.E. Lacklison, H.I. Ralph, and J.L. Page, Phys. Rev. B12, 2562 (1975)Google Scholar
  21. 21.
    S. Wittekoek, T.J.A. Popma, J.M. Robertson, and P.F. Bongers, Phys. Rev. B12, 2777 (1975)Google Scholar
  22. 22.
    V. Doorman, J.-P. Krumme, and H. Lenz, J. Appl. Phys. 68, 3544 (1990)CrossRefGoogle Scholar
  23. 23.
    G.A. Allen, PhD Thesis, MIT Department of Physics, 1994Google Scholar
  24. 24.
    G.A. Allen and G.F. Dionne, J. Appl. Phys. 93, 6951 (2003)CrossRefGoogle Scholar
  25. 25.
    G.F. Dionne and G.A. Allen, J. Appl. Phys. 73, 6127 (1993)CrossRefGoogle Scholar
  26. 26.
    G.F. Dionne and G.A. Allen, J. Appl. Phys. 75, 6372 (1994)CrossRefGoogle Scholar
  27. 27.
    G.B. Scott, D.E. Lacklison, and J.L. Page, Phys. Rev. B10, 971 (1974)Google Scholar
  28. 28.
    G.B. Scott and J.L. Page, Phys. Stat. Solidi b79, 203 (1977)Google Scholar
  29. 29.
    A.M. Clogston, J. Phys. Radium 20, 151 (1959)Google Scholar
  30. 30.
    C.F. Buhrer, J. Appl. Phys. 40, 4500 (1969)CrossRefGoogle Scholar
  31. 31.
    K. Matsumoto, S. Sasaki, K. Haraga, Y. Asahara, K. Yamaguchi, and T. Fujii, IEEE Trans. Magn. 28, 2985 (1992)CrossRefGoogle Scholar
  32. 32.
    Z. Simsa, J. Simsova, D. Zemanova, J. Cermak, and M. Nevriva, Czech. J. Phys. B 34, 1102 (1984)Google Scholar
  33. 33.
    Y. Tanabe and S. Sugano, J. Phys. Soc. (Japan) 9, 753 (1954)Google Scholar
  34. 34.
    D.E. Lacklison, G.B. Scott, and J.L. Page, Solid State Commun. 14, 861 (1974)CrossRefGoogle Scholar
  35. 35.
    D.R. Lide, Ed., Handbook of Chemistry and Physics, 73rd Ed., (CRC Press, Boca Raton, FL, 1992–1993)Google Scholar
  36. 36.
    D.L. Wood and J.P. Remeika, J. Appl. Phys. 38, 1038 (1967)CrossRefGoogle Scholar
  37. 37.
    S. Wittekoek and D.E. Lacklison, Phys. Rev. Lett. 28, 740 (1972); also A.B. McLay and M.F. Crawford, Phys. Rev. 44, 986 (1933)Google Scholar
  38. 38.
    P. Hansen, W. Tolksdorf, and K. Witter, IEEE Trans. Magn. 17, 3211 (1981)CrossRefGoogle Scholar
  39. 39.
    P. Hansen, K. Witter, and W. Tolksdorf, Phys. Rev. B 27, 6608 (1983)Google Scholar
  40. 40.
    S.H. Wemple, S.L. Blank, J.A. Seman, and W.A. Biolsi, Phys. Rev. B 9, 2134 (1974)Google Scholar
  41. 41.
    S. Wittekoek and T.J.A. Popma, J. Appl. Phys. 44, 5560 (1973)CrossRefGoogle Scholar
  42. 42.
    A. Thavendrarajah, M. Pardavi-Horvath, P.E. Wigen, and M. Gomi, IEEE Trans. Magn. 25, 4015 (1989)CrossRefGoogle Scholar
  43. 43.
    G.F. Dionne and G.A. Allen, J. Appl. Phys. 95, 7333 (2004)CrossRefGoogle Scholar
  44. 44.
    G.F. Dionne, J. Appl. Phys. 41, 4874 (1970)CrossRefGoogle Scholar
  45. 45.
    Y. Tanabe, T. Moriya, and S. Sugano, Phys. Rev. Letts. 15, 1023 (1965)Google Scholar
  46. 46.
    J.P. van der Ziel, J.F. Dillon, and J.P. Remeika, 17th Annu. Conf. Magn. Magn. Mater., AIP Conf. Proc. No. 5, 254 (1971)Google Scholar
  47. 47.
    B. Andlauer, J. Schneider, and W. Wettling, Appl. Phys. 10, 189 (1976)CrossRefGoogle Scholar
  48. 48.
    G. Winkler, Magnetic Garnets, (Vierweg, Braunschweig, 1981), Chapter 4Google Scholar
  49. 49.
    T. Tepper, C.A. Ross, and G.F. Dionne, IEEE Trans. Magn. 40, 1685 (2004)CrossRefGoogle Scholar
  50. 50.
    A. Rajamani, G.F. Dionne, D. Bono, and C.A. Ross, J. Appl. Phys. 98, 063907 (2005)CrossRefGoogle Scholar
  51. 51.
    D.S. Schmool, N. Keller, M. Guyot, R. Krishnan, and M. Tessier, J. Appl. Phys. 86, 5712 (1999)CrossRefGoogle Scholar
  52. 52.
    G.F. Dionne A.R. Taussig, M. Bolduc, L. Bei, and C.A. Ross, J. Appl. Phys. 101, 09C524 (2007)Google Scholar
  53. 53.
    N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. (Weinhein, Ger.) 17, 2225 (2005)Google Scholar
  54. 54.
    H. Guo, J. Burgess, S. Street, A. Gupta, T.G. Calarese, and M.A. Subramanian, Appl. Phys. Lett. 89, 022509 (2006)CrossRefGoogle Scholar
  55. 55.
    M. Guillot, H. Le Gall, J.M. Desvignes, and M. Artinian, J. Appl. Phys. 70, 6401 (1991)CrossRefGoogle Scholar
  56. 56.
    J. Ostorero and M. Guillot, J. Appl. Phys. 83, 6756 (1998)CrossRefGoogle Scholar
  57. 57.
    F.M. Johnson and A.H. Nethercot, Jr., Phys. Rev. 114, 705 (1959)CrossRefGoogle Scholar
  58. 58.
    S. Foner, J. Phys. Radium 20, 336 (1959)Google Scholar
  59. 59.
    E.S. Dayhoff, Phys. Rev. 107, 84 (1957)CrossRefGoogle Scholar
  60. 60.
    G.S. Heller, J.J. Stickler, and J.B. Thaxter, J. Appl. Phys. 32, 307S (1961)CrossRefGoogle Scholar
  61. 61.
    J.J. Stickler and G.S. Heller, J. Appl. Phys. 33, 1302 (1962)CrossRefGoogle Scholar
  62. 62.
    R.C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961)CrossRefGoogle Scholar
  63. 63.
    F. Keffer, A.J. Sievers III, and M. Tinkham, J. Appl. Phys. 32, 65S (1961)CrossRefGoogle Scholar
  64. 64.
    H. Kondoh, J. Phys. Soc. Japan, 15, 1970 (1960)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations