Magnetic Oxides pp 343-384 | Cite as
Magneto-Optical Properties
- 1 Citations
- 1.4k Downloads
Abstract
In the previous chapters, the emphasis is placed on the electronic origins of local and collective molecular magnetism in transition-metal oxides and their behavior in alternating magnetic fields. Models of magnetic resonance based on precessing magnetic moments provide a classical analog to quantum mechanical transitions provided that the internal magnetic fields are large enough to produce the Zeeman energy splittings for the particular frequency of interest. In the energy range that can be easily reached by fields from laboratory electromagnets, electron paramagnetic resonance (EPR) and ferromagnetic resonance (FMR) occur in the microwave bands. However, resonances can also occur in magnetically ordered systems at the energies of magnetic exchange. Since the exchange effects occur in the submillimeter and far-infrared bands, but have the properties of a magnetic-dipole stabilization, this topic will serve as a transition to the subject of magneto-optics that is based on magnetically polarized electric-dipole interactions with optical waves.
In the visible and ultraviolet bands, electric-dipole transitions can produce magneto-optical phenomena without the need for large applied magnetic fields. In this regime, the dielectric permittivity tensor with off-diagonal terms can produce nonreciprocal propagation at optical wavelengths analogous to those from magnetic interactions with RF waves. Faraday rotation of the linear polarization of plane-wave transmission and its complementary Kerr reflection effect are of major importance for discrete fiber-optical technology. In later developments, optical waveguides that simulate their microwave counterparts have shown promise for integrated photonics technology that can benefit from the nonreciprocal properties of magneto-optical control devices. To remain within the scope of this volume, the discussion of materials systems will be focused on the room temperature properties of the garnet family of magnetic oxides, first on the basic host compound yttrium iron garnet and then on the dramatic effects of Bi3 + ion substitutions. The discussion will review the work carried out at Lincoln Laboratory and the Department of Physics of the Massachusetts Institute of Technology where the author was an active participant, but is dawn heavily from the pioneering work of scientists at the Mullard Research Laboratories in England and the Philips Research Laboratories in Eindhoven, the Netherlands and Hamburg, Germany.
Keywords
Orbital Angular Momentum Faraday Rotation Exchange Resonance Yttrium Iron Garnet Tensor ElementReferences
- 1.B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Chapter 6Google Scholar
- 2.S. Geschwind and L.R. Walker, J. Appl. Phys. 30, 163S (1959)CrossRefGoogle Scholar
- 3.G.F. Dionne, J. Appl. Phys. 97, 10F103 (2005)CrossRefGoogle Scholar
- 4.M. Tinkham, J. Appl. Phys. 33, Suppl. 3, 1248 (1962)Google Scholar
- 5.G.F. Dionne, J. Appl. Phys. 105, 07A525 (2009)CrossRefGoogle Scholar
- 6.K.J. Standley and R.A. Vaughn, Electron Spin Relaxation Phenomena in Solids, (Plenum, New York, 1969), Section 1.2Google Scholar
- 7.A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 73Google Scholar
- 8.G.F. Dionne, J. Appl. Phys. 79, 5172 (1996)CrossRefGoogle Scholar
- 9.G.F. Dionne, J. Appl. Phys. 99, 08M913 (2006)CrossRefGoogle Scholar
- 10.B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Section 6-6Google Scholar
- 11.B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Section 7-1Google Scholar
- 12.N. Bloembergen, Proc. IRE 44, 1259 (1956)CrossRefGoogle Scholar
- 13.Y.R. Shen, Phys. Rev. 133, A511 (1964)CrossRefGoogle Scholar
- 14.Y.R. Shen and N. Bloembergen, Phys. Rev. 133, A515 (1964)CrossRefGoogle Scholar
- 15.N. Bloembergen, Nonlinear Optics, (W.A. Benjamin, New York, 1965), p. 27Google Scholar
- 16.J.C. Suits, IEEE Trans. Magn. 8, 95 (1972)CrossRefGoogle Scholar
- 17.G.A. Allen and G.F. Dionne, J. Appl. Phys. 73, 6130 (1993)CrossRefGoogle Scholar
- 18.J.F. Dillon, J. Phys. Radium 20, 374 (1959)CrossRefGoogle Scholar
- 19.F.J. Kahn, P.S. Pershan, and J.P. Remeika, Phys. Rev. 186, 891 (1969)CrossRefGoogle Scholar
- 20.G.B. Scott, D.E. Lacklison, H.I. Ralph, and J.L. Page, Phys. Rev. B12, 2562 (1975)Google Scholar
- 21.S. Wittekoek, T.J.A. Popma, J.M. Robertson, and P.F. Bongers, Phys. Rev. B12, 2777 (1975)Google Scholar
- 22.V. Doorman, J.-P. Krumme, and H. Lenz, J. Appl. Phys. 68, 3544 (1990)CrossRefGoogle Scholar
- 23.G.A. Allen, PhD Thesis, MIT Department of Physics, 1994Google Scholar
- 24.G.A. Allen and G.F. Dionne, J. Appl. Phys. 93, 6951 (2003)CrossRefGoogle Scholar
- 25.G.F. Dionne and G.A. Allen, J. Appl. Phys. 73, 6127 (1993)CrossRefGoogle Scholar
- 26.G.F. Dionne and G.A. Allen, J. Appl. Phys. 75, 6372 (1994)CrossRefGoogle Scholar
- 27.G.B. Scott, D.E. Lacklison, and J.L. Page, Phys. Rev. B10, 971 (1974)Google Scholar
- 28.G.B. Scott and J.L. Page, Phys. Stat. Solidi b79, 203 (1977)Google Scholar
- 29.A.M. Clogston, J. Phys. Radium 20, 151 (1959)Google Scholar
- 30.C.F. Buhrer, J. Appl. Phys. 40, 4500 (1969)CrossRefGoogle Scholar
- 31.K. Matsumoto, S. Sasaki, K. Haraga, Y. Asahara, K. Yamaguchi, and T. Fujii, IEEE Trans. Magn. 28, 2985 (1992)CrossRefGoogle Scholar
- 32.Z. Simsa, J. Simsova, D. Zemanova, J. Cermak, and M. Nevriva, Czech. J. Phys. B 34, 1102 (1984)Google Scholar
- 33.Y. Tanabe and S. Sugano, J. Phys. Soc. (Japan) 9, 753 (1954)Google Scholar
- 34.D.E. Lacklison, G.B. Scott, and J.L. Page, Solid State Commun. 14, 861 (1974)CrossRefGoogle Scholar
- 35.D.R. Lide, Ed., Handbook of Chemistry and Physics, 73rd Ed., (CRC Press, Boca Raton, FL, 1992–1993)Google Scholar
- 36.D.L. Wood and J.P. Remeika, J. Appl. Phys. 38, 1038 (1967)CrossRefGoogle Scholar
- 37.S. Wittekoek and D.E. Lacklison, Phys. Rev. Lett. 28, 740 (1972); also A.B. McLay and M.F. Crawford, Phys. Rev. 44, 986 (1933)Google Scholar
- 38.P. Hansen, W. Tolksdorf, and K. Witter, IEEE Trans. Magn. 17, 3211 (1981)CrossRefGoogle Scholar
- 39.P. Hansen, K. Witter, and W. Tolksdorf, Phys. Rev. B 27, 6608 (1983)Google Scholar
- 40.S.H. Wemple, S.L. Blank, J.A. Seman, and W.A. Biolsi, Phys. Rev. B 9, 2134 (1974)Google Scholar
- 41.S. Wittekoek and T.J.A. Popma, J. Appl. Phys. 44, 5560 (1973)CrossRefGoogle Scholar
- 42.A. Thavendrarajah, M. Pardavi-Horvath, P.E. Wigen, and M. Gomi, IEEE Trans. Magn. 25, 4015 (1989)CrossRefGoogle Scholar
- 43.G.F. Dionne and G.A. Allen, J. Appl. Phys. 95, 7333 (2004)CrossRefGoogle Scholar
- 44.G.F. Dionne, J. Appl. Phys. 41, 4874 (1970)CrossRefGoogle Scholar
- 45.Y. Tanabe, T. Moriya, and S. Sugano, Phys. Rev. Letts. 15, 1023 (1965)Google Scholar
- 46.J.P. van der Ziel, J.F. Dillon, and J.P. Remeika, 17th Annu. Conf. Magn. Magn. Mater., AIP Conf. Proc. No. 5, 254 (1971)Google Scholar
- 47.B. Andlauer, J. Schneider, and W. Wettling, Appl. Phys. 10, 189 (1976)CrossRefGoogle Scholar
- 48.G. Winkler, Magnetic Garnets, (Vierweg, Braunschweig, 1981), Chapter 4Google Scholar
- 49.T. Tepper, C.A. Ross, and G.F. Dionne, IEEE Trans. Magn. 40, 1685 (2004)CrossRefGoogle Scholar
- 50.A. Rajamani, G.F. Dionne, D. Bono, and C.A. Ross, J. Appl. Phys. 98, 063907 (2005)CrossRefGoogle Scholar
- 51.D.S. Schmool, N. Keller, M. Guyot, R. Krishnan, and M. Tessier, J. Appl. Phys. 86, 5712 (1999)CrossRefGoogle Scholar
- 52.G.F. Dionne A.R. Taussig, M. Bolduc, L. Bei, and C.A. Ross, J. Appl. Phys. 101, 09C524 (2007)Google Scholar
- 53.N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. (Weinhein, Ger.) 17, 2225 (2005)Google Scholar
- 54.H. Guo, J. Burgess, S. Street, A. Gupta, T.G. Calarese, and M.A. Subramanian, Appl. Phys. Lett. 89, 022509 (2006)CrossRefGoogle Scholar
- 55.M. Guillot, H. Le Gall, J.M. Desvignes, and M. Artinian, J. Appl. Phys. 70, 6401 (1991)CrossRefGoogle Scholar
- 56.J. Ostorero and M. Guillot, J. Appl. Phys. 83, 6756 (1998)CrossRefGoogle Scholar
- 57.F.M. Johnson and A.H. Nethercot, Jr., Phys. Rev. 114, 705 (1959)CrossRefGoogle Scholar
- 58.S. Foner, J. Phys. Radium 20, 336 (1959)Google Scholar
- 59.E.S. Dayhoff, Phys. Rev. 107, 84 (1957)CrossRefGoogle Scholar
- 60.G.S. Heller, J.J. Stickler, and J.B. Thaxter, J. Appl. Phys. 32, 307S (1961)CrossRefGoogle Scholar
- 61.J.J. Stickler and G.S. Heller, J. Appl. Phys. 33, 1302 (1962)CrossRefGoogle Scholar
- 62.R.C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961)CrossRefGoogle Scholar
- 63.F. Keffer, A.J. Sievers III, and M. Tinkham, J. Appl. Phys. 32, 65S (1961)CrossRefGoogle Scholar
- 64.H. Kondoh, J. Phys. Soc. Japan, 15, 1970 (1960)CrossRefGoogle Scholar