Magnetic Oxides pp 201-271 | Cite as
Anisotropy and Magnetoelastic Properties
- 1.5k Downloads
Abstract
In this chapter, we discuss the local origins of the two measurable macroscopic effects that occur from interactions between the ionic magnetic moments and the lattices in which they reside: magnetocrystalline anisotropy and magnetostriction. In the preceding chapters, the focus has been on the molecular origin of the magnetic moments in crystal lattices. For the 3d n transition group in particular, the disposition of spin alignments as determined by covalent-induced superexchange and the randomizing effect of temperature has been reviewed. The spin system is also influenced by geometrical shape of the specimen in which it resides (described in Chap. 1) and the symmetry of the lattice itself and its elastic properties, each of which contribute to the anisotropy that influences the magnetization process and other magnetic properties. In addition, large anisotropic magnetic effects can result from asymmetry of the local crystal fields and their interactions with magnetoelastic cations. In this sense, magnetoelasticity refers to the coupling between the magnetic moment of the cation and local crystal field of the anion coordination. All of these mechanisms, however, involve interaction between the spins and the elastic properties of the lattice, which can be collective, as in the case of dipole–dipole interactions in fixed array of lattice sites, or individual through orbital angular momentum coupling to the crystal field. The conventional macroscopic phenomenological model is presented later in this chapter, but it is the molecular origins of these properties where our initial attention will be focused.
Following the context established by the preceding chapters, we begin by examining the local origins of the local anisotropy. In particular, self-induced anisotropy in the form of crystal-field distortions derived from spin–orbit coupling and the Jahn–Teller effect will be emphasized. The underlying physics is reviewed first through the properties of individual ions. With the single-ion concepts in hand, we then examine the ions in an exchange-coupled ferromagnet (or ferrimagnet) to determine how the macroscopic anisotropy and magnetostriction effects influence the collective magnetization statically, and then dynamically in Chap. 6.
Keywords
Crystal Field Octahedral Site Orbital Angular Momentum Orbit Coupling Magnetocrystalline AnisotropyReferences
- 1.J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, (Oxford University Press, London, 1932)Google Scholar
- 2.J.S. Griffith, The Theory of Transition-Metal Ions, (Cambridge University Press, London, 1961)Google Scholar
- 3.G.F. Dionne, Phys. Rev. 137, A743 (1965)CrossRefGoogle Scholar
- 4.G.F. Dionne, Can. J. Phys. 42, 2419 (1964)CrossRefGoogle Scholar
- 5.J.A. MacKinnon and G.F. Dionne, Can. J. Phys. 44, 2329 (1966)CrossRefGoogle Scholar
- 6.G.F. Dionne and J.A. MacKinnon, Phys. Rev. 172, 325 (1968)CrossRefGoogle Scholar
- 7.B. Bleaney, G.S. Bogle, A.H. Cooke, R.J. Duffus, M.C.M. O’Brien, and K.W.H. Stevens, Proc. Phys. Soc. A68, 57 (1955)Google Scholar
- 8.G.A. Woonton and J.A. MacKinnon, Can. J. Phys. 46, 59 (1968)CrossRefGoogle Scholar
- 9.M.H.L. Pryce, Proc. Phys. Soc. A63, 25 (1950); A. Abragam and M.H.L. Pryce, Proc. Roy. Soc. A205, 135 (1951)Google Scholar
- 10.H. Hartmann and H.L. Schlafer, Z. Physik Chem. (Leipzig) 197, 116, (1951)Google Scholar
- 11.A.J. Freeman and R.E. Watson, Phys. Rev. 127, 2058 (1962)CrossRefGoogle Scholar
- 12.K.W.H. Stevens, Proc. Phys. Soc. A65, 209 (1952)Google Scholar
- 13.M.T. Hutchings, Solid State Phys. 16, 227 (1964)CrossRefGoogle Scholar
- 14.W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960)Google Scholar
- 15.H.A. Kramers, Proc. Amsterdam Acad. Sci. 33, 959 (1930); W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960), p. 34Google Scholar
- 16.G.F. Dionne, J. Appl. Phys. 91, 7367 (2002)CrossRefGoogle Scholar
- 17.L. Dubicki and M.J. Riley, J. Chem. Phys. 106, 1669 (1997)CrossRefGoogle Scholar
- 18.L.W. Tragenna-Pigott, S.P. Best, M.C.M. O’Brien, K.S. Knight, J.B. Forsyth, and J.R. Pillbrow, J. Am. Chem. Soc. 119, 3324 (1997)CrossRefGoogle Scholar
- 19.L.S. Kornienko and A.M. Prokorov, Sov. Phys. JETP 11, 1189 (1960)Google Scholar
- 20.F.S. Ham, Phys. Rev. 138, 1727 (1965)CrossRefGoogle Scholar
- 21.R.M. MacFarlane, J.Y. Wong, and M.D. Sturge, Phys. Rev. 166, 250 (1968)CrossRefGoogle Scholar
- 22.C.A. Bates and J.P. Bentley, J. Phys. C: Solid St. Phys. 2, 1947 (1969)CrossRefGoogle Scholar
- 23.K.W.H. Stevens, J. Phys. C: Solid St. Phys. 2, 1934 (1969)CrossRefGoogle Scholar
- 24.M. Abou-Ghantous, C.A. Bates, and K.W.H. Stevens, J. Phys. C: Solid St. Phys. 7, 325 (1974)CrossRefGoogle Scholar
- 25.W. Low, Phys. Rev. 101, 1827 (1956)CrossRefGoogle Scholar
- 26.G.A. Slack, Phys. Rev. 134, A1268 (1964)CrossRefGoogle Scholar
- 27.B. Bleaney, K.D. Bowers, and R.J. Trenam, Proc. Roy. Soc. A228, 157 (1955)Google Scholar
- 28.M.H.L. Pryce, Il. Nuovo Cimento 6 (Suppl.) 817 (1957)Google Scholar
- 29.C.A. Bates and P.E. Chandler, J. Phys. C: Solid St. Phys. 4, 2713 (1971)CrossRefGoogle Scholar
- 30.G.M. Zverev and A.M. Prokorov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1023 (1958)Google Scholar
- 31.W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960), p.91Google Scholar
- 32.A. Abragam and M.H.L. Pryce, Proc. Roy. Soc. A205, 135 (1951); A206, 173 (1951)Google Scholar
- 33.C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962) p. 124Google Scholar
- 34.A.L. Kipling, P.W. Smith, J. Vanier, and G.A. Woonton, Can. J. Phys. 39, 1859 (1961)CrossRefGoogle Scholar
- 35.J.S. Thorp, Masers and Lasers: Physics and Design, (MacMillan, London, 1967) Chapter 4Google Scholar
- 36.J.P. Gordon, H.J. Zeiger, and C.H. Townes, Phys. Rev. 95, 282 (1954)CrossRefGoogle Scholar
- 37.W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960), p.92Google Scholar
- 38.J. Gielessen, Ann. Physik. 22, 537 (1935)CrossRefGoogle Scholar
- 39.D.S. McClure, J. Phys. Chem. Solids 3, 311 (1957)CrossRefGoogle Scholar
- 40.W.P. Doyle and G.A. Lonergan, Discuss. Faraday Soc. 26, 27 (1958)CrossRefGoogle Scholar
- 41.H. Hartmann and H. Müller, Discuss. Faraday Soc. 26, 49 (1958)CrossRefGoogle Scholar
- 42.H. Watanabe, Prog. Theoret. Phys. (Kyoto), 18, 405 (1957)Google Scholar
- 43.W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960), p.120Google Scholar
- 44.J.H. Van Vleck and W.G. Penney, Phil. Mag. 17, 961 (1934)Google Scholar
- 45.B. Bleaney and K.W. H. Stevens, Rep. Prog. Phys. 16, 108 (1953)CrossRefGoogle Scholar
- 46.V.J. Folen, Paramagnetic Resonance Vol. 1, (Proceed. First Intl. Conf., ed. W. Low (Academic Press, New York, 1962), p. 68Google Scholar
- 47.R.J. Elliott and K.W.H. Stevens, Proc. Roy. Soc. A219, 387 (1953)Google Scholar
- 48.J.W. Orton, Rep. Prog. Phys. 22, 204 (1959)CrossRefGoogle Scholar
- 49.K.D. Bowers and J. Owen, Rep. Prog. Phys. 18, 304 (1955)CrossRefGoogle Scholar
- 50.S. Chikazumi, Physics of Magnetism, (Wiley, New York, 1964)Google Scholar
- 51.J. Smit and H.P.J. Wijn, Ferrites, (Wiley, New York, 1959)Google Scholar
- 52.R.M. Bozorth, Ferromagnetism, (D. Van Nostrand, New York, 1951)Google Scholar
- 53.A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965)Google Scholar
- 54.H.J. Williams, Phys. Rev. 52, 747 (1937); A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 310Google Scholar
- 55.L.R. Bickford, Phys. Rev. 78, 449 (1950)CrossRefGoogle Scholar
- 56.E.W. Lee, Rep. Prog. Phys. 18, 184 (1955)CrossRefGoogle Scholar
- 57.E. du Trémolet de Lacheisserie, Magnetostriction, (CRC Press, Boca Raton, FL, 1993)Google Scholar
- 58.C. Kittel, Rev. Mod. Phys. 21, 541 (1949)CrossRefGoogle Scholar
- 59.G.F. Dionne, IEEE Trans. Magn. 5, 596 (1969)CrossRefGoogle Scholar
- 60.G.F. Dionne, Mater. Res. Bull. 6, 80 (1971)CrossRefGoogle Scholar
- 61.J.H. Van Vleck, Phys. Rev. 52, 1178 (1937)CrossRefGoogle Scholar
- 62.C. Zener, Phys. Rev. 96, 1335 (1954)CrossRefGoogle Scholar
- 63.S. Chikazumi, Physics of Magnetism, (Wiley, New York, 1964), Section 7.2Google Scholar
- 64.K. Yosida and M. Tachiki, Progr. Theoret. Phys. (Kyoto) 17, 331 (1957)Google Scholar
- 65.W.P. Wolf, Phys. Rev. 108, 1152 (1957)CrossRefGoogle Scholar
- 66.G.P. Rodrigue, H. Meyer, and R.V. Jones, J. Appl. Phys. 31, 376S (1960)CrossRefGoogle Scholar
- 67.S. Geschwind, Phys. Rev. 121, 363 (1961)CrossRefGoogle Scholar
- 68.B. Luthi and T. Henningsen, Proceed. Intl. Conf. Magn. (Nottingham) 1965, p. 668Google Scholar
- 69.P. Hansen, J. Appl. Phys. 45, 3638 (1974)CrossRefGoogle Scholar
- 70.J.R. Cunningham, Jr., J. Appl. Phys. 36, 2491 (1965)CrossRefGoogle Scholar
- 71.G.F. Dionne, J. Appl. Phys. 40, 1839 (1969)CrossRefGoogle Scholar
- 72.A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 529Google Scholar
- 73.J.C. Slonczewski, Phys. Rev. 101, 1341 (1958)CrossRefGoogle Scholar
- 74.C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962), p.118Google Scholar
- 75.J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), p. 192Google Scholar
- 76.P. Hansen, Physics of Magnetic Garnets, Proc. Int’l School Phys., Course LXX, (North-Holland, New York, 1978), p. 56Google Scholar
- 77.G.F. Dionne, J. Appl. Phys. 50, 4263 (1979)CrossRefGoogle Scholar
- 78.S. Iida, J. Phys. Soc. Jpn. 22, 1201 (1967)CrossRefGoogle Scholar
- 79.S. Chikazumi, Physics of Magnetism, (Wiley, New York, 1964), p. 263Google Scholar
- 80.W.F. Brown, Micromagnetics, (Wiley, New York, 1963)Google Scholar
- 81.H. Kronmüller and M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids, (Cambridge University Press, Cambridge, 2003)Google Scholar
- 82.C. Kittel, Phys. Rev. 70, 965 (1946)CrossRefGoogle Scholar
- 83.D.J. Craik and R.S. Tebble, Ferromagnetism and Ferromagnetic Domains, (Wiley, New York, 1965)Google Scholar
- 84.J.B. Goodenough, Phys. Rev. 95, 917 (1954)CrossRefGoogle Scholar
- 85.A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p.389Google Scholar
- 86.G.F. Dionne and R.G. West, Appl. Phys. Lett. 48, 1488 (1986)CrossRefGoogle Scholar
- 87.G.F. Dionne and P.J. Paul, Mater. Res. Bull. 4, 171 (1969)CrossRefGoogle Scholar
- 88.G.F. Dionne, P.J. Paul, and R.G. West, J. Appl. Phys. 41, 1411 (1970)CrossRefGoogle Scholar
- 89.M.A. Stel’mashenko, Sov. Phys. –.Solid State 9, 1137 (1967)Google Scholar
- 90.G.F. Dionne and D.E. Oates, J. Appl. Phys. 85, 4856 (1999)CrossRefGoogle Scholar
- 91.H.P.J. Wijn, Landolt-Bornstein III/4b, (Springer, New York, 1970), p. 547Google Scholar
- 92.G.F. Dionne and J.F. Fitzgerald, J. Appl. Phys. 70, 6140 (1991)CrossRefGoogle Scholar
- 93.H.L. Schläfer and G. Gliemann, Basic Principles of Ligand Field Theory, (Wiley-Interscience, New York, 1969), p. 438Google Scholar
- 94.L.E. Orgel, J. Chem. Phys. 23, 1004 (1955)CrossRefGoogle Scholar
- 95.R. Finklestein and J.H. Van Vleck, J. Chem. Phys. 8, 790 (1940)CrossRefGoogle Scholar
- 96.Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954)CrossRefGoogle Scholar