Advertisement

Anisotropy and Magnetoelastic Properties

  • Gerald F. DionneEmail author
Chapter
  • 1.5k Downloads

Abstract

In this chapter, we discuss the local origins of the two measurable macroscopic effects that occur from interactions between the ionic magnetic moments and the lattices in which they reside: magnetocrystalline anisotropy and magnetostriction. In the preceding chapters, the focus has been on the molecular origin of the magnetic moments in crystal lattices. For the 3d n transition group in particular, the disposition of spin alignments as determined by covalent-induced superexchange and the randomizing effect of temperature has been reviewed. The spin system is also influenced by geometrical shape of the specimen in which it resides (described in  Chap. 1) and the symmetry of the lattice itself and its elastic properties, each of which contribute to the anisotropy that influences the magnetization process and other magnetic properties. In addition, large anisotropic magnetic effects can result from asymmetry of the local crystal fields and their interactions with magnetoelastic cations. In this sense, magnetoelasticity refers to the coupling between the magnetic moment of the cation and local crystal field of the anion coordination. All of these mechanisms, however, involve interaction between the spins and the elastic properties of the lattice, which can be collective, as in the case of dipole–dipole interactions in fixed array of lattice sites, or individual through orbital angular momentum coupling to the crystal field. The conventional macroscopic phenomenological model is presented later in this chapter, but it is the molecular origins of these properties where our initial attention will be focused.

Following the context established by the preceding chapters, we begin by examining the local origins of the local anisotropy. In particular, self-induced anisotropy in the form of crystal-field distortions derived from spin–orbit coupling and the Jahn–Teller effect will be emphasized. The underlying physics is reviewed first through the properties of individual ions. With the single-ion concepts in hand, we then examine the ions in an exchange-coupled ferromagnet (or ferrimagnet) to determine how the macroscopic anisotropy and magnetostriction effects influence the collective magnetization statically, and then dynamically in  Chap. 6.

Keywords

Crystal Field Octahedral Site Orbital Angular Momentum Orbit Coupling Magnetocrystalline Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, (Oxford University Press, London, 1932)Google Scholar
  2. 2.
    J.S. Griffith, The Theory of Transition-Metal Ions, (Cambridge University Press, London, 1961)Google Scholar
  3. 3.
    G.F. Dionne, Phys. Rev. 137, A743 (1965)CrossRefGoogle Scholar
  4. 4.
    G.F. Dionne, Can. J. Phys. 42, 2419 (1964)CrossRefGoogle Scholar
  5. 5.
    J.A. MacKinnon and G.F. Dionne, Can. J. Phys. 44, 2329 (1966)CrossRefGoogle Scholar
  6. 6.
    G.F. Dionne and J.A. MacKinnon, Phys. Rev. 172, 325 (1968)CrossRefGoogle Scholar
  7. 7.
    B. Bleaney, G.S. Bogle, A.H. Cooke, R.J. Duffus, M.C.M. O’Brien, and K.W.H. Stevens, Proc. Phys. Soc. A68, 57 (1955)Google Scholar
  8. 8.
    G.A. Woonton and J.A. MacKinnon, Can. J. Phys. 46, 59 (1968)CrossRefGoogle Scholar
  9. 9.
    M.H.L. Pryce, Proc. Phys. Soc. A63, 25 (1950); A. Abragam and M.H.L. Pryce, Proc. Roy. Soc. A205, 135 (1951)Google Scholar
  10. 10.
    H. Hartmann and H.L. Schlafer, Z. Physik Chem. (Leipzig) 197, 116, (1951)Google Scholar
  11. 11.
    A.J. Freeman and R.E. Watson, Phys. Rev. 127, 2058 (1962)CrossRefGoogle Scholar
  12. 12.
    K.W.H. Stevens, Proc. Phys. Soc. A65, 209 (1952)Google Scholar
  13. 13.
    M.T. Hutchings, Solid State Phys. 16, 227 (1964)CrossRefGoogle Scholar
  14. 14.
    W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960)Google Scholar
  15. 15.
    H.A. Kramers, Proc. Amsterdam Acad. Sci. 33, 959 (1930); W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960), p. 34Google Scholar
  16. 16.
    G.F. Dionne, J. Appl. Phys. 91, 7367 (2002)CrossRefGoogle Scholar
  17. 17.
    L. Dubicki and M.J. Riley, J. Chem. Phys. 106, 1669 (1997)CrossRefGoogle Scholar
  18. 18.
    L.W. Tragenna-Pigott, S.P. Best, M.C.M. O’Brien, K.S. Knight, J.B. Forsyth, and J.R. Pillbrow, J. Am. Chem. Soc. 119, 3324 (1997)CrossRefGoogle Scholar
  19. 19.
    L.S. Kornienko and A.M. Prokorov, Sov. Phys. JETP 11, 1189 (1960)Google Scholar
  20. 20.
    F.S. Ham, Phys. Rev. 138, 1727 (1965)CrossRefGoogle Scholar
  21. 21.
    R.M. MacFarlane, J.Y. Wong, and M.D. Sturge, Phys. Rev. 166, 250 (1968)CrossRefGoogle Scholar
  22. 22.
    C.A. Bates and J.P. Bentley, J. Phys. C: Solid St. Phys. 2, 1947 (1969)CrossRefGoogle Scholar
  23. 23.
    K.W.H. Stevens, J. Phys. C: Solid St. Phys. 2, 1934 (1969)CrossRefGoogle Scholar
  24. 24.
    M. Abou-Ghantous, C.A. Bates, and K.W.H. Stevens, J. Phys. C: Solid St. Phys. 7, 325 (1974)CrossRefGoogle Scholar
  25. 25.
    W. Low, Phys. Rev. 101, 1827 (1956)CrossRefGoogle Scholar
  26. 26.
    G.A. Slack, Phys. Rev. 134, A1268 (1964)CrossRefGoogle Scholar
  27. 27.
    B. Bleaney, K.D. Bowers, and R.J. Trenam, Proc. Roy. Soc. A228, 157 (1955)Google Scholar
  28. 28.
    M.H.L. Pryce, Il. Nuovo Cimento 6 (Suppl.) 817 (1957)Google Scholar
  29. 29.
    C.A. Bates and P.E. Chandler, J. Phys. C: Solid St. Phys. 4, 2713 (1971)CrossRefGoogle Scholar
  30. 30.
    G.M. Zverev and A.M. Prokorov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1023 (1958)Google Scholar
  31. 31.
    W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960), p.91Google Scholar
  32. 32.
    A. Abragam and M.H.L. Pryce, Proc. Roy. Soc. A205, 135 (1951); A206, 173 (1951)Google Scholar
  33. 33.
    C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962) p. 124Google Scholar
  34. 34.
    A.L. Kipling, P.W. Smith, J. Vanier, and G.A. Woonton, Can. J. Phys. 39, 1859 (1961)CrossRefGoogle Scholar
  35. 35.
    J.S. Thorp, Masers and Lasers: Physics and Design, (MacMillan, London, 1967) Chapter 4Google Scholar
  36. 36.
    J.P. Gordon, H.J. Zeiger, and C.H. Townes, Phys. Rev. 95, 282 (1954)CrossRefGoogle Scholar
  37. 37.
    W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960), p.92Google Scholar
  38. 38.
    J. Gielessen, Ann. Physik. 22, 537 (1935)CrossRefGoogle Scholar
  39. 39.
    D.S. McClure, J. Phys. Chem. Solids 3, 311 (1957)CrossRefGoogle Scholar
  40. 40.
    W.P. Doyle and G.A. Lonergan, Discuss. Faraday Soc. 26, 27 (1958)CrossRefGoogle Scholar
  41. 41.
    H. Hartmann and H. Müller, Discuss. Faraday Soc. 26, 49 (1958)CrossRefGoogle Scholar
  42. 42.
    H. Watanabe, Prog. Theoret. Phys. (Kyoto), 18, 405 (1957)Google Scholar
  43. 43.
    W. Low, Paramagnetic Resonance in Solids, (Academic, New York, 1960), p.120Google Scholar
  44. 44.
    J.H. Van Vleck and W.G. Penney, Phil. Mag. 17, 961 (1934)Google Scholar
  45. 45.
    B. Bleaney and K.W. H. Stevens, Rep. Prog. Phys. 16, 108 (1953)CrossRefGoogle Scholar
  46. 46.
    V.J. Folen, Paramagnetic Resonance Vol. 1, (Proceed. First Intl. Conf., ed. W. Low (Academic Press, New York, 1962), p. 68Google Scholar
  47. 47.
    R.J. Elliott and K.W.H. Stevens, Proc. Roy. Soc. A219, 387 (1953)Google Scholar
  48. 48.
    J.W. Orton, Rep. Prog. Phys. 22, 204 (1959)CrossRefGoogle Scholar
  49. 49.
    K.D. Bowers and J. Owen, Rep. Prog. Phys. 18, 304 (1955)CrossRefGoogle Scholar
  50. 50.
    S. Chikazumi, Physics of Magnetism, (Wiley, New York, 1964)Google Scholar
  51. 51.
    J. Smit and H.P.J. Wijn, Ferrites, (Wiley, New York, 1959)Google Scholar
  52. 52.
    R.M. Bozorth, Ferromagnetism, (D. Van Nostrand, New York, 1951)Google Scholar
  53. 53.
    A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965)Google Scholar
  54. 54.
    H.J. Williams, Phys. Rev. 52, 747 (1937); A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 310Google Scholar
  55. 55.
    L.R. Bickford, Phys. Rev. 78, 449 (1950)CrossRefGoogle Scholar
  56. 56.
    E.W. Lee, Rep. Prog. Phys. 18, 184 (1955)CrossRefGoogle Scholar
  57. 57.
    E. du Trémolet de Lacheisserie, Magnetostriction, (CRC Press, Boca Raton, FL, 1993)Google Scholar
  58. 58.
    C. Kittel, Rev. Mod. Phys. 21, 541 (1949)CrossRefGoogle Scholar
  59. 59.
    G.F. Dionne, IEEE Trans. Magn. 5, 596 (1969)CrossRefGoogle Scholar
  60. 60.
    G.F. Dionne, Mater. Res. Bull. 6, 80 (1971)CrossRefGoogle Scholar
  61. 61.
    J.H. Van Vleck, Phys. Rev. 52, 1178 (1937)CrossRefGoogle Scholar
  62. 62.
    C. Zener, Phys. Rev. 96, 1335 (1954)CrossRefGoogle Scholar
  63. 63.
    S. Chikazumi, Physics of Magnetism, (Wiley, New York, 1964), Section 7.2Google Scholar
  64. 64.
    K. Yosida and M. Tachiki, Progr. Theoret. Phys. (Kyoto) 17, 331 (1957)Google Scholar
  65. 65.
    W.P. Wolf, Phys. Rev. 108, 1152 (1957)CrossRefGoogle Scholar
  66. 66.
    G.P. Rodrigue, H. Meyer, and R.V. Jones, J. Appl. Phys. 31, 376S (1960)CrossRefGoogle Scholar
  67. 67.
    S. Geschwind, Phys. Rev. 121, 363 (1961)CrossRefGoogle Scholar
  68. 68.
    B. Luthi and T. Henningsen, Proceed. Intl. Conf. Magn. (Nottingham) 1965, p. 668Google Scholar
  69. 69.
    P. Hansen, J. Appl. Phys. 45, 3638 (1974)CrossRefGoogle Scholar
  70. 70.
    J.R. Cunningham, Jr., J. Appl. Phys. 36, 2491 (1965)CrossRefGoogle Scholar
  71. 71.
    G.F. Dionne, J. Appl. Phys. 40, 1839 (1969)CrossRefGoogle Scholar
  72. 72.
    A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p. 529Google Scholar
  73. 73.
    J.C. Slonczewski, Phys. Rev. 101, 1341 (1958)CrossRefGoogle Scholar
  74. 74.
    C.J. Ballhausen, Introduction to Ligand Field Theory, (McGraw-Hill, New York, 1962), p.118Google Scholar
  75. 75.
    J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), p. 192Google Scholar
  76. 76.
    P. Hansen, Physics of Magnetic Garnets, Proc. Int’l School Phys., Course LXX, (North-Holland, New York, 1978), p. 56Google Scholar
  77. 77.
    G.F. Dionne, J. Appl. Phys. 50, 4263 (1979)CrossRefGoogle Scholar
  78. 78.
    S. Iida, J. Phys. Soc. Jpn. 22, 1201 (1967)CrossRefGoogle Scholar
  79. 79.
    S. Chikazumi, Physics of Magnetism, (Wiley, New York, 1964), p. 263Google Scholar
  80. 80.
    W.F. Brown, Micromagnetics, (Wiley, New York, 1963)Google Scholar
  81. 81.
    H. Kronmüller and M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids, (Cambridge University Press, Cambridge, 2003)Google Scholar
  82. 82.
    C. Kittel, Phys. Rev. 70, 965 (1946)CrossRefGoogle Scholar
  83. 83.
    D.J. Craik and R.S. Tebble, Ferromagnetism and Ferromagnetic Domains, (Wiley, New York, 1965)Google Scholar
  84. 84.
    J.B. Goodenough, Phys. Rev. 95, 917 (1954)CrossRefGoogle Scholar
  85. 85.
    A.H. Morrish, The Physical Principles of Magnetism, (Wiley, New York, 1965), p.389Google Scholar
  86. 86.
    G.F. Dionne and R.G. West, Appl. Phys. Lett. 48, 1488 (1986)CrossRefGoogle Scholar
  87. 87.
    G.F. Dionne and P.J. Paul, Mater. Res. Bull. 4, 171 (1969)CrossRefGoogle Scholar
  88. 88.
    G.F. Dionne, P.J. Paul, and R.G. West, J. Appl. Phys. 41, 1411 (1970)CrossRefGoogle Scholar
  89. 89.
    M.A. Stel’mashenko, Sov. Phys. –.Solid State 9, 1137 (1967)Google Scholar
  90. 90.
    G.F. Dionne and D.E. Oates, J. Appl. Phys. 85, 4856 (1999)CrossRefGoogle Scholar
  91. 91.
    H.P.J. Wijn, Landolt-Bornstein III/4b, (Springer, New York, 1970), p. 547Google Scholar
  92. 92.
    G.F. Dionne and J.F. Fitzgerald, J. Appl. Phys. 70, 6140 (1991)CrossRefGoogle Scholar
  93. 93.
    H.L. Schläfer and G. Gliemann, Basic Principles of Ligand Field Theory, (Wiley-Interscience, New York, 1969), p. 438Google Scholar
  94. 94.
    L.E. Orgel, J. Chem. Phys. 23, 1004 (1955)CrossRefGoogle Scholar
  95. 95.
    R. Finklestein and J.H. Van Vleck, J. Chem. Phys. 8, 790 (1940)CrossRefGoogle Scholar
  96. 96.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations