• Gerald F. DionneEmail author


In the previous chapters, the origins of spontaneous magnetism for parallel (ferromagnetism) and antiparallel spin alignments (antiferromagnetism) have been reviewed. In their pristine forms, the former occurs through direct exchange in metals and alloys, and the latter in nonmetallic ionic compounds comprising oxygen or other elements from the right-hand side of the Periodic table as the anion lattice. Utilitarian applications of ferromagnets are self-evident to even the most casual observer of physical phenomena, but the situation is much less so in the case of antiferromagnetism. For the most part, antiferromagnetism has been a portal to fundamental research in materials, particularly involving the diagnostic methods of neutron and more recently, muon diffraction and scattering.

There are, however, select groups of transition-metal oxides that combine the magnetic properties of ferromagnetic metals with the electrically insulating characteristics of the antiferromagnetic compounds described in the previous section. These magnetic insulators are termed ferrimagnets, and the phenomenon that characterizes their magnetic properties is called ferrimagnetism. Ferrimagnetic oxides have also served as rich sources of knowledge about the fundamental physics of materials, but unlike the antiferromagnetic oxides, they continue to add to their already widespread uses in modern electronics technology. For these reasons, the properties of ferrites, as they are commonly designated, will be treated generously for the remainder of this book.


Crystal Field Exchange Field Yttrium Iron Garnet Molecular Field Nickel Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Néel, Ann. Phys. (Paris) 3, 137 (1948)Google Scholar
  2. 2.
    A.H. Morrish, The Physical Principles of Magnetism, (John Wiley, New York, 1965)Google Scholar
  3. 3.
    G.F. Dionne, Magnetic Moment versus Temperature Curves of Ferrimagnetic Garnet Materials, (MIT Lincoln Laboratory Techn. Rept. 480, 1970), ADA715284Google Scholar
  4. 4.
    G.F. Dionne, Magnetic Moment versus Temperature Curves of Rare-Earth Iron Garnets, (MIT Lincoln Laboratory Techn. Rept. 534, 1979), ADA0773564Google Scholar
  5. 5.
    G.F. Dionne, Magnetic Moment versus Temperature Curves of LiZnTi Ferrites, (MIT Lincoln Laboratory Techn. Rept. 502, 1974), ADA7824212Google Scholar
  6. 6.
    Y. Yafet and C. Kittel, Phys. Rev. 87, 1203 (1955)Google Scholar
  7. 7.
    E.W. Gorter, Philips Res. Rept. 9, 295 (1954)Google Scholar
  8. 8.
    E. Prince, Acta Cryst. 10, 554 (1957)CrossRefGoogle Scholar
  9. 9.
    P.-G. deGennes, Phys. Rev. Lett. 3, 209 (1959)Google Scholar
  10. 10.
    M.A. Gilleo, J. Phys. Chem. Solids 13, 33 (1960)Google Scholar
  11. 11.
    S. Geller, J. Appl. Phys. 37, 1408 (1966)CrossRefGoogle Scholar
  12. 12.
    C. Borghese, J. Phys. Chem. Solids 28, 2225 (1967)Google Scholar
  13. 13.
    I. Nowik, Phys. Rev. 171, 550 (1968); also I. Nowik, J. Appl. Phys. 40, 5184 (1969)Google Scholar
  14. 14.
    A. Rosencwaig, Can. J. Phys. 48, 2857 and 2868 (1970)Google Scholar
  15. 15.
    S. Geller, Physics of Magnetic Garnets, Proc. Int’l School Phys. “Enrico Fermi,” Course LXX, (North-Holland Publishing Co., New York, 1978), p. 1Google Scholar
  16. 16.
    M.A. Gilleo, Ferromagnetic Materials 2, W.P. Wohlfarth, ed., (North-Holland, New York, 1980), Chapter 1; also M.A. Gilleo and S. Geller, Phys. Rev. 110, 73 (1958)Google Scholar
  17. 17.
    E.E. Anderson, Phys. Rev. 134, A1581 (1964)CrossRefGoogle Scholar
  18. 18.
    G.T. Rado and V.J. Folen, J. Appl. Phys. 31, 62 (1960)CrossRefGoogle Scholar
  19. 19.
    G.F. Dionne, J. Appl. Phys. 41, 4874 (1970); for FORTRAN program Magnetic Moment versus Temperature Curves of Ferrimagnetic Garnet Materials, (MIT Lincoln Laboratory Technical Report TR-480, 1970), AD-715284Google Scholar
  20. 20.
    S. Geller, H.J. Williams, R.C. Sherwood, and G.P. Espinosa, J. Appl. Phys. 36, 88 (1965)CrossRefGoogle Scholar
  21. 21.
    P. Roschmann and P. Hansen, J. Appl. Phys. 52, 6257 (1981)CrossRefGoogle Scholar
  22. 22.
    G.F. Dionne, J. Appl. Phys. 46, 4220 (1976); for FORTRAN program Magnetic Moment versus Temperature Curves of Rare-Earth Iron Garnets, (MIT Lincoln Laboratory Technical Report TR-588, 1981), AD-A107898/9Google Scholar
  23. 23.
    G.F. Dionne, J. Appl. Phys. 45, 3347 (1974); for FORTRAN program Magnetic Moment versus Temperature Curves of LiZnTi Ferrites, (MIT Lincoln Laboratory Technical Report TR-502, 1974), AD-782421/2Google Scholar
  24. 24.
    G.F. Dionne, J. Appl. Phys. 63, 3777 (1988)CrossRefGoogle Scholar
  25. 25.
    J. Smit and H.P.J. Wijn, Ferrites, (Wiley, New York, 1959)Google Scholar
  26. 26.
    W.H. von Aulock, Handbook of Microwave Ferrite Materials, (Academic Press, New York, 1965)Google Scholar
  27. 27.
    G. Blasse, Philips Research Repts. Suppl. 3 (1964)Google Scholar
  28. 28.
    A. Broese van Groenou, P.F. Bongers, and A.L. Stuijts, Mater. Sci. Eng. 3, 317 (1968)Google Scholar
  29. 29.
    V.J. Folen, Landolt-Bornstein III/4b, (Springer-Verlag, New York, 1970), p. 315Google Scholar
  30. 30.
    A.P. Greifer, IEEE Trans. Magn. 5, 774 (1969)CrossRefGoogle Scholar
  31. 31.
    M.M. Schieber, Experimental Magnetochemistry, (Wiley, New York, 1967)Google Scholar
  32. 32.
    G.F. Dionne, J. Appl. Phys. 99, 08M913 (2006)Google Scholar
  33. 33.
    M.I. Klinger and A.A. Samokhvalov, Phys. Stat. Sol.(b) 79, 9 (1977)Google Scholar
  34. 34.
    P.D. Baba, G.M. Argentina, W.E. Courtney, G.F. Dionne, and D. H. Temme, IEEE Trans. Magn. 8, 83 (1972)CrossRefGoogle Scholar
  35. 35.
    G.F. Dionne, J. Appl. Phys. 67, 4561 (1990)CrossRefGoogle Scholar
  36. 36.
    R.R. Heikes and W.D. Johnston, J. Chem. Phys. 26, 582 (1957)CrossRefGoogle Scholar
  37. 37.
    R. Pauthenet, Ann. Phys. 7, 710 (1952)Google Scholar
  38. 38.
    G.F. Dionne and R.G. West, Appl. Phys. Lett. 48, 1488 (1986); also J. Appl. Phys. 61, 3868 (1987)Google Scholar
  39. 39.
    Z. Simsa and V.A.M. Brabers, IEEE Trans. Magn. 11, 1303 (1975)CrossRefGoogle Scholar
  40. 40.
    L.G. Van Uitert, J. Chem. Phys. 24, 306 (1956)CrossRefGoogle Scholar
  41. 41.
    F.K. Lotgering, J. Phys. Chem. Solids 25, 95 (1964)Google Scholar
  42. 42.
    G.F. Dionne, J. Appl. Phys. 79, 5172 (1996)CrossRefGoogle Scholar
  43. 43.
    F. Bertaut and F. Forrat, Comptes Rend. 242, 382 (1956)Google Scholar
  44. 44.
    S. Geller and M.A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957)Google Scholar
  45. 45.
    S. Geller and M.A. Gilleo, J. Phys. Chem. Solids 9, 235 (1959)Google Scholar
  46. 46.
    G.F. Dionne, J. Appl. Phys. 40, 1839 (1969)CrossRefGoogle Scholar
  47. 47.
    E.R. Czerlinsky and R.A. MacMillan, Phys. Stat. Sol. 41, 333 (1970)CrossRefGoogle Scholar
  48. 48.
    E.R. Czerlinsky, Phys. Stat. Sol. 34, 483 (1969)CrossRefGoogle Scholar
  49. 49.
    A. Thavendrarajah, M. Pardavi-Horvath, P.E. Wigen, and M. Gomi, IEEE Trans. Magn. 25, 4015 (1989)CrossRefGoogle Scholar
  50. 50.
    F. Bertaut and R. Pauthenet, Proc. IEE (London) 104B, 261 (1956)Google Scholar
  51. 51.
    R. Pauthenet, Ann. Phys. (Paris) 3, 424 (1958)Google Scholar
  52. 52.
    J.H. Van Vleck and M.A. Gilleo, private communications urging the author to rework the model in terms of spin only. Regrettably, the opportunity to collaborate with these giants of magnetism ended prematurely when both passed away within months of the conversations. The revised model is presented in Appendix 4CGoogle Scholar
  53. 53.
    R. Aléonard, J. Phys. Chem. Solids 15, 167 (1960)Google Scholar
  54. 54.
    G.F. Dionne and P.L. Tumelty, J. Appl. Phys. 50, 8257 (1979)CrossRefGoogle Scholar
  55. 55.
    C.D. Brandle and S.L. Blank, IEEE Trans. Magn. 12, 14 (1976)CrossRefGoogle Scholar
  56. 56.
    S. Geller, J.P. Remeika, R.C. Sherwood, H.J. Williams, and G.P. Espinosa, Phys. Rev. 137, A1034 (1965)CrossRefGoogle Scholar
  57. 57.
    K.R. Lea, M.J.M. Leask, and W.P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962)Google Scholar
  58. 58.
    J.S. Griffith, The Theory of Transition-Metal Ions, (Cambridge University Press, London, 1961)Google Scholar
  59. 59.
    J. Ostoréro and M. Guillot, J. Appl. Phys. 75, 6792 (1994)CrossRefGoogle Scholar
  60. 60.
    J. Ostoréro and M. Guillot, J. Appl. Phys. 81, 4797 (1997)CrossRefGoogle Scholar
  61. 61.
    G. Winkler, Magnetic Garnets, (Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1981)Google Scholar
  62. 62.
    J. Smit and H.P.J. Wijn, Ferrites, (Wiley, New York, 1959), Chapter IXGoogle Scholar
  63. 63.
    H.P.J. Wijn, Landolt-Bornstein III/4b, (Springer-Verlag, New York, 1970), p. 547Google Scholar
  64. 64.
    D.J. De Bitetto, J. Appl. Phys. 35, 3482 (1964)CrossRefGoogle Scholar
  65. 65.
    P. Roschmann, M. Lemke, W. Tolksdorf, and F. Welz, Mater. Res. Bull. 19, 385 (1984)CrossRefGoogle Scholar
  66. 66.
    W.D. Wilber, L.E. Silber, and A. Tauber, Hexagonal Ferrites for Millimeter-Wave Control Devices, US Army Laboratory Command Research and Development Technical Report No. SLCET-TR-87–4, 1987Google Scholar
  67. 67.
    P.B. Braun, Nature 170, 708 and 1123 (1952)Google Scholar
  68. 68.
    J.J. Went, G.W. Rathenau, E.W. Gorter, and G.W. van Oosterhout, Philips Tech. Rev. 13, 194 (1952)Google Scholar
  69. 69.
    G.H. Jonker, J.H. van Santen, H.P.J. Wijn, and P.B. Braun, Philips Tech. Rev. 18, 145 (1956)Google Scholar
  70. 70.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Section 3.3Google Scholar
  71. 71.
    D.S. Schmool, N. Keller, M. Guyot, R. Krishnan, and M. Tessier, J. Appl. Phys. 86, 5712 (1999)CrossRefGoogle Scholar
  72. 72.
    A. Rajamani, G.F. Dionne, D. Bono, and C.A. Ross, J. Appl. Phys. 98, 063907 (2005)CrossRefGoogle Scholar
  73. 73.
    A.H. Bobeck, R.F. Fischer, A.J. Perneski, J.P. Remeika, and L.G. Van Uitert, IEEE Trans. Magn. 5, 544 (1969)CrossRefGoogle Scholar
  74. 74.
    G.F. Dionne, J. Appl. Phys. 61, 3865 (1987)CrossRefGoogle Scholar
  75. 75.
    D. Stopples, P.G.T. Boonen, U. Enz, and L.A.H. van Hoof, J. Magn. Magn. Matls. 37, 116 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations