Abstract
In the previous chapters, the origins of spontaneous magnetism for parallel (ferromagnetism) and antiparallel spin alignments (antiferromagnetism) have been reviewed. In their pristine forms, the former occurs through direct exchange in metals and alloys, and the latter in nonmetallic ionic compounds comprising oxygen or other elements from the right-hand side of the Periodic table as the anion lattice. Utilitarian applications of ferromagnets are self-evident to even the most casual observer of physical phenomena, but the situation is much less so in the case of antiferromagnetism. For the most part, antiferromagnetism has been a portal to fundamental research in materials, particularly involving the diagnostic methods of neutron and more recently, muon diffraction and scattering.
There are, however, select groups of transition-metal oxides that combine the magnetic properties of ferromagnetic metals with the electrically insulating characteristics of the antiferromagnetic compounds described in the previous section. These magnetic insulators are termed ferrimagnets, and the phenomenon that characterizes their magnetic properties is called ferrimagnetism. Ferrimagnetic oxides have also served as rich sources of knowledge about the fundamental physics of materials, but unlike the antiferromagnetic oxides, they continue to add to their already widespread uses in modern electronics technology. For these reasons, the properties of ferrites, as they are commonly designated, will be treated generously for the remainder of this book.
Keywords
Crystal Field Exchange Field Yttrium Iron Garnet Molecular Field Nickel FerriteReferences
- 1.L. Néel, Ann. Phys. (Paris) 3, 137 (1948)Google Scholar
- 2.A.H. Morrish, The Physical Principles of Magnetism, (John Wiley, New York, 1965)Google Scholar
- 3.G.F. Dionne, Magnetic Moment versus Temperature Curves of Ferrimagnetic Garnet Materials, (MIT Lincoln Laboratory Techn. Rept. 480, 1970), ADA715284Google Scholar
- 4.G.F. Dionne, Magnetic Moment versus Temperature Curves of Rare-Earth Iron Garnets, (MIT Lincoln Laboratory Techn. Rept. 534, 1979), ADA0773564Google Scholar
- 5.G.F. Dionne, Magnetic Moment versus Temperature Curves of LiZnTi Ferrites, (MIT Lincoln Laboratory Techn. Rept. 502, 1974), ADA7824212Google Scholar
- 6.Y. Yafet and C. Kittel, Phys. Rev. 87, 1203 (1955)Google Scholar
- 7.E.W. Gorter, Philips Res. Rept. 9, 295 (1954)Google Scholar
- 8.E. Prince, Acta Cryst. 10, 554 (1957)CrossRefGoogle Scholar
- 9.P.-G. deGennes, Phys. Rev. Lett. 3, 209 (1959)Google Scholar
- 10.M.A. Gilleo, J. Phys. Chem. Solids 13, 33 (1960)Google Scholar
- 11.S. Geller, J. Appl. Phys. 37, 1408 (1966)CrossRefGoogle Scholar
- 12.C. Borghese, J. Phys. Chem. Solids 28, 2225 (1967)Google Scholar
- 13.I. Nowik, Phys. Rev. 171, 550 (1968); also I. Nowik, J. Appl. Phys. 40, 5184 (1969)Google Scholar
- 14.A. Rosencwaig, Can. J. Phys. 48, 2857 and 2868 (1970)Google Scholar
- 15.S. Geller, Physics of Magnetic Garnets, Proc. Int’l School Phys. “Enrico Fermi,” Course LXX, (North-Holland Publishing Co., New York, 1978), p. 1Google Scholar
- 16.M.A. Gilleo, Ferromagnetic Materials 2, W.P. Wohlfarth, ed., (North-Holland, New York, 1980), Chapter 1; also M.A. Gilleo and S. Geller, Phys. Rev. 110, 73 (1958)Google Scholar
- 17.E.E. Anderson, Phys. Rev. 134, A1581 (1964)CrossRefGoogle Scholar
- 18.G.T. Rado and V.J. Folen, J. Appl. Phys. 31, 62 (1960)CrossRefGoogle Scholar
- 19.G.F. Dionne, J. Appl. Phys. 41, 4874 (1970); for FORTRAN program Magnetic Moment versus Temperature Curves of Ferrimagnetic Garnet Materials, (MIT Lincoln Laboratory Technical Report TR-480, 1970), AD-715284Google Scholar
- 20.S. Geller, H.J. Williams, R.C. Sherwood, and G.P. Espinosa, J. Appl. Phys. 36, 88 (1965)CrossRefGoogle Scholar
- 21.P. Roschmann and P. Hansen, J. Appl. Phys. 52, 6257 (1981)CrossRefGoogle Scholar
- 22.G.F. Dionne, J. Appl. Phys. 46, 4220 (1976); for FORTRAN program Magnetic Moment versus Temperature Curves of Rare-Earth Iron Garnets, (MIT Lincoln Laboratory Technical Report TR-588, 1981), AD-A107898/9Google Scholar
- 23.G.F. Dionne, J. Appl. Phys. 45, 3347 (1974); for FORTRAN program Magnetic Moment versus Temperature Curves of LiZnTi Ferrites, (MIT Lincoln Laboratory Technical Report TR-502, 1974), AD-782421/2Google Scholar
- 24.G.F. Dionne, J. Appl. Phys. 63, 3777 (1988)CrossRefGoogle Scholar
- 25.J. Smit and H.P.J. Wijn, Ferrites, (Wiley, New York, 1959)Google Scholar
- 26.W.H. von Aulock, Handbook of Microwave Ferrite Materials, (Academic Press, New York, 1965)Google Scholar
- 27.G. Blasse, Philips Research Repts. Suppl. 3 (1964)Google Scholar
- 28.A. Broese van Groenou, P.F. Bongers, and A.L. Stuijts, Mater. Sci. Eng. 3, 317 (1968)Google Scholar
- 29.V.J. Folen, Landolt-Bornstein III/4b, (Springer-Verlag, New York, 1970), p. 315Google Scholar
- 30.A.P. Greifer, IEEE Trans. Magn. 5, 774 (1969)CrossRefGoogle Scholar
- 31.M.M. Schieber, Experimental Magnetochemistry, (Wiley, New York, 1967)Google Scholar
- 32.G.F. Dionne, J. Appl. Phys. 99, 08M913 (2006)Google Scholar
- 33.M.I. Klinger and A.A. Samokhvalov, Phys. Stat. Sol.(b) 79, 9 (1977)Google Scholar
- 34.P.D. Baba, G.M. Argentina, W.E. Courtney, G.F. Dionne, and D. H. Temme, IEEE Trans. Magn. 8, 83 (1972)CrossRefGoogle Scholar
- 35.G.F. Dionne, J. Appl. Phys. 67, 4561 (1990)CrossRefGoogle Scholar
- 36.R.R. Heikes and W.D. Johnston, J. Chem. Phys. 26, 582 (1957)CrossRefGoogle Scholar
- 37.R. Pauthenet, Ann. Phys. 7, 710 (1952)Google Scholar
- 38.G.F. Dionne and R.G. West, Appl. Phys. Lett. 48, 1488 (1986); also J. Appl. Phys. 61, 3868 (1987)Google Scholar
- 39.Z. Simsa and V.A.M. Brabers, IEEE Trans. Magn. 11, 1303 (1975)CrossRefGoogle Scholar
- 40.L.G. Van Uitert, J. Chem. Phys. 24, 306 (1956)CrossRefGoogle Scholar
- 41.F.K. Lotgering, J. Phys. Chem. Solids 25, 95 (1964)Google Scholar
- 42.G.F. Dionne, J. Appl. Phys. 79, 5172 (1996)CrossRefGoogle Scholar
- 43.F. Bertaut and F. Forrat, Comptes Rend. 242, 382 (1956)Google Scholar
- 44.S. Geller and M.A. Gilleo, J. Phys. Chem. Solids 3, 30 (1957)Google Scholar
- 45.S. Geller and M.A. Gilleo, J. Phys. Chem. Solids 9, 235 (1959)Google Scholar
- 46.G.F. Dionne, J. Appl. Phys. 40, 1839 (1969)CrossRefGoogle Scholar
- 47.E.R. Czerlinsky and R.A. MacMillan, Phys. Stat. Sol. 41, 333 (1970)CrossRefGoogle Scholar
- 48.E.R. Czerlinsky, Phys. Stat. Sol. 34, 483 (1969)CrossRefGoogle Scholar
- 49.A. Thavendrarajah, M. Pardavi-Horvath, P.E. Wigen, and M. Gomi, IEEE Trans. Magn. 25, 4015 (1989)CrossRefGoogle Scholar
- 50.F. Bertaut and R. Pauthenet, Proc. IEE (London) 104B, 261 (1956)Google Scholar
- 51.R. Pauthenet, Ann. Phys. (Paris) 3, 424 (1958)Google Scholar
- 52.J.H. Van Vleck and M.A. Gilleo, private communications urging the author to rework the model in terms of spin only. Regrettably, the opportunity to collaborate with these giants of magnetism ended prematurely when both passed away within months of the conversations. The revised model is presented in Appendix 4CGoogle Scholar
- 53.R. Aléonard, J. Phys. Chem. Solids 15, 167 (1960)Google Scholar
- 54.G.F. Dionne and P.L. Tumelty, J. Appl. Phys. 50, 8257 (1979)CrossRefGoogle Scholar
- 55.C.D. Brandle and S.L. Blank, IEEE Trans. Magn. 12, 14 (1976)CrossRefGoogle Scholar
- 56.S. Geller, J.P. Remeika, R.C. Sherwood, H.J. Williams, and G.P. Espinosa, Phys. Rev. 137, A1034 (1965)CrossRefGoogle Scholar
- 57.K.R. Lea, M.J.M. Leask, and W.P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962)Google Scholar
- 58.J.S. Griffith, The Theory of Transition-Metal Ions, (Cambridge University Press, London, 1961)Google Scholar
- 59.J. Ostoréro and M. Guillot, J. Appl. Phys. 75, 6792 (1994)CrossRefGoogle Scholar
- 60.J. Ostoréro and M. Guillot, J. Appl. Phys. 81, 4797 (1997)CrossRefGoogle Scholar
- 61.G. Winkler, Magnetic Garnets, (Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1981)Google Scholar
- 62.J. Smit and H.P.J. Wijn, Ferrites, (Wiley, New York, 1959), Chapter IXGoogle Scholar
- 63.H.P.J. Wijn, Landolt-Bornstein III/4b, (Springer-Verlag, New York, 1970), p. 547Google Scholar
- 64.D.J. De Bitetto, J. Appl. Phys. 35, 3482 (1964)CrossRefGoogle Scholar
- 65.P. Roschmann, M. Lemke, W. Tolksdorf, and F. Welz, Mater. Res. Bull. 19, 385 (1984)CrossRefGoogle Scholar
- 66.W.D. Wilber, L.E. Silber, and A. Tauber, Hexagonal Ferrites for Millimeter-Wave Control Devices, US Army Laboratory Command Research and Development Technical Report No. SLCET-TR-87–4, 1987Google Scholar
- 67.P.B. Braun, Nature 170, 708 and 1123 (1952)Google Scholar
- 68.J.J. Went, G.W. Rathenau, E.W. Gorter, and G.W. van Oosterhout, Philips Tech. Rev. 13, 194 (1952)Google Scholar
- 69.G.H. Jonker, J.H. van Santen, H.P.J. Wijn, and P.B. Braun, Philips Tech. Rev. 18, 145 (1956)Google Scholar
- 70.B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), Section 3.3Google Scholar
- 71.D.S. Schmool, N. Keller, M. Guyot, R. Krishnan, and M. Tessier, J. Appl. Phys. 86, 5712 (1999)CrossRefGoogle Scholar
- 72.A. Rajamani, G.F. Dionne, D. Bono, and C.A. Ross, J. Appl. Phys. 98, 063907 (2005)CrossRefGoogle Scholar
- 73.A.H. Bobeck, R.F. Fischer, A.J. Perneski, J.P. Remeika, and L.G. Van Uitert, IEEE Trans. Magn. 5, 544 (1969)CrossRefGoogle Scholar
- 74.G.F. Dionne, J. Appl. Phys. 61, 3865 (1987)CrossRefGoogle Scholar
- 75.D. Stopples, P.G.T. Boonen, U. Enz, and L.A.H. van Hoof, J. Magn. Magn. Matls. 37, 116 (1983)CrossRefGoogle Scholar