Magnetic Oxides pp 107-150 | Cite as
Magnetic Exchange in Oxides
- 1 Citations
- 1.5k Downloads
Abstract
In the previous chapter, quenching of cation orbital angular momentum by the anion charges and the origin of the energy stabilization by covalent bonding was introduced by elementary crystal field and molecular orbital theory. In magnetically dilute compounds, the isolated 3d n ions are influenced next by the weakened spin-orbit coupling perturbations and multiplet structures that determine the magnetoelastic properties to be examined in Chap. 5. These effects are initially local but can become cooperative when concentrations increase to levels where percolation can occur, e.g., a cooperative Jahn-Teller effect. However, because the spin alone is the agent of magnetic ordering in this series, the multiplet energies can be largely ignored in the discussion of spontaneous magnetism. Consequently, the next important effective field in a ligand lattice to be addressed is the magnetic exchange field that arises from the transfer integral linking magnetic cations. Magnetic exchange, therefore, is the term used to describe the energy stabilization gained from spin ordering (parallel or antiparallel) of atoms or ions covalently coupled in an ionic crystal lattice.
Keywords
Stabilization Energy Orbital State Direct Exchange Spin Alignment Superexchange InteractionReferences
- 1.W. Heitler and F. London, Z. Physik 44, 455 (1927)CrossRefGoogle Scholar
- 2.L.E. Orgel, Introduction to Transition-Metal Chemistry: Ligand-Field Theory, (John Wiley, New York, 1959)Google Scholar
- 3.G.F. Dionne, Magnetic Interactions and Spin Transport, A. Chtchelkanova, S. Wolf, and Y. Idzerda, eds., (Springer, New York, 2003), Chapter 1Google Scholar
- 4.C.J. Ballhausen, Molecular Electronic Structures of Transition Metal Complexes, (McGraw-Hill International, Chatham, Great Britain, 1979), pp. 84–89Google Scholar
- 5.E. Cartmell and G.W.A. Fowles, Valency and Molecular Structures, (Butterworths, London, 1961), Chapter 8Google Scholar
- 6.P.W. Anderson, Phys. Rev. 115, 2 (1959)CrossRefGoogle Scholar
- 7.J.B. Goodenough, Prog. Solid State Chem. 5, 145 (1972), Section IIDGoogle Scholar
- 8.A.H. Morrish, The Physical Principles of Magnetism, (John Wiley, New York, 1965), p. 279Google Scholar
- 9.K. Yosida, Theory of Magnetism, (Springer, New York, 1996), p. 54Google Scholar
- 10.R.M. White, Quantum Theory of Magnetism, (Springer-Verlag, New York, 1983), Chapter 2Google Scholar
- 11.P.W. Anderson, Solid State Phys. 14, 99 (1969)CrossRefGoogle Scholar
- 12.J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1962); A277, 237 (1964); A281, 401 (1964); A285, 542 (1965); A296, 82, 100 (1966)Google Scholar
- 13.B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), p. 65Google Scholar
- 14.H.B. Kramers, Proc. Amsterdam Acad. Sci. 33, 959 (1930); also H.B. Kramers, Physica 1, 182 (1934)Google Scholar
- 15.J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), Chapter 3Google Scholar
- 16.C. Zener, Phys. Rev. 82, 403 (1951)CrossRefGoogle Scholar
- 17.P.-G. de Gennes, Phys. Rev. 118, 141 (1960)CrossRefGoogle Scholar
- 18.P.W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955)CrossRefGoogle Scholar
- 19.T. Nagamiya, K. Yosida, and R. Kubo, Adv. Phys. 4, 1 (1955)CrossRefGoogle Scholar
- 20.M.A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954)CrossRefGoogle Scholar
- 21.T. Kasuya, Prog. Theor. Phys. 16, 45 (1959)CrossRefGoogle Scholar
- 22.K. Yosida, Phys. Rev. 106, 893 (1957)CrossRefGoogle Scholar
- 23.J.B. Goodenough, New Developments in Semiconductors, P.R. Wallace, R. Harris, and M.J. Zuckermann, eds., (Nordhoff International Publishing, Leyden, 1973), pp. 145–151Google Scholar
- 24.J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959)CrossRefGoogle Scholar
- 25.J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), Chapter 3, p. 213Google Scholar
- 26.J.B. Goodenough and A.L. Loeb, Phys. Rev. 8, 391 (1955)Google Scholar
- 27.J.C. Slater, Phys. Rev. 35, 509 (1930)CrossRefGoogle Scholar
- 28.J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), Chapter 3, Table XII; also J.B. Goodenough, Phys. Rev. 117, 1442 (1960)Google Scholar
- 29.N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanium, Adv. Mater. (Weinheim, Ger.) 17, 2225 (2005)CrossRefGoogle Scholar
- 30.L. Néel, Ann. Phys. (Paris) 17, 64 (1932)Google Scholar
- 31.A.H. Morrish, The Physical Principles of Magnetism, (John Wiley, New York, 1965), Chapter 8Google Scholar
- 32.A.B. Lidiard, Rept. Prog. Phys. 17, 201 (1954)CrossRefGoogle Scholar
- 33.A.H. Morrish, The Physical Principles of Magnetism, (John Wiley, New York, 1965), p. 457Google Scholar
- 34.C.G. Shull, W.A. Strausser, and E.O. Wollan, Phys. Rev. 83, 333 (1951)CrossRefGoogle Scholar
- 35.R.K. Nesbet, Phys. Rev. 122, 1497 (1961)Google Scholar
- 36.J.B. Goodenough and J.M. Longo, Crystallographic and Magnetic Properties of Perovskite and Perovskite-Related Compounds, Landolt-Bornstein, Volume 4a (Springer-Verlag, New York, 1970) pp. 126–314Google Scholar
- 37.G.H Jonker and J.H. Van Santen, Physica XVI, 337 (1950)CrossRefGoogle Scholar
- 38.J.B. Goodenough, A. Wold, N. Menyuk, and R.J. Arnott, Phys. Rev. 124, 373 (1961)CrossRefGoogle Scholar
- 39.J.B. Goodenough and J.M. Longo, Crystallographic and Magnetic Properties of Perovskite and Perovskite-Related Compounds, Landolt-Bornstein, Volume 4a (Springer-Verlag, New York, 1970), Fig. 39Google Scholar
- 40.J.H. Van Santen and G.H Jonker, Physica XVI, 599 (1950)Google Scholar