Advertisement

Magnetic Exchange in Oxides

  • Gerald F. DionneEmail author
Chapter

Abstract

In the previous chapter, quenching of cation orbital angular momentum by the anion charges and the origin of the energy stabilization by covalent bonding was introduced by elementary crystal field and molecular orbital theory. In magnetically dilute compounds, the isolated 3d n ions are influenced next by the weakened spin-orbit coupling perturbations and multiplet structures that determine the magnetoelastic properties to be examined in  Chap. 5. These effects are initially local but can become cooperative when concentrations increase to levels where percolation can occur, e.g., a cooperative Jahn-Teller effect. However, because the spin alone is the agent of magnetic ordering in this series, the multiplet energies can be largely ignored in the discussion of spontaneous magnetism. Consequently, the next important effective field in a ligand lattice to be addressed is the magnetic exchange field that arises from the transfer integral linking magnetic cations. Magnetic exchange, therefore, is the term used to describe the energy stabilization gained from spin ordering (parallel or antiparallel) of atoms or ions covalently coupled in an ionic crystal lattice.

Keywords

Stabilization Energy Orbital State Direct Exchange Spin Alignment Superexchange Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Heitler and F. London, Z. Physik 44, 455 (1927)CrossRefGoogle Scholar
  2. 2.
    L.E. Orgel, Introduction to Transition-Metal Chemistry: Ligand-Field Theory, (John Wiley, New York, 1959)Google Scholar
  3. 3.
    G.F. Dionne, Magnetic Interactions and Spin Transport, A. Chtchelkanova, S. Wolf, and Y. Idzerda, eds., (Springer, New York, 2003), Chapter 1Google Scholar
  4. 4.
    C.J. Ballhausen, Molecular Electronic Structures of Transition Metal Complexes, (McGraw-Hill International, Chatham, Great Britain, 1979), pp. 84–89Google Scholar
  5. 5.
    E. Cartmell and G.W.A. Fowles, Valency and Molecular Structures, (Butterworths, London, 1961), Chapter 8Google Scholar
  6. 6.
    P.W. Anderson, Phys. Rev. 115, 2 (1959)CrossRefGoogle Scholar
  7. 7.
    J.B. Goodenough, Prog. Solid State Chem. 5, 145 (1972), Section IIDGoogle Scholar
  8. 8.
    A.H. Morrish, The Physical Principles of Magnetism, (John Wiley, New York, 1965), p. 279Google Scholar
  9. 9.
    K. Yosida, Theory of Magnetism, (Springer, New York, 1996), p. 54Google Scholar
  10. 10.
    R.M. White, Quantum Theory of Magnetism, (Springer-Verlag, New York, 1983), Chapter 2Google Scholar
  11. 11.
    P.W. Anderson, Solid State Phys. 14, 99 (1969)CrossRefGoogle Scholar
  12. 12.
    J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1962); A277, 237 (1964); A281, 401 (1964); A285, 542 (1965); A296, 82, 100 (1966)Google Scholar
  13. 13.
    B. Lax and K.J. Button, Microwave Ferrites and Ferrimagnetics, (McGraw-Hill, New York, 1962), p. 65Google Scholar
  14. 14.
    H.B. Kramers, Proc. Amsterdam Acad. Sci. 33, 959 (1930); also H.B. Kramers, Physica 1, 182 (1934)Google Scholar
  15. 15.
    J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), Chapter 3Google Scholar
  16. 16.
    C. Zener, Phys. Rev. 82, 403 (1951)CrossRefGoogle Scholar
  17. 17.
    P.-G. de Gennes, Phys. Rev. 118, 141 (1960)CrossRefGoogle Scholar
  18. 18.
    P.W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955)CrossRefGoogle Scholar
  19. 19.
    T. Nagamiya, K. Yosida, and R. Kubo, Adv. Phys. 4, 1 (1955)CrossRefGoogle Scholar
  20. 20.
    M.A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954)CrossRefGoogle Scholar
  21. 21.
    T. Kasuya, Prog. Theor. Phys. 16, 45 (1959)CrossRefGoogle Scholar
  22. 22.
    K. Yosida, Phys. Rev. 106, 893 (1957)CrossRefGoogle Scholar
  23. 23.
    J.B. Goodenough, New Developments in Semiconductors, P.R. Wallace, R. Harris, and M.J. Zuckermann, eds., (Nordhoff International Publishing, Leyden, 1973), pp. 145–151Google Scholar
  24. 24.
    J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959)CrossRefGoogle Scholar
  25. 25.
    J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), Chapter 3, p. 213Google Scholar
  26. 26.
    J.B. Goodenough and A.L. Loeb, Phys. Rev. 8, 391 (1955)Google Scholar
  27. 27.
    J.C. Slater, Phys. Rev. 35, 509 (1930)CrossRefGoogle Scholar
  28. 28.
    J.B. Goodenough, Magnetism and the Chemical Bond, (Wiley Interscience, New York, 1963), Chapter 3, Table XII; also J.B. Goodenough, Phys. Rev. 117, 1442 (1960)Google Scholar
  29. 29.
    N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanium, Adv. Mater. (Weinheim, Ger.) 17, 2225 (2005)CrossRefGoogle Scholar
  30. 30.
    L. Néel, Ann. Phys. (Paris) 17, 64 (1932)Google Scholar
  31. 31.
    A.H. Morrish, The Physical Principles of Magnetism, (John Wiley, New York, 1965), Chapter 8Google Scholar
  32. 32.
    A.B. Lidiard, Rept. Prog. Phys. 17, 201 (1954)CrossRefGoogle Scholar
  33. 33.
    A.H. Morrish, The Physical Principles of Magnetism, (John Wiley, New York, 1965), p. 457Google Scholar
  34. 34.
    C.G. Shull, W.A. Strausser, and E.O. Wollan, Phys. Rev. 83, 333 (1951)CrossRefGoogle Scholar
  35. 35.
    R.K. Nesbet, Phys. Rev. 122, 1497 (1961)Google Scholar
  36. 36.
    J.B. Goodenough and J.M. Longo, Crystallographic and Magnetic Properties of Perovskite and Perovskite-Related Compounds, Landolt-Bornstein, Volume 4a (Springer-Verlag, New York, 1970) pp. 126–314Google Scholar
  37. 37.
    G.H Jonker and J.H. Van Santen, Physica XVI, 337 (1950)CrossRefGoogle Scholar
  38. 38.
    J.B. Goodenough, A. Wold, N. Menyuk, and R.J. Arnott, Phys. Rev. 124, 373 (1961)CrossRefGoogle Scholar
  39. 39.
    J.B. Goodenough and J.M. Longo, Crystallographic and Magnetic Properties of Perovskite and Perovskite-Related Compounds, Landolt-Bornstein, Volume 4a (Springer-Verlag, New York, 1970), Fig. 39Google Scholar
  40. 40.
    J.H. Van Santen and G.H Jonker, Physica XVI, 599 (1950)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyLexingtonUSA

Personalised recommendations