Skip to main content

1D Nanowire Electrode Materials for Power Sources of Microelectronics

  • Chapter
  • First Online:
  • 2915 Accesses

Abstract

Manipulation of nanostructured electrode material can provide versatile strategies toward improving the electrochemical properties. The nanostructure promotes fast Li-ion pathways for lithium ion transport and electronic conduction. Better rate capabilities are due to that the distance over which Li+ must diffuse in the solid state dramatically decreases in the nanostructured electrode. Recently, there are growing applications of these materials in the area of micro-potable electronics, such as micro-robots, sensor nods, active radio frequency identification (RF-ID) tag, etc. Fast charging time and longer may be essential for these applications, and 1D-nanowire materials may enable to realize much more faster charging speeds than those achieved using conventional bulk materials, without significant degradation in storage capacity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, Nature 2000, 404, 59.

    Article  CAS  Google Scholar 

  2. Y. Jun, S.-M. Lee, N.-J. Kang, J. Cheon, J. Am. Chem. Soc. 2001, 123, 5150.

    Article  CAS  Google Scholar 

  3. L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc. 2000, 122, 12700.

    Article  CAS  Google Scholar 

  4. Y.-W. Jun, J.-S. Choi, J. Cheon, Angew. Chem. Int. Ed. 2006, 45, 3414.

    Article  CAS  Google Scholar 

  5. Z. Liu, D. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. Liu, B. Lei, C. Zhou, Adv. Mater. 2003, 15, 1754.

    Article  CAS  Google Scholar 

  6. Y. Liu, J. Dong, M. Liu, Adv. Mater. 2004, 16, 353.

    Article  CAS  Google Scholar 

  7. Z. R. Dai, Z. W. Pan, Z. L. Wang, J. Am. Chem. Soc. 2002, 124, 8673.

    Article  CAS  Google Scholar 

  8. J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, S. T. Lee, J. Phys. Chem. B. 2002, 106, 3823.

    Article  CAS  Google Scholar 

  9. Y. Wang, J. Y. Lee, J. Phys. Chem. B. 2004, 108, 17832; Y. Wang, H. C. Zeng, J. Y. Lee, Adv. Mater. 2006, 18, 645; Y. Wang, J. Y. Lee, H. C. Zeng, Chem. Mater. 2005, 17, 3899.

    Google Scholar 

  10. Y. Wang, F. Su, J. Y. Lee, X. S. Zhao, Chem. Mater. 2006, 18, 1347; X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, L. A. Archer, Adv. Mater. 2006, 18, 2325; S. Han, B. Jang, T. Kim, S. M. Oh, T. Hyeon, Adv. Funct. Mater. 2005, 15, 1845.

    Google Scholar 

  11. M.-S. Park, G.-X. Wang, Y.-M. Kang, D. Wexler, S.-X. Dou, H.-K. Liu, Angew. Chem. Int. Ed. 2007, 46, 750.

    Article  CAS  Google Scholar 

  12. F. Chen, M. Liu, Chem. Commun. 1999, 1829.

    Google Scholar 

  13. D.-F. Zhang, L.-D. Sun, J.-L. Yin, C.-H. Yan, Adv. Mater. 2003, 12, 1022.

    Article  CAS  Google Scholar 

  14. N. Ulagappan, C. N. R. Rao, Chem. Commun. 1996, 1685; K. G. Severin, T. M. Abdel-Fattah, T. J. Pinnavaia, Chem. Commun. 1998, 1471.

    Google Scholar 

  15. S. C. Laha, R. Ryoo, Chem. Commun. 2003, 2138; K. P. Gierszal, T.-W. Kim, R. Ryoo, M. Jaroniec, J. Phys. Chem. B. 2005, 109, 8774.

    Google Scholar 

  16. H. Kim, J. Cho, J. Mater. Chem. 2008, 18, 771.

    Article  CAS  Google Scholar 

  17. M.-S. Park, G.-X. Wang, Y.-M. Kang, D. Wexler, S.-X. Dou, H.-K. Liu, Angew. Chem. Int. Ed. 2007, 46, 750.

    Article  CAS  Google Scholar 

  18. I. A. Coutney, J. R. Dahn, J. Electrochem. Soc. 1997, 144, 2045; I. A. Courtney, J. S. Tse, O. Mao, J. Hafner, J. R. Dahn, Phys. Rev. B 1998, 58, 15583.

    Google Scholar 

  19. G.-A. Nazri, G. Pistoia, Lithium Batteries Science and Technology, Kluwer, Boston, 2004.

    Google Scholar 

  20. J. O. Besenhard, J. Yang, M. Winter, J. Power Sources, 1997, 68, 87.

    Article  CAS  Google Scholar 

  21. H. C. Shin, M. Liu, Adv. Funct. Mater. 2005, 15, 582; Y. Xia, T. Sakai, M. Wada, H. Yoshinaga, J. Electrochem. Soc. 2001, 148, 471; S. D. Beattie, J. R. Dahn, J. Electrochem. Soc. 2003, 150, A894; O. Mao, J. R. Dahn, J. Electrochem. Soc. 1999, 146, 414.

    Google Scholar 

  22. I.-S. Kim, G. E. Blomgren, P. N. Kumta, Electrochem. Solid- State Lett. 2004, 7, A44; G. X. Wang, J. Yao, H. K. Liu, Electrochem. Solid- State Lett. 2004, 7, A250; L. K. Lee, Y. S. Jung, S. M. Oh, J. Am. Chem. Soc. 2003, 125, 5652; M. Noh, Y. Kim, M. G. Kim, H. Lee, Y. Kwon, Y. Lee, J. Cho, Chem. Mater. 2005, 17, 3320.

    Google Scholar 

  23. Y. Kwon, M. G. Kim, Y. Kim, Y. Lee, J. Cho, J. Electrochem. Solid-State Lett. 2006, 9, A34; M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, M. G. Kim, Chem. Mater. 2005, 17, 1926; H. Kim, J. Cho, J. Electrochem. Soc. 2007, 154, A462; H. Kim, J. Cho, Electrochim. Acta 2007, 52, 4197.

    Google Scholar 

  24. B. Gao, S. Sinha, L, Fleming, O. Zhou, Adv. Mater. 2001, 13, 816.

    Article  CAS  Google Scholar 

  25. F. J. Himpsel, T. Jung, A. Kirakosian, J. L. Lin, D. Y. Petrovykh, H. Rausher, J. Viernow, MRS Bull. 1999, 24, 20.

    CAS  Google Scholar 

  26. R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89; G. Cao, Nanostructure and Nanomaterials, Imperial College Press, London, 2004.

    Google Scholar 

  27. T. J. Trentler, K. M. Kickman, S. C. Goel, S. M. Viano, P. C. Gibbons, W. E. Buhro, Science, 1995, 270, 1791.

    Article  CAS  Google Scholar 

  28. P. Yang, C. M. Lieber, Science, 1996, 273, 1836; P. Yang, C. M. Lieber, J. Mater. Res. 1997, 12, 2981.

    Google Scholar 

  29. H. Lee, H. Kim, S.-G. Doo, J. Cho, J. Electrochem. Soc. 2007, 154, A343.

    Article  CAS  Google Scholar 

  30. Y. Kwon, H. Kim, S.-G. Doo, J. Cho, Chem. Mater. 2007, 19, 982.

    Article  CAS  Google Scholar 

  31. H. Lee, J. Cho, Nano Lett. 2007, 7, 2638.

    Article  CAS  Google Scholar 

  32. C.-S. Yang, Q. Li, S. M. Kauzlarich, B. Phillips, Chem. Mater. 2000, 12, 983.

    Article  CAS  Google Scholar 

  33. A. C. Ferrai, R. Roberston, J. Phys. Chem. B. 2000, 61, 14095.

    Google Scholar 

  34. D. Aurbach, A. Nimberger, B. Markosky, E. Levi, E. Sominski, A. Gedanken, Chem. Mater. 2002, 14, 4155.

    Article  CAS  Google Scholar 

  35. Z. Lu, J. R. Dahn, J. Electrochem. Soc. 2002, 149, A815.

    Article  CAS  Google Scholar 

  36. A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S.-H. Kang, M. M. Thackeray, P. G. Bruce, J. Am. Chem. Soc. 2006, 128, 8694.

    Article  CAS  Google Scholar 

  37. S.-H. Park, S.-H. Kang, C. S. Johnson, K. Amine, M. M. Thackeray, Electrochem. Commu. 2007, 9, 262.

    Article  CAS  Google Scholar 

  38. M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney, J. Mater. Chem. 2005, 15, 2257.

    Article  CAS  Google Scholar 

  39. C. S. Johnson, N. Li, C. Lefief, M. M. Thackeray, Electrochem. Commun. 2007, 9, 787.

    Article  CAS  Google Scholar 

  40. Y.-S. Hong, Y. J. Park, X. Wu, K. S. Ryu, S. H. Chang, Electrochem. Solid State Lett. 2003, 6, A166.

    Article  CAS  Google Scholar 

  41. B. Ammundsen, J. Paulsen, J. Adv. Mater. 2001, 13, 943.

    Article  CAS  Google Scholar 

  42. Y.-S. Hong, Y. J. Park, K. S. Ryu, S. H. Chang, M. G. Kim, J. Mater. Chem. 2004, 14, 1424.

    Article  CAS  Google Scholar 

  43. J. Cho, Y. Kim, M. G. Kim, J. Phys. Chem. C 2007, 111, 1186.

    Article  CAS  Google Scholar 

  44. Y. Lee, M. G. Kim, J. Cho, Nano Lett. 2008, 8, 957.

    Article  CAS  Google Scholar 

  45. Y. J. Park, Y.-S. Hong, X. Wu, M. G. Kim, K. S. Ryu, S. H. Chang, J. Electrochem. Soc. 2004, 151, A720.

    Article  CAS  Google Scholar 

  46. C. Kim, M. Noh, M. Choi, J. Cho, B. Park, Chem. Mater. 2005, 17, 3297.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the converging Research center program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaephil Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cho, J. (2010). 1D Nanowire Electrode Materials for Power Sources of Microelectronics. In: Wong, C., Moon, KS., Li, Y. (eds) Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0040-1_6

Download citation

Publish with us

Policies and ethics