Nanomaterials via NanoSpray Combustion Chemical Vapor Condensation, and Their Electronic Applications

  • Andrew Hunt
  • Yongdong Jiang
  • Zhiyong Zhao
  • Ganesh Venugopal
Chapter

Abstract

NanoSpray Combustion™ processing is a versatile and cost-effective manufacturing method for a wide range of materials, including nanopowders and nanostructured thin films. The NanoSpray process is used in combustion chemical vapor condensation (nCCVC) mode for making metal oxide, metal phosphate, and select metal nanopowders while combustion chemical vapor deposition (nCCVD) is used to make thin films. In this chapter, we will use NanoSpray Combustion process as a benchmark and review its capabilities to that of other nanomaterials’ fabrication processes. Examples will mostly be of nanopowders synthesized using nCCVC. Applications of the nanomaterials in the electronic and energy sectors will be discussed.

Keywords

nCCVC nCCVD Nanopowders Nanomaterials Nanocomposites NanoSpray Lithium-ion batteries Conductive adhesives Nonlinear optical materials Capacitors 

Notes

Acknowledgments

We thank all of the nGimat team members, past and present, who have contributed to the work discussed in this manuscript. In particular, we are grateful for the help provided by Dr. Elena Krumenaker and Mr. Michael Sapp. We would also like to thank Professor Steve Ralph at the Georgia Institute of Technology for performing z-scan measurements, and Professor C.P. Wong for his many discussions and collaborations. Last but not least, we are grateful for the funding provided by the US Department of Energy, Department of Defense, and the National Science Foundation that helped defray the cost of carrying out the research and development efforts described in this chapter.

References

  1. 1.
    ASTM Standards Document E 2456-06 (2006)Google Scholar
  2. 2.
    Buzea C., Pacheco I.I., and Robbie K., Nanomaterials and nanoparticles, sources and toxicity. Biointerphases 2007; 2(4): M17–M71.CrossRefGoogle Scholar
  3. 3.
    Rempel A.A., Nanotechnologies. Properties and applications of nanostructured materials. Russian Chemical Reviews 2007; 76(5): 435–461.CrossRefGoogle Scholar
  4. 4.
    Brechignac C., Houdy P., Lahmani M. (eds), Nanomaterials and Nanochemistry. Springer, Berlin (2008).Google Scholar
  5. 5.
    Vollath D., Plasma synthesis of nanopowders. Journal of Nanoparticle Research 2008; 10: 39–57.CrossRefGoogle Scholar
  6. 6.
    Swihart M.T., Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid and Interface Science 2003; 8: 127–133.CrossRefGoogle Scholar
  7. 7.
    Carbon Black Users Guide, International Carbon Black Association, http://www.carbon-black.org/carbonblackuserguide.pdf (2004), Accessed 4 May 2009
  8. 8.
    Aerosil: Fumed Silica for Batteries, Technical Bulletin 2125, http://www.aerosil.com (2007), Accessed 4 May 2009
  9. 9.
    Aeroxide and Aeroperl: Titanium Dioxide as a Photocatalyst, Technical Bulletin 1243, http://www.aerosil.com (2005), Accessed 4 May 2009
  10. 10.
    Lin C., and Chung D.D.L., Nanstructured fumed metal oxides for thermal interface pastes. Journal of Materials Science 2007; 42: 9245–9255.CrossRefGoogle Scholar
  11. 11.
    Pitkethly M.J., Nanomaterials – the driving force. Nanotoday 2004; 7(December issue): 20–28.Google Scholar
  12. 12.
    Rolland J.P., Hagberg E.C., Denison G.M., Carter K.R., and De Simone J.M., High-resolution soft lithography: enabling materials for nanotechnologies. Angewandte Chemie 2004; 43: 5796–5799.CrossRefGoogle Scholar
  13. 13.
    Hunt A.T. et al., US Patents: 5652021, 5858465, 5863604 and 6013318Google Scholar
  14. 14.
    Hunt A.T. et al., Applied Physics Letters 1993; 63(2): 266.CrossRefGoogle Scholar
  15. 15.
    Gratzel M., Photoelectrochemical cells. Nature 2001; 414: 338–344.CrossRefGoogle Scholar
  16. 16.
    Hui S., Roller J., Sin Y., Zhang X., Deces-Petit C., Xie Y., Maric R., and Ghosh D., Journal of Power Sources 2007; 172: 493–502.CrossRefGoogle Scholar
  17. 17.
    Cheekatamarla P.K., and Finnerty C.M., Journal of Power Sources 2006; 160: 490–599.CrossRefGoogle Scholar
  18. 18.
    Fu Q., Zhou N., Huang W., and Wang D., Preparation and characterization of a novel bioactive bone cement: glass based nanoscale hydroxyapatite bone cement. Journal of Materials Science: Materials in Medicine 2004; 15: 133–1338.CrossRefGoogle Scholar
  19. 19.
    Atkinson A. et al., Large-scale preparation of chromatographic grade hydroxylapatite and its application in protein separating procedures. Journal of Applied Chemistry & Biotechnology 1973; 23: 517–523.CrossRefGoogle Scholar
  20. 20.
    Schnieder O.D., Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008; 84B: 350–362.CrossRefGoogle Scholar
  21. 21.
    Iliescu M. et al., Morphological and structural characterisation of osseointegrable Mn2+ and CO3 2 doped hydroxylapatite thin films. Materials Science and Engineering 2007; 27(1): 105–109.CrossRefGoogle Scholar
  22. 22.
    Chung S.-Y., Bloking J.T., and Chiang Y.M., Nature Materials 2002; 1: 123–128.CrossRefGoogle Scholar
  23. 23.
    Ferrari M., (ed), BioMEMS and Biomedical Nanotechnology. Springer, New York (2006).Google Scholar
  24. 24.
    Wang X.D. et al., Nanomaterials and nanopackaging. In: Lu D., Wong C.P. (eds), Materials for Advanced Packaging Reference. pp 503–545, Springer, New York (2009).CrossRefGoogle Scholar
  25. 25.
    Lu D., and Wong C.P., Electrically conductive adhesives. In: Lu D., Wong C.P. (eds), Materials for Advanced Packaging Reference. pp 365–405, Springer, New York (2009).CrossRefGoogle Scholar
  26. 26.
    Prasher R., and Chiu C.-P., Thermal interface materials. In: Lu D., Wong C.P. (eds), Materials for Advanced Packaging Reference. pp 437–458, Springer, New York (2009).CrossRefGoogle Scholar
  27. 27.
    Zhang R. et al., Georgia Institute of Technology, Manuscript in preparationGoogle Scholar
  28. 28.
    Lide D.R. (ed), Handbook of Chemistry and Physics, 87th Edition. CRC Press, Boca Raton, FL (2007)Google Scholar
  29. 29.
    Nazri G.A., Pistoia G., (eds), Lithium Batteries: Science and Technology. Kluwer Academic Publishers, Boston, Dordrecht, New York, London (2004).Google Scholar
  30. 30.
    Belharouak I. et al., Journal of the Electrochemical Society 2007; 154: A1083–A1087.CrossRefGoogle Scholar
  31. 31.
    Manthiram A. et al., Energy & Environmental Science (2008). doi: 10.1039/b811802gGoogle Scholar
  32. 32.
    Amine K. et al., US Patent 2007/014845A1 (2007)Google Scholar
  33. 33.
    X-ray Diffraction Particle Data File # 26–1198Google Scholar
  34. 34.
    Thackeray M. et al., US Patent 7,452,630 B2 (2008)Google Scholar
  35. 35.
    Energy Storage R&D Annual Report, DOE Vehicle Technologies Program, (2007–2008)Google Scholar
  36. 36.
    Rao Y., and Wong C.P., Journal of Applied Polymer Science 2004; 92: 2228.CrossRefGoogle Scholar
  37. 37.
    Rao Y., Ogitani S., Kohl P., and Wong C.P., Journal of Applied Polymer Science 2002; 83: 1084.CrossRefGoogle Scholar
  38. 38.
    Kuo D.H., Chang C.C., Su T.Y., Wang W.K., and Lin B.Y., Materials Chemistry and Physics 2004; 85: 201.CrossRefGoogle Scholar
  39. 39.
    Bhattacharya S.K., and Tummala R.R., Microelectronics Journal 2001; 32: 11.CrossRefGoogle Scholar
  40. 40.
    Windlass H., Markondeya Raj P., Balaraman D., Bhattacharya S.K., and Tummala R.R., IEEE Transactions on Advanced Packaging 2003; 26: 10.CrossRefGoogle Scholar
  41. 41.
    Pothukuchi S., Li Y., and Wong C.P., Journal of Applied Polymer Science 2004; 93: 1531.CrossRefGoogle Scholar
  42. 42.
    Dang Z.M., Wang L., Wang H.Y., Nan C.W., Xie D., Yin Y., and Tjong S.C., Applied Physics Letters 2005; 86: 172905.CrossRefGoogle Scholar
  43. 43.
    Kakimoto M., Takashi A., Tsurumi T., Hao J.J., Li L., Kikuchi R., Miwa T., Oono T., and Yamada S., Materials Science and Engineering B 2006; 132: 74.CrossRefGoogle Scholar
  44. 44.
    Wu C.C., Chen Y.C., Su C.C., and Yang C.F., European Polymer Journal 2009; 45: 1442.CrossRefGoogle Scholar
  45. 45.
    Li Y., Pothukuchi S., and Wong C.P., Proceedings of the 9th Symposium on Advanced Packaging Materials 2004;175Google Scholar
  46. 46.
    Sakzm D., Warjm N., Baalmann A., Simon, U., and Jaeger N., Physical Chemistry Chemical Physics 2002; 4: 2438.Google Scholar
  47. 47.
    Kelly J.M., Stenoien J.O., and Isbell D.E., Journal of Applied Physics 1953; 24: 258.CrossRefGoogle Scholar
  48. 48.
    Wong C.P., Xu J.W., Moon K.S., and Tison C.K., IEEE Transactions on Advanced Packaging 2006; 29: 295.CrossRefGoogle Scholar
  49. 49.
    Fukumi K., Chayahara A., Kadono K., Sakaguchi T., Horino Y., Miya M., Fujii K., Hayakawa J., and Satou M., Gold nanoparticles ion-implanted in glass with enhanced nonlinear-optical properties. Journal of Applied Physics 1994; 75: 3075.CrossRefGoogle Scholar
  50. 50.
    Sheik-Bahae M., Said A.A., Wei T.H., Hagan D.J., and Van Stryland E.W., Sensitive measurement of optical nonlinearities using a single beam. IEEE Journal of Quantum Electronics 1990; 26: 760.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Andrew Hunt
    • 1
  • Yongdong Jiang
    • 1
  • Zhiyong Zhao
    • 1
  • Ganesh Venugopal
    • 1
  1. 1.nGimat Co.AtlantaUSA

Personalised recommendations