Skip to main content

Nano-conductive Adhesives for Nano-electronics Interconnection

  • Chapter
  • First Online:
Nano-Bio- Electronic, Photonic and MEMS Packaging

Abstract

With the phasing out of lead-bearing solders, electrically conductive adhesives (ECAs) have been identified as one of the environmentally friendly alternatives to tin/lead (Sn/Pb) solders in electronics packaging applications. In particular, with the requirements for fine-pitch and high-performance interconnects in advanced packaging, nanoconductive adhesives are becoming more and more important due to the special electrical, mechanical, optical, magnetic, and chemical properties that nano-sized materials can possess. There has been extensive research for the last few years on materials and process improvement of ECAs, as well as the advances of nanoconductive adhesives that contain nano-filler such as nanoparticles, nanowires, or carbon nanotubes and nanomonolayer graphenes. In this chapter, recent research trends on electrically conductive adhesives (ECAs) and their related nanotechnologies are discussed, with the particular emphasis on the emerging nanotechnology, including materials development and characterizations, processing optimization, reliability improvement, and future challenges/opportunities identification. The state of the art on nanoisotropic/anisotropic conductive adhesives incorporated with nanosilver, carbon nanotubes, and nanonickel, and their recent studies on those for flexible nano/bioelectronics, transparent electrodes, and jettable processes are addressed in this chapter. Future studies on nanointerconnect materials are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolfson H. and Elliot G., Electrically conducting cements containing epoxy resins and silver. US Patent 2,774,747, 1956.

    Google Scholar 

  2. Matz K.R., Electrically conductive cement and brush shunt containing the same. US Patent 2,849,631, 1958.

    Google Scholar 

  3. Beck D.P., Printed electrical resistors. US Patent 2,866,057, 1958.

    Google Scholar 

  4. Li Y., Moon K., and Wong C.P., Science 2005; 308: 1419–1420.

    Article  CAS  Google Scholar 

  5. Li Y. and Wong C.P., Mater. Sci. Eng. R 2006; 51: 1–35.

    Article  CAS  Google Scholar 

  6. Liu J., (Ed.), Conductive adhesives for Electronics Packaging. Electrochemical Publications Ltd., Port Erin, Isle of Man, 1999; Chapter 1.

    Google Scholar 

  7. Hwang J.S. (Ed.), Environment-Friendly Electronics: Lead-free Technology. Electrochemical Publications Ltd., Port Erin, Isle of Man, 2001; Chapter 1, pp. 4–10.

    Google Scholar 

  8. Murray C.T., Rudman R.L., Sabade M.B., and Pocius A.V., Mater. Res. Bull. 2003; 28: 449–454.

    CAS  Google Scholar 

  9. Lau J., Wong C.P., Lee N.C., and Lee S.W.R., In: Electronics Manufacturing: with Lead-Free, Halogen-Free, and Conductive-Adhesive Materials. McGraw-Hill, New York, 2002.

    Google Scholar 

  10. Lu D., Tong Q.K., and Wong C.P., IEEE Trans. Compon. Packag. Manuf. Technol., Part C 1999; 22(3): 228–232.

    CAS  Google Scholar 

  11. Persson K., Nylund A., Liu J., and Olefjord I., Proceedings of the 7th European Conference on Applications of Surface and Interface Analysis, Gothenburg, June 1997.

    Google Scholar 

  12. Lu D. and Wong C.P., J. Appl. Polym. Sci. 1999; 74: 399–406.

    Article  CAS  Google Scholar 

  13. Li Y., Moon K., and Wong C.P., J. Adhes. Sci. Technol. 2005; 19(16): 1427–1444.

    Article  CAS  Google Scholar 

  14. Matienzo L.J., Egitto F.D., and Logan P.E., J. Mater. Sci. 2003; 38: 4831–4842.

    Article  CAS  Google Scholar 

  15. Li H., Moon K., and Wong C.P., J. Electron. Mater. 2004; 33: 106–113.

    Article  CAS  Google Scholar 

  16. Lu D., Tong Q.K., and Wong C.P., IEEE Trans. Compon. Packag. Manuf. Technol. Part C 1999; 22: 223–227.

    CAS  Google Scholar 

  17. Li Y., Moon K., and Wong C.P., IEEE Trans. Compon. Packag. Manuf. Technol. 2006; 29(1): 173–178.

    Article  Google Scholar 

  18. Li Y., Moon K., Whitman A., and Wong C.P., IEEE Trans. Compon. Packag. Manuf. Technol. 2006; 29(4): 758–763.

    Article  CAS  Google Scholar 

  19. Gallagher C., Matijasevic G., and Maguire J.F., Proceedings of 47th IEEE Electronic Components and Technology Conference 1997; 554–560.

    Google Scholar 

  20. Roman J.W. and Eagar T.W., Proceedings of the International Society for Hybrids and Microelectronics Society, San Francisco, CA, 1992; 52.

    Google Scholar 

  21. Li Y., Moon K., Li H., and Wong C.P., Proceedings of 54th IEEE Electronic Components and Technology Conference, Las Vegas, Nevada, June 1–4, 2004; 1959–1964.

    Google Scholar 

  22. Cavasin D., Brice-Heams K., and Arab A. Proceedings of 53rd Electronic Components and Technology Conference 2003; 1404–1407.

    Google Scholar 

  23. Kisiel R., J. Electron. Packag. 2002; 124: 367.

    Article  CAS  Google Scholar 

  24. de Vries H., van Delft J., and Slob K., IEEE Trans. Compon. Packag. Manuf. Technol. 2005; 28: 499.

    Article  CAS  Google Scholar 

  25. Watanabe I., Gotoh Y., and Kobayashi K. Proc. Asia Display/IDW, Nagoya, Japan 2001; 553–556.

    Google Scholar 

  26. Nishida H., Sakamoto K., and Ogawa H., IBM J. Res. Dev. 1998; 42: 517.

    Article  Google Scholar 

  27. Williams D.J., Whalley D.C., Boyle O.A., and Ogunjimi A.O., Solder. Surf. Mount Tech. 1993; 5: 4.

    Google Scholar 

  28. Liu J., Tolvgard A., Malmodin J., and Lai Z., IEEE Trans. Compon. Packag. Manuf. Technol. 1999; 22: 186.

    Article  CAS  Google Scholar 

  29. Clot P., Zeberli J.F., Chenuz J.M., Ferrando F., and Styblo D., Proceedings of the International Electronics Manufacturing Technology Symposium 24th IEEE/CPMT, Austin, TX, 1999; 36.

    Google Scholar 

  30. Wu H., Wu X., Liu J., Zhang G., Wang Y., Zeng Y., and Jing J., Development of a novel isotropic conductive adhesive filled with silver nanowires. J. Compos. Mater. 2006; 40(21): 1961–1968.

    Article  CAS  Google Scholar 

  31. Chen C., Wang L., Li R., Jiang G., Yu H., and Chen T., J. Mater. Sci. 2007; 42(9): 3172.

    Article  CAS  Google Scholar 

  32. Lee H.S., Chou K.S., and Shih Z.W., Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives. Int. J. Adhes. Adhes. 2005; 25: 437–441.

    CAS  Google Scholar 

  33. Ye L., Lai Z., Liu J., and Tholen A., Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives. IEEE Trans. Electron. Packag. Manuf. 1999; 22(4): 299–302.

    Article  CAS  Google Scholar 

  34. Fan L., Su B., Qu J., and Wong C.P., Electrical and thermal conductivities of polymer composites containing nano-sized particles. Proceedings of Electronic Components and Technology Conference. IEEE, NJ, 2004; 148–154.

    Google Scholar 

  35. Jiang H.J., Moon K., Lu J., and Wong C.P., J. Electron. Mater. 2005; 34: 1432–1439.

    Article  CAS  Google Scholar 

  36. Jiang H.J., Moon K., Li Y., and Wong C.P., Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem. Mater. 2006; 18(13): 2969–2973.

    Article  CAS  Google Scholar 

  37. Kotthaus S., Günther B.H., Haug R., and Schafer H., Study of isotropically conductive bondings filled with aggregates of nano-sized Ag-particles. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1997; 20(1): 15–20.

    Article  CAS  Google Scholar 

  38. Das R.N., Lauffer J.M., and Egitto F.D., Proceedings of Electronic Components and Technology Conference. IEEE, 2006; 112–118.

    Google Scholar 

  39. Iijima S., Nature 1991; 354: 56.

    Article  CAS  Google Scholar 

  40. Berber S., Kwon Y.K., and Tomànek D., Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000; 84(20): 4613–4616.

    Article  CAS  Google Scholar 

  41. Yu M.F., Files B.S., Arepalli S., and Ruoff R.S., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000; 84(24): 5552–5555.

    Article  CAS  Google Scholar 

  42. Li J. and Lumpp J.K., Electrical and mechanical characterization of carbon nanotube filled conductive adhesive. In: Proceedings of Aerospace Conference. IEEE, NJ, 2006; 1–6.

    Google Scholar 

  43. Qian D., Dickey E.C., Andrews R., and Rantell T., Load transfer and deformation mechanisms in carbon nanotube polystyrene composites. Appl. Phys. Lett. 2000; 76: 2868.

    Article  CAS  Google Scholar 

  44. Lin X.C. and Lin F., Improvement on the properties of silver-containing conductive adhesives by the addition of carbon nanotube. In: Proceedings of High Density Microsystem Design and Packaging. IEEE, NJ, 2004; 382–384.

    Google Scholar 

  45. Rutkofsky M., Banash M., Rajagopal R., and Chen J., Using a carbon nanotube additive to make electrically conductive commercial polymer composites. Zyvex Corporation Application Note 9709: http://www.zyvex.com/Documents/9709.PDF 28; 2006.

  46. Kamyshny A., Ben-Moshe M., Aviezer S., and Magdassi S., Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 2005; 26: 281–288.

    Article  CAS  Google Scholar 

  47. Cibis D. and Currle U., Inkjet printing of conductive silver paths. In: 2nd International Workshop on Inkjet Printing of Functional Polymers and Materials. Eindhoven, The Netherlands, 2005.

    Google Scholar 

  48. Kolbe J., Arp A., Calderone F., Meyer E.M., Meyer W., Schaefer H., and Stuve M., Inkjettable conductive adhesive for use in microelectronics and microsystems technology. In: Proceedings of IEEE Polytronic Conference. IEEE, NJ, 2005; 1–4.

    Google Scholar 

  49. Moscicki A., Felba J., Sobierajski T., Kudzia J., Arp A., and Meyer W., Electrically conductive formulations filled nano size silver filler for ink-jet technology. In: Proceedings of IEEE Polytronic Conference. IEEE, NJ, 2005; 40–44.

    Google Scholar 

  50. Wakuda D., Hatamura M., and Suganuma K., Chem. Phys. Lett. 2007; 441: 305–308.

    Article  CAS  Google Scholar 

  51. Moon K., Dong H., Maric R., Pothukuchi S., Hunt A., Li Y., and Wong C.P., J. Electron. Mater. 2005; 34: 132–139.

    Article  Google Scholar 

  52. Matsuba Y., Erekutoronikusu Jisso Gakkaishi 2003; 6(2): 130–135.

    CAS  Google Scholar 

  53. Li Y., Moon K. and Wong C.P., J. Appl. Polym. Sci. 2006; 99(4): 1665–1673.

    Article  CAS  Google Scholar 

  54. Li Y., Moon K., and Wong C.P. In: Proceedings of 54th IEEE Electronic Components and Technology Conference. IEEE, NJ, 2004; 1968–1974.

    Google Scholar 

  55. Li Y. and Wong C.P. In: Proceedings of 55th IEEE Electronic Components and Technology Conference. IEEE, NJ, 2005; 1147–1154.

    Google Scholar 

  56. Li Y., Moon K., and Wong C.P., J. Electron. Mater. 2005; 34(3): 266–271.

    Article  CAS  Google Scholar 

  57. Li Y., Moon K., and Wong C.P., J. Electron. Mater. 2006; 34(12): 1573–1578.

    Article  Google Scholar 

  58. Davies G. and Sandstrom J. Circuits Manuf. 1976; 56–62.

    Google Scholar 

  59. Harsanyi G. and Ripka G., Electrocomp. Sci. Technol. 1985; 11: 281–290.

    Google Scholar 

  60. Giacomo G.A., In: J. McHardy and F. Ludwig (Eds.) Electrochemistry of Semiconductors and Electronics: Processes and Devices. Noyes Publications, Park Ridge, NJ, 1992; pp. 255–295.

    Google Scholar 

  61. Manepalli R., Stepniak F., Bidstrup-Allen S.A., and Kohl P.A., IEEE Trans. Adv. Packag. 1999; 22: 4–8.

    Article  CAS  Google Scholar 

  62. Giacomo D., In: Reliability of Electronic Packages and Semiconductor Devices. McGraw-Hill, New York, 1997; Chapter 9.

    Google Scholar 

  63. Wassink R., Hybrid. Circ. 1987; 13: 9–13.

    CAS  Google Scholar 

  64. Shirai Y., Komagata M., and Suzuki K. In: 1st International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics. IEEE, NJ, 2001; 79–83.

    Google Scholar 

  65. Der Marderosian A. Ratheon Co. Equipment Division, Equipment Development Laboratories 1978; 134–141.

    Google Scholar 

  66. Schonhorn H. and Sharpe L.H., Prevention of surface mass migration by a polymeric surface coating. US Patent 4377619, 1983.

    Google Scholar 

  67. Brusic V., Frankel G.S., Roldan J., and Saraf R., J. Electrochem. Soc. 1995; 142: 2591–2594.

    Article  CAS  Google Scholar 

  68. Wang P.I., Lu T.M., Murarka S.P., and Ghoshal R., US Pending Patent 20050236711, 2005.

    Google Scholar 

  69. Li Y. and Wong C.P. US Patent Pending, 2006.

    Google Scholar 

  70. Li Y. and Wong C.P., Monolayer-protection for eletrochemical migration control in silver nanocomposite. Appl. Phys. Lett. 2006; 81: 112112.

    Article  CAS  Google Scholar 

  71. Prinz G.A., Science 1998; 282: 1660.

    Article  CAS  Google Scholar 

  72. Toshioka H., Kobayashi M., Koyama K., Nakatsugi K., Kuwabara T., Yamamoto M., and Kashihara H., SEI Tech. Rev. 2006; 62: 58–61.

    Google Scholar 

  73. Chang D.C. and Smith E.L., US patent #5206585, 1993.

    Google Scholar 

  74. Lieber C.M., Nanowire nanosensors for high sensitive and selective detection of biological and chemical species. Science 2001; 293: 1289–1292.

    Article  Google Scholar 

  75. Martin C.R. and Menon V.P., Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem 1995; 67: 1920–1928.

    Article  Google Scholar 

  76. Xu J.M., Appl. Phys. Lett. 2001; 79: 1039–1041.

    Article  CAS  Google Scholar 

  77. Russell T.P., Ultra-high density nanowire array grown in self-assembled di-block copolymer template. Science 2000; 290: 2126–2129.

    Article  Google Scholar 

  78. Li Y., Moon K., and Wong C.P., In: Proceedings of 56th IEEE Electronic Components and Technology Conference. IEEE, NJ, 2006; 1239–1245.

    Google Scholar 

  79. Li Y., Zhang Z., Moon K., and Wong C.P., Ultra-fine pitch wafer level ACF (anisotropic conductive film) interconnect by in-situ formation of nano fillers with high current carrying capability. US Patent Pending, 2006.

    Google Scholar 

  80. Moon K., Jiang H., Zhang R., and Wong C., In-situ formed nanoparticles in polymer matrix for low pressure bonding, GTRC Invention Disclosure No. 4443, 2008.

    Google Scholar 

  81. Snow E.S., Novak J.P., Lay M.D., Houser E.H., Perkins F.K., and Campbell P.M., J. Vac. Sci. Technol. B 2004; 22(4): 1990.

    Article  CAS  Google Scholar 

  82. Lay M.D., Novak J.P., and Snow E.S., Nano Lett. 2004; 4(4): 603.

    Article  CAS  Google Scholar 

  83. Shiraishi M., Takenobu T., Iwai T., Iwasa Y., Kataura H., and Ata M., Chem. Phys. Lett. 2004; 394: 110.

    Article  CAS  Google Scholar 

  84. Meitl M.A., Zhou Y., Gaur A., Jeon S., Usrey M.L., Strano M.S., and Rogers J.A., Nano Lett. 2004; 4(9): 1643.

    Article  CAS  Google Scholar 

  85. Zhou Y., Gaur A., Hur S., Kocabas C., Meitl M.A., Shim M., and Rogers J.A., Nano Lett. 2004; 4(10): 2031.

    Article  CAS  Google Scholar 

  86. Li Z., Dharap P., Nagarajaiah S., Barrera E.V., and Kim J.D., J. Adv. Mat. 2004; 16: 640.

    Article  CAS  Google Scholar 

  87. Abraham J.K., Philip B., Witchurch A., Varadan V.K., and Reddy C.C., Smart Mater. Struct. 2004; 1045: 13.

    Google Scholar 

  88. Wu Z., Chen Z., Du X., Logan J.M., Sippel J., Nikolou M., Kamaras K., Reynolds J.R., Tanner D.B., Hebard A.F., and Rinzler A.G., Science 2004; 305: 1273.

    Article  CAS  Google Scholar 

  89. Ferrer-Anglada N., Kaempgen M., Skákalová V., Dettlaf-Weglikowska U., and Roth S., Diam. Relat. Mater. 2004; 13(2): 256.

    Article  CAS  Google Scholar 

  90. Hu L., Zhoa Y-L., Ryu K., Zhou C., Stoddart J.F., and Grüner G. Advanced Materials 2008; 20: 5939–5946.

    Google Scholar 

  91. Gruner G., J. Mater. Chem. 2006; 16: 3533–3539.

    Article  CAS  Google Scholar 

  92. Ago H., Petritsch K., Shaffer M.S.P., Windle A.H., and Friend R.H., Adv. Mater. 1999; 11: 1281.

    Article  CAS  Google Scholar 

  93. Du Pasquier A., Unalan H.E., Kanwal A., Miller S., and Chhowalla M., Appl. Phys. Lett. 2005; 87: 203511.

    Article  CAS  Google Scholar 

  94. Shan B. and Cho K., Phys. Rev. Lett. 2005; 94: 236602.

    Article  CAS  Google Scholar 

  95. Mitschke U. and Bauerle P., J. Mater. Chem. 2000; 10: 1471.

    Article  CAS  Google Scholar 

  96. Kaempgen M., Duesberg G.S., and Roth S., Appl. Surf. Sci. 2005; 252: 425–429.

    Article  CAS  Google Scholar 

  97. Kaiser A.B., Dusberg G., and Roth S., Phys. Rev. B 1998; 57: 1418.

    Article  CAS  Google Scholar 

  98. Liu K., Roth S., Duesberg G.S., Kim G.-T., and Schmid M., Progress in Molecular Nanostructures, H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.). American Institute of Physics, New York, 1998; AIP Conference Proceedings 442, 61–64.

    Google Scholar 

  99. Shirashi M., Synth. Met. 2002; 9198: 1.

    Google Scholar 

  100. Duesberg G.S., Graham A.P., Kreupl F., Liebau M., Seidel R., Under E., and Hönlein W., Diam. Rel. Mater. 2004; 13: 354.

    Article  CAS  Google Scholar 

  101. Lu K.L., Lago R.M., Chen Y.K., Green M.L.H., Harris P.J.E., and Tsang S.C., Carbon 1996; 34: 814.

    Article  CAS  Google Scholar 

  102. Trancik J.E., Barton S.C., and Hone J., Nano Lett. 2008; 8(4): 982–987.

    Article  CAS  Google Scholar 

  103. Ouyang H.Y. and Yang Y., Adv. Mater. 2006; 18: 2141–2144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, Y., Moon, Ks.(., Wong, C. (2010). Nano-conductive Adhesives for Nano-electronics Interconnection. In: Wong, C., Moon, KS., Li, Y. (eds) Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0040-1_2

Download citation

Publish with us

Policies and ethics