Skip to main content

Thermally Conductive Nanocomposites

  • Chapter
  • First Online:
Nano-Bio- Electronic, Photonic and MEMS Packaging

Abstract

The heat dissipation problem is becoming a crucial barrier in the continuous process of electronic devices and systems miniaturization, and thermal interface materials play a key role in transport at all level microelectronics packaging. In this chapter, thermally conductive composites, as one of the main types of thermal interface materials are discussed. Such composites consist of the polymer base material matrix and thermally conducting filler. In modern bio- and micro-electronics, the thermal conductivity of the filler material ought to be as high as possible and its size—in the nanometer range. For this purpose, the nanosized particles of metals (mostly silver) or carbon allotropies (mostly carbon nanotubes) are used. Unfortunately, even when the fillers with thermal conductivity in the range of hundreds or more W/m×K are applied, the conductivity of nanocompostes elaborated currently are not higher than a few W/m×K. The analysis of heat transport in filled composites shows that the reason of such limitation of the heat transport is related with thermal contact resistance between filler’s particles. The way of the thermal conductivity improvement is discussed; however, in order to evaluate this progress correctly, the proper measurement methods have to be used. Currently there are many technical solutions to measure thermal conductivity which are based on either steady-state or transient techniques, but for relatively low thermal conductivity of nanocomposites, only few methods can be applied. Here the analysis of the thermal conductivity measurement is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Liu, T. Wang, B. Carlberg, M. Inoue. Recent Progress of Thermal Interface Materials. 2nd Electronics System integration Technology Conference, Greenwich 2008:351.

    Google Scholar 

  2. F. Sarvar, D. C. Whalley, P. P. Conway. Thermal Interface Materials – A review of the State of Art. 1st Electronics Systemintegration Technology Conference, Dresden 2006:1292.

    Google Scholar 

  3. S. Iijima. Carbon nanotubes: Past, present, and future. Physica B 2002; 323:1.

    Article  CAS  Google Scholar 

  4. D. R. Paul, L. M. Robeson. Polymer nanotechnology: Nanocomposites. Polymer 2008; 49:3187.

    Article  CAS  Google Scholar 

  5. Efunda – engineering fundamentals; http://www.efunda.com.

  6. A. Damasceni, L. Dei, F. Guasti. Thermal behaviour of silver-filled epoxy adhesives; technological implications in microelectronics. Journal of Thermal Analysis and Calorimetry 2001; 66:223.

    Article  CAS  Google Scholar 

  7. T. Falat, J. Felba, A. Wymyslowski. Improved Method for Thermal Conductivity Measurement of Polymer based Materials for Electronic Packaging. 28th International Conference of International Microelectronics and Packaging Society – Poland Chapter, Wroclaw 2004:219.

    Google Scholar 

  8. R. Prasher. Thermal interface materials: Historical perspective, status, and future directions. Proceedings of the IEEE 2006; 94(8):1571.

    Article  CAS  Google Scholar 

  9. C. -W. Nana, R. Birringer, D. R. Clarke, H. Gleiter. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics 1997; 81(10):6692.

    Article  Google Scholar 

  10. M. Y. Koledintseva, R. E. DuBroff, R. W. Schwartz A Maxwell. Garnett model for dielectric mixtures containing conducting particles at optical frequencies. Progress In Electromagnetics Research 2006; 63:223–242.

    Article  Google Scholar 

  11. P. Mallet, C. A. Guérin, A. Sentenac. Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy. Physical Review B 2005; 72:14205.

    Article  CAS  Google Scholar 

  12. O. Levy, D. Stroud. Maxwell Garnett theory for mixtures of anisotropic inclusions: Application to conducting polymers. Physical Review B 1997; 56(13):8035.

    Article  CAS  Google Scholar 

  13. M. Rong, M. Zhang, H. Liu, H. Zeng. Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin. Polymer 1999; 40(22):6169.

    Article  CAS  Google Scholar 

  14. T. Falat. Heat Transfer Analysis in Composite Materials filled with Micro and Nano-Sized Particles, Doctoral Thesis (in Polish), Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Wroclaw 2006.

    Google Scholar 

  15. J. Felba, T. Falat. Thermally Conductive Adhesives for Microelectronics – Barriers of Heat Transport. 6th International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Polytronic 2007:228.

    Google Scholar 

  16. T. Falat, J. Felba. Numerical Prediction of Influence Matrix and Filler Properties on Thermal Conductivity of Copper Filled TCA. 6th International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, Polytronic 2007:114.

    Google Scholar 

  17. J. Felba, T. Falat, A. Wymyslowski. Influence of thermo-mechanical properties of polymer matrices on the thermal conductivity of adhesives for microelectronic packaging. Materials Science-Poland 2007; 25(1):45.

    CAS  Google Scholar 

  18. T. Falat, J. Felba, A. Wymyslowski, K. M. B. Jansen, J. S. Nakka. Viscoelastic Characterization of Polymer Matrix of Thermally Conductive Adhesives. 1st Electronics Systemintegration Technology Conference, Dresden 2006:773.

    Google Scholar 

  19. R. Holm. Electric Contacts – Theory and Application. Springer, Berlin, 1967.

    Google Scholar 

  20. A. Wymyslowski, K. Friedel, J. Felba, T. Falat. An Experimental-Numerical Approach to Thermal Contact Resistance. 9th International Workshop on Thermal Investigations of ICs and Systems, Aix-en-Provence 2003:161.

    Google Scholar 

  21. C. V. Madhusudana Thermal Contact Conductance. Springer, New York, 1996.

    Google Scholar 

  22. D. P. H. Hasselman, K. Y. Donaldson, F. D. Barlow, A. A. Elshabini, G. H. Schiroky, J. P. Yaskoff, R. L. Dietz. Interfacial thermal resistance and temperature dependence of three adhesive for electronic packaging. IEEE Transactions on Components and Packaging Technologies 2000; 23(4):633.

    Article  CAS  Google Scholar 

  23. A. Wymyslowski, T. Falat, K. Friedel, J. Felba. Numerical Simulation and Experiment Verification of the Thermal Contact Properties of the Polymer Bonds. 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems, Brussels 2004:177.

    Google Scholar 

  24. J. C. Bolger. Prediction and Measurement of Thermal Conductivity of Diamond Filled Adhesives. 42nd Electronic Components and Technology Conference, 1992:219.

    Google Scholar 

  25. H. Li, K. I. Jacob, C. P. Wong. An improvement of thermal conductivity of underfill materials for flip-chip packages. IEEE Transactions on Advanced Packaging 2003; 26(1):25.

    Article  CAS  Google Scholar 

  26. Y. Ukita, K. Tateyama, M. Segawa, Y. Tojo, H. Gotoh, K. Oosako. Lead Free Mount Adhesive using Silver Nanoparticles Applied to Power Discrete Package. International Symposium on Microelectronics IMAPS, Long Beach 2004, session WA7.

    Google Scholar 

  27. S. Macek, D. Rocak, P. Sebo, P. Stefanik. The use of Polymeric Adhesives in Bonding Power Hybrid Circuits to Heat Sinks. 23rd International Spring Seminar on Electronics Technology ISSE, Balatonfured 2000:185.

    Google Scholar 

  28. R. Dietz, P. Robinson, M. Bartholomew, M. Firmstone. High Power Application with Advanced High k Thermoplastic Adhesives. 11th European Microelectronics Conference, Venice 1997:486.

    Google Scholar 

  29. R. R. Zarr. A history of testing heat insulators at the national institute standards and technology. ASHRAE Transactions 2001; 107:Pt 2.

    Google Scholar 

  30. Y. He. Rapid thermal conductivity measurement with a hot disk sensor. Part 1. Theoretical considerations. Thermochimica Acta 2005; 436:122–129.

    Article  CAS  Google Scholar 

  31. R. P. Tye. Thermal conductivity. Nature 1964; 205:636.

    Google Scholar 

  32. D. R. Smith, J. G. Hust, L. J. Van Poolen. A Guarded-Hot-Plate Apparatus for Measuring Effective Thermal Conductivity of Insulations Between 80 K and 360 K. US National Bureau of Standards 1982, NBSIR 81-1657.

    Google Scholar 

  33. C. Stacey. NPL Vacuum Guarded Hot-Plate for Measuring Thermal Conductivity and Total Hemispherical Emittance of Insulation Materials. Insulation Materials: Testing and Applications 2002; 4, ASTM STP 1426.

    Google Scholar 

  34. A. Franco. An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. Applied Thermal Engineering 2007; 27:2495–2504.

    Article  Google Scholar 

  35. J. J. Salgon, F. Robbe-Valloire, J. Blouet, J. Bransier. A mechanical and geometrical approach to thermal contact resistance. International Journal of Heat Mass Transfer 1997; 40(5):1121.

    Article  CAS  Google Scholar 

  36. C. L. Yeh, C. Y. Wen, Y. F. Chen, S. H. Yeh, C. H. Wu. An experimental investigation of thermal contact conductance across bolted joints. Experimental Thermal and Fluid Science 2001; 25:349.

    Article  CAS  Google Scholar 

  37. T. Falat, B. Platek, S. Tesarski, J. Felba. An Approach to Measurement and Evaluation of the Thermal Conductivity of the Thermal Adhesives in Electronic Packaging. 32nd International Spring Seminar on Electronics Technology, Brno 2009.

    Google Scholar 

  38. M. J. Assael, K. D. Antoniadis, D. Tzetzis. The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes. Composites Science and Technology 2008; 68:3178–3183.

    Article  CAS  Google Scholar 

  39. H. M. Roder, R. A. Perkins, A. Laesecke. Absolute steady-state thermal conductivity measurements by use of a transient hot-wire system. Journal Research National Institute of Standards and Technology 2000; 105(2):221.

    CAS  Google Scholar 

  40. W. N. dos Santos Advances on the hot wire technique. Journal of the European Ceramic Society 2008; 28:15.

    Article  CAS  Google Scholar 

  41. W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics 1961; 32:1679.

    Article  CAS  Google Scholar 

  42. R. D. Cowan. Pulse method of measuring thermal diffusivity at high temperatures. Journal of Applied Physics 1963; 34:926.

    Article  CAS  Google Scholar 

  43. R. E. Taylor, J. A. Cape. Finite pulse-time effects in the flash diffusivity technique. Applied Physics Letters 1964; 5:212.

    Article  Google Scholar 

  44. D. A. Watt. Theory of thermal diffusivity by pulse technique. British Journal of Applied Physics 1966; 17:231.

    Article  CAS  Google Scholar 

  45. A. J. Walter, R. M. Dell, P. C. Burgess. The measurement of thermal diffusivities using a pulsed electron beam. Rev. Int. Hautes Tempér. Réfract. 1970; 7:271.

    CAS  Google Scholar 

  46. Y. S. Touloukian, R. W. Powell, C. Y. Ho, M. C. Nicolaou. Thermal Diffusivity. Thermophysical Properties of Matter. 1973, 10, IFI/PLENUM, New York – Washington.

    Google Scholar 

  47. I. I. I. L. M. Clark, R. E. Taylor. Radiation loss in the flash method for thermal diffusivity. Journal of Applied Physics 1975; 46:714.

    Article  Google Scholar 

  48. Y. Xu, D. D. L. Chung, C. Mroz. Thermally conducting aluminium nitride polymer-matrix composites. Composites A 2001; 32:1749.

    Article  Google Scholar 

  49. T. Falat, J. Felba. Electron beam as a heat source in thermal diffusivity measurement of thermally conductive adhesives. Electrotechnica & Electronica 2006; 5–6:189.

    Google Scholar 

  50. A. Rosencwaig, A. Gersho. Theory of the photoacoustic effect with solids. Journal of Applied Physics 1976; 47:64.

    Article  Google Scholar 

  51. H. Hu, X. Wang, X. Xu. Generalized theory of the photoacoustic effect in a multilayer material. Journal of Applied Physics 1999; 86:3953.

    Article  CAS  Google Scholar 

  52. B. A. Cola, J. Xu, Ch. Cheng, X. Xu, T. S. Fisher, H. Hu. Photoacoustic characterization of carbon nanotube array thermal interfaces. Journal of Applied Physics 2007; 101:054313.

    Article  CAS  Google Scholar 

  53. L. Sun, S. -Y. Zhang, Y. -Z. Zhao, Z. -Q. Li, L. -P. Cheng. Thermal diffusivity of composites determined by photoacoustic piezoelectric technique. Review of Scientific Instruments 2003; 74:834.

    Article  CAS  Google Scholar 

  54. J. A. Balderas-López. Thermal effusivity measurements for liquids: A self-consistent photoacoustic methodology. Review of Scientific Instruments 2007; 78:064901.

    Article  CAS  Google Scholar 

  55. N. F. Leite, L. C. M. Miranda. Thermal property measurements of liquid samples using photoacoustic detection. Review of Scientific Instruments 1992; 63:4398.

    Article  CAS  Google Scholar 

  56. J. A. Balderas-López. Self-normalized photoacoustic technique for thermal diffusivity measurements of transparent materials. Review of Scientific Instruments 2008; 79:024901.

    Article  CAS  Google Scholar 

  57. J. Philip. A photoacoustic scanning method to determine thermal effusivity of solid samples. Review of Scientific Instruments 1996; 67:3621.

    Article  CAS  Google Scholar 

  58. S. Govorkov, W. Ruderman, M. W. Horn, R. B. Goodman, M. Rothschild. A new method for measuring thermal conductivity of thin films. Review of Scientific Instruments 1997; 68:3828.

    Article  CAS  Google Scholar 

  59. J. H. Kim, A. Feldman, D. Novotny. Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness. Journal of Applied Physics 1999; 86(7):3959.

    Article  CAS  Google Scholar 

  60. C. Dames, G. Chen. 1ω, 2ω, and 3ω methods for measurements of thermal properties. Review of Scientific Instruments 2005; 76:124902.

    Article  CAS  Google Scholar 

  61. D. G. Cahill, R. O. Pohl. Thermal conductivity of amorphous solids above the plateau. Physical Review B 1987; 35(8):4067–4073.

    Article  CAS  Google Scholar 

  62. S. R. Choi, J. Kim, D. Kim. 3ω method to measure thermal properties of electrically conducting small-volume liquid. Review of Scientific Instruments 2007; 78:084902.

    Article  CAS  Google Scholar 

  63. W. P. Risk, C. T. Rettner, S. Raoux. In situ 3ω techniques for measuring thermal conductivity of phase-change materials. Review of Scientific Instruments 2008; 79:026108.

    Article  CAS  Google Scholar 

  64. National Fenestration Rating Council, Procedure for Determining Thermo-Physical Properties of Materials, http://www.nfrc.org

  65. L. Fan, B. Su, J. Qu, C. P. Wong. Effects of Nano-Sized Particles on Electrical and Thermal Conductivities of Polymer Composites. 9th International Symposium on Advanced Packaging Materials; Processes, Properties and Interfaces 2004:193.

    Google Scholar 

  66. P. Bujard, J. P. Ansermet. Thermally Conductive Aluminium Nitride-Filled Epoxy Resin. 5th Semiconductor Thermal and Temperature Measurement Symposium 1989:126.

    Google Scholar 

  67. J. Felba, H. Schaefer. Materials and Technology for Conductive Microstructures (in Nanopackaging: Nanotechnologies and Electronics Packaging, ed. J. E. Morris), Springer, 2008.

    Google Scholar 

  68. R. M. Tilaki, A. Iraji Zad, S. M. Mahdavi. Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Applied Physics A 2006; 84:215.

    Article  CAS  Google Scholar 

  69. H. Saito, Y. Matsuba. Liquid Wiring Technology by Ink-jet Printing Using NanoPaste. 35th International Symposium on Microelectronics IMAPS, San Diego, 2006.

    Google Scholar 

  70. http://www.harima.co.jp/products/electronics

  71. A. Moscicki, J. Felba, T. Sobierajski, J. Kudzia, A. Arp, W. Meyer. Electrically Conductive Formulations Filled Nano Size Silver Filler for Ink-Jet Technology. 5th International IEEE Conference on Polymers and Adhesives in Microelectronic and Photonics, Wroclaw 2005:40.

    Google Scholar 

  72. A. Moscicki, J. Felba, W. Dudzinski. Conductive Microstructures and Connections for Microelectronics Made by Ink-Jet Technology. 1st Electronics Systemintegration Technology Conference, Dresden 2006:511.

    Google Scholar 

  73. M. Nakamoto, M. Yamamoto, Y. Kashiwagi, H. Kakiuchi, T. Tsujimoto, Y. A. Yoshida. Variety of Silver Nanoparticle Pastes for Fine Electronic Circuit Pattern Formation. 6th International IEEE Conference on Polymers and Adhesives in Microelectronic and Photonics, Tokyo 2007:105.

    Google Scholar 

  74. J. G. Bai, Z. Z. Zhang, J. N. Calata, G. -Q. Lu. Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Transactions on Components and Packaging Technologies 2006; 29(3):589.

    Article  CAS  Google Scholar 

  75. J. G. Bai, J. N. Calata, T. G. Lei, G. Q. Lu, K. D. Creehan. Lead-free Die-attachment with High-temperature Capability by Low-temperature Nanosilver Paste Sintering. 35th International Symposium on Microelectronics IMAPS, San Diego 2006.

    Google Scholar 

  76. C. Chen, L. Wang, R. Li, G. Jiang, H. Yu, T. Chen. Effect of silver nanowires on electrical conductance of system composed of silver particles. Journal of Materials Science 2007; 42(9):3172.

    Article  CAS  Google Scholar 

  77. H. P. Wu, J. F. Liu, X. J. Wu, M. Y. Ge, Y. W. Wang, G. Q. Zhang, J. Z. Jiang. High conductivity of isotropic conductive adhesives filled with silver nanowires. International Journal of Adhesion & Adhesives 2006; 26:617.

    Article  CAS  Google Scholar 

  78. A. Graff, D. Wagner, H. Ditlbacher, U. Kreibig. Silver nanowires. European Physical Journal D 2005; 34:263.

    Article  CAS  Google Scholar 

  79. J. Liu, M. Olugbenga Olorunyomi, X. Lu, W. X. Wang, T. Aronsson, D. Shangguan. New Nano-Thermal Interface Material for Heat Removal in Electronic Packaging. 1st Electronics System integration Technology Conference, Dresden 2006:1.

    Google Scholar 

  80. J. Liu, M. Olugbenga Olorunyomi, X. Li, D. Shangguan. Manufacturing and Characterization of Nano Silver Particles Based Thermal Interface Material. 57th Electronic Components and Technology Conference 2007:475.

    Google Scholar 

  81. J. E. Graebner, S. Jin. Chemical vapor deposited diamond for thermal management. JOM 1998; 50(6):52.

    Article  CAS  Google Scholar 

  82. C. J. Brierley. Thermal Management with Diamond. IEE Colloquium on Diamond in Electronics and Optics 1993.

    Google Scholar 

  83. S. V. Kidalov, F. M. Shakhov, A. Ya. Vul'. Thermal conductivity of nanocomposites based on diamonds and nanodiamonds. Diamond & Related Materials 2007; 16(12):2063.

    Article  CAS  Google Scholar 

  84. A. Vlasov, V. Ralchenko, S. Gordeev, D. Zakharov, I. Vlasov, A. Karabutov, P. Belobrov. Thermal properties of diamond/carbon composites. Diamond and Related Materials 2000; 9(3–6):1104.

    Article  CAS  Google Scholar 

  85. T. Kawamura, Y. Kangawa, K. Kakimoto. Investigation of the thermal conductivity of a fullerene peapod by molecular dynamics simulation. Journal of Crystal Growth 2008; 310:2301.

    Article  CAS  Google Scholar 

  86. A. Smontara, M. Saint Paul, J. C. Lasjaunias, A. Bilusic, N. Kitamura. Thermal and acoustic transport properties of hard carbon formed from C60 fullerene. Physica B 2002; 316–317:250.

    Article  Google Scholar 

  87. M. Terrones. Carbon nanotubes: Synthesis and properties, electronic devices and other emerging applications. International Materials Reviews 2004; 49(6):325.

    Article  CAS  Google Scholar 

  88. V. N. Popov. Carbon nanotubes: Properties and application. Materials Science and Engineering R 2004; 43:61.

    Article  CAS  Google Scholar 

  89. Y. Yadav, V. Kunduru, S. Prasad. Carbon Nanotubes: Synthesis and Characterization (in Nanopackaging: Nanotechnologies and Electronics Packaging, ed. J. E. Morris), Springer, 2008.

    Google Scholar 

  90. P. Kim, L. Shi, A. Majumdar, P. L. McEuen. Mesoscopic thermal transport and energy dissipation in carbon nanotubes. Physica B 2002; 323:67.

    Article  CAS  Google Scholar 

  91. M. Pecht, R. Agarwal, P. McCluskey, T. Dishongh, S. Javadpour, R. Mahajan. Electronic Packaging Materials and their Properties. CRC Press LLC, Washington, 1999.

    Google Scholar 

  92. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu. Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters 2005; 95:065502.

    Article  CAS  Google Scholar 

  93. J. Hone, M. C. Liaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer. Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physics A 2002; 74:339.

    Article  CAS  Google Scholar 

  94. S. Bal, S. S. Samal. Carbon nanotube reinforced polymer composites–A state of the art. Bulletin of Materials Science 2007; 30(4):379–386.

    Article  CAS  Google Scholar 

  95. A. Peigney, Ch. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001; 39:507.

    Article  CAS  Google Scholar 

  96. T. -M. Lee, K. -C. Chiou, F. -P. Tseng, C. -C. Huang. High Thermal Efficiency Carbon Nanotube-Resin Matrix for Thermal Interface Materials. 55th Electronic Component & Technology Conference, Lake Buena Vista 2005:55.

    Google Scholar 

  97. K. Zhang, G. -W. Xiao, C. K. Y. Wong, H. -W. Gu, M. M. F. Yuen, P. C. H. Chan, B. Xu. Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip Technology. 55th Electronic Component & Technology Conference, Lake Buena Vista 2005:60.

    Google Scholar 

  98. E. Titus, N. Ali, G. Cabral, J. Gracio, P. Ramesh Babu, M. J. Jackson. Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, Fourier transform infrared, and Raman spectroscopy. Journal of Materials Engineering and Performance 2006; 15(2):182.

    Article  CAS  Google Scholar 

  99. L. S. Schadler, S. C. Giannaris, P. M. Ajayan. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters 1998; 73:3842.

    Article  CAS  Google Scholar 

  100. W. Bauhofer, J. Z. Kovacs. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology 2009; 69:1486–1498.

    Article  CAS  Google Scholar 

  101. L. Chang, K. Friedrich, L. Ye, P. Toro. Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. Journal of Materials Science 2009; 44:4003–4012.

    Article  CAS  Google Scholar 

  102. J. Wescott, P. Kung, A. Mati. Conductivity of carbon nanotube polymer composites. Applied Physics Letters 2007; 90:033116.

    Article  CAS  Google Scholar 

  103. H. -S. Kim, B. H. Park, J. -S. Yoon, H. -J. Jin. Thermal and electrical properties of poly (L-lactide)-graft-multiwalled carbon nanotube composites. European Polymer Journal 2007; 43:1729–1735.

    Article  CAS  Google Scholar 

  104. J. Z. Kovacs, B. S. Velagala, K. Schulte, W. Bauhofer. Two percolation thresholds in carbon nanotube epoxy composites. Composites Science and Technology 2007; 67:922–928.

    Article  CAS  Google Scholar 

  105. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters 2001; 79(14):2252.

    Article  CAS  Google Scholar 

  106. M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, J. E. Fischer. Carbon nanotubes for thermal management. Applied Physics Letters 2002; 80:2767.

    Article  CAS  Google Scholar 

  107. W. -T. Hong, N. -H. Tai. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diamond & Related Materials 2008; 17:1577.

    Article  CAS  Google Scholar 

  108. E. T. Thostenson, T. -W. Chou. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006; 44:3022.

    Article  CAS  Google Scholar 

  109. F. H. Gojny, M. H. G. , Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, A. H. Windle, K. Schulte. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006; 47:2036.

    Article  CAS  Google Scholar 

  110. Y. S. Song, J. R. Youn. Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method. Carbon 2006; 44:710–717.

    Article  CAS  Google Scholar 

  111. A. Bagchi, S. Nomura. On the effective thermal conductivity of carbon nanotube reinforced polymer composites. Composites Science and Technology 2006; 66:1703.

    Article  CAS  Google Scholar 

  112. International Technology Roadmap for Semiconductor; http://www.itrs.net/Links/2007ITRS/Home2007.htm.

  113. S. Sahin, M. Yavuz, Y. N. Zhou. Introduction to Nanojoining (in Microjoining and Nanojoining, ed. Y. N. Zhou), Woodhead Publishing Limited, 2008.

    Google Scholar 

  114. J. -C. Charlier, M. Terrones, F. Banhart, N. Grobert, H. Terrones, P. M. Ajayan. Experimental observation and quantum modeling of electron irradiation on single-wall carbon nanotubes. IEEE Transactions on Nanotechnology 2003; 2(4):349.

    Article  Google Scholar 

  115. A. V. Krasheninnikov, K. Nordlund, J. Keinonen, F. Banhart. Making junctions between carbon nanotubes using an ion beam. Nuclear Instruments and Methods in Physics Research B 2003; 202:224.

    Article  CAS  Google Scholar 

  116. Z. Wang, L. Yu, W. Zhang, Y. Ding, Y. Li, J. Han, Z. Zhu, H. Xu, G. He, Y. Chen, G. Hu. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes. Physics Letters A 2004; 324:321.

    Article  CAS  Google Scholar 

  117. EUREKA/EURIPIDES project “Carbon Nanotubes/epoxy composites” (2007–2010), acronym CANOPY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Felba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Felba, J. (2010). Thermally Conductive Nanocomposites. In: Wong, C., Moon, KS., Li, Y. (eds) Nano-Bio- Electronic, Photonic and MEMS Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0040-1_10

Download citation

Publish with us

Policies and ethics