Skip to main content

Non-thermal Plasmas Chemistry as a Tool for Environmental Pollutants Abatement

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 201))

Abstract

Increasing concern for protecting the environment against the effects of growing industrialization, intensive agriculture, and further exploitation of natural resources poses enormous challenges to contemporary science and to the sustainable development of mankind. Most environmental pollutants pose some harm to human health and the environment irrespective of whether exposures occur through air, water, soil, or the food chain. Therefore, innovative alternative technologies and equipment are needed to abate, convert, decompose, or otherwise manage environmental pollutants. Non-thermal plasma (NTPs) chemistry is an innovative tool for potentially abating environmental pollutants; this technology promises to meet a host of abatement demands, including those mentioned above, and also offers crucial advantages such as improved energy efficiency, higher levels of treatment in smaller spaces, and near zero-emissions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelmalek F, Ghezzar MR, Belhadj M, Addou A., Brisset JL (2006) Bleaching and degradation of textile dyes by nonthermal plasma process at atmospheric pressure. Ind Eng Chem Res 45(1):23–29.

    Article  CAS  Google Scholar 

  • Abou-Ghazala A, Katsuki S, Schoenbach KH, Dobbs FC, Moreira KR (2002) Bacterial decontamination of water by means of pulsed-corona discharges. IEEE Trans Plasma Sci 30(4):1449–1453.

    Article  Google Scholar 

  • Alexandrov SE, Hitchman ML (2005) Chemical vapor deposition enhanced by atmospheric pressure non-thermal non-equilibrium plasmas. Chem Vap Deposition 11(11–12):457–468.

    Article  CAS  Google Scholar 

  • Anna EW, Whitehead JC, Zhang K (2007) The removal of dichloromethane from atmospheric pressure air streams using plasma-assisted catalysis. Appl Catal B Environ 72(3–4):282–288.

    Google Scholar 

  • Chang R (2002) Chemistry, 7th Ed. McGraw-Hill, New York, NY, p. 356.

    Google Scholar 

  • Chang JS (2003) Next generation integrated electrostatic gas cleaning systems. J Electrostat 57(3–4):273–291.

    Article  CAS  Google Scholar 

  • Chang MB, Lee CC (1995) Destruction of formaldehyde with dielectric barrier discharge plasma. Environ Sci Technol 29(1):181–186.

    Article  CAS  Google Scholar 

  • Chang MB, Tseng TD (1996) Gas-phase removal of H2S and NH3 with dielectric barrier discharges. J Environ Eng 122(1):41–46.

    Article  Google Scholar 

  • Chau TT, Kwan CK, Gregory B, Francisco M (1996) Microwave plasmas for low-temperature dry sterilization. Biomaterial 17(13):1273–1277.

    Article  CAS  Google Scholar 

  • Choi JH, Han I, Baik HK, Lee MH, Han DW, Park JC, Lee IS, Song KM, Lim YS (2006) Analysis of sterilization effect by pulsed dielectric barrier discharge. J Electrostat 64(1):17–22.

    Article  CAS  Google Scholar 

  • Chu P K, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R: Rep 36(5–6):143–206.

    Article  Google Scholar 

  • Clements JS, Mizuno A, Finney WC, Davis RH (1989) Combined removal of SO2, NO x , and fly ash from simulated flue gas using pulsed streamer corona, IEEE Trans Ind Appl 25(1):62–69.

    Article  CAS  Google Scholar 

  • Clothiaux EJ, Koropchak JA, Moore RR (1984) Decomposition of an organophosphorus material in a silent electrical discharge. Plasma Chem Plasma Process 4(1):15–20.

    Article  CAS  Google Scholar 

  • Cvelbar U, Vujoševič D., Vratnica Z, Mozetič M (2006) The influence of substrate material on bacteria sterilization in an oxygen plasma glow discharge. J Physiol D Appl Physiol 39(16):3487–3493.

    Article  CAS  Google Scholar 

  • David M Avaly D, Georges KY, Brisset JL (2007) Postdischarge long life reactive intermediates involved in the plasma chemical degradation of an azoic dye. IEEE Trans Plasma Sci. 35(2):444–453.

    Article  CAS  Google Scholar 

  • Demidiouk V, Chae JO (2005) Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Trans Plasma Sci 33(1):157–161.

    Article  CAS  Google Scholar 

  • Deng SB, Le ZP, Ruan R (2007) Nonthermal plasma synthesis of ammonia using renewable hydrogen. Abstracts of Papers, 234th ACS National Meeting, Boston, MA, United States, August 19–23.

    Google Scholar 

  • Dyuzhev GA, Ioffe AF (2002) Low-temperature plasma and fullerenes. Plasma Devices Oper 10(2):63–98.

    Article  CAS  Google Scholar 

  • Eichwald O, Yousfi M, Hennad A, Benabdessadok MD (1997) Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for the analysis of NO reduction from flue gases. J Appl Phys 82(10):4781–4794.

    Article  CAS  Google Scholar 

  • Eliasson B, Kogelschatz U (1991a) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19(6):1063–1077.

    Article  CAS  Google Scholar 

  • Eliasson B, Kogelschatz U (1991b) Modeling and applications of silent discharge plasmas. IEEE Trans Plasma Sci 19(2):309–323.

    Article  Google Scholar 

  • Fateev A, Leipold F, Kusano Y, Stenum B, Tsakadze E, Bindslev H (2005) Plasma Chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge. Plasma Process Polym 2(3):193–200.

    Article  CAS  Google Scholar 

  • Forst L, Conroy LM (1998) Health effects and exposure assessments of VOCs. In: Rafson HJ (ed) Odor and VOC control handbook. McGraw-Hill, New York, NY, pp. 3.1–3.27.

    Google Scholar 

  • Futamura S, Sugasawa M (2008) Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma. IEEE Trans Ind Appl 44(1):40–45.

    Article  CAS  Google Scholar 

  • Futamura S, Yamamoto T (1997) Byproduct identification and mechanism determination in plasma chemical decomposition of trichloroethylene. IEEE Trans Ind Appl 33(2):447–453.

    Article  CAS  Google Scholar 

  • Futamura S, Zhang AH, Yamamoto T (1997) The dependence of nonthermal plasma behavior of VOCs on their chemical structures. J Electrostat 42(1):51–62.

    Article  CAS  Google Scholar 

  • Futamura S, Zhang A, Prieto G, Yamamoto T (1998) Factors and intermediates governing byproduct distribution for decomposition of butane in nonthermal plasma. IEEE Trans Ind Appl 34(5):967–974.

    Article  CAS  Google Scholar 

  • Futamura S, Einaga H, Kabashima H, Hwan LY (2004) Synergistic effect of silent discharge plasma and catalysts on benzene decomposition. Catal Today 89(1):89–95.

    Article  CAS  Google Scholar 

  • Grymonpré DR, Sharma AK, Finney WC, Locke BR (2001) The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors. Chem Eng J 82(1–3):189–207.

    Article  Google Scholar 

  • Grymonpré DR, Finney WC, Clark RJ, Locke BR (2003) Suspended activated carbon particles and ozone formation in aqueous-phase pulse corona discharge reactors. Ind Eng Chem Res 42(21):5117–5134.

    Article  CAS  Google Scholar 

  • Guo LM, Bai YH, Chen JR (2007) Study on degradation of dichlorvos by nonthermal plasma. Proceedings of the mainland Taiwan Environmental Sustainable Development Academic Conference, Xi’an 10, P.R. China, pp. 171–176.

    Google Scholar 

  • Hao XL, Zhou MH, Lei LC (2007) Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water. J Hazard Mater 141(3):475–482.

    Article  CAS  Google Scholar 

  • Herrmann HW, Henins I, Park J, Selwyn GS (1999) Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ). Phys Plasmas 6(5):2284–2289.

    Article  CAS  Google Scholar 

  • Herrmann HW, Selwyn GS, Henins I, Park J, Jeffery M, Williams JM (2002) Chemical warfare agent decontamination studies in the plasma decon chamber. IEEE Trans Plasma Sci 30(4):1460–1470.

    Article  CAS  Google Scholar 

  • Higashi M, Uchida S, Suzuki N, Fujii KI (1992) Soot elimination and NO x and SO x reduction in diesel-engine exhaust by a combination of discharge plasma and oil dynamics. IEEE Trans Plasma Sci 20(1):1–12.

    Article  CAS  Google Scholar 

  • Hodgins AM, Mittal GS, Griffiths MW (2002) Pasteurization of fresh orange juice using low-energy pulsed electrical field. J Food Sci 67(6):2294–2299.

    Article  CAS  Google Scholar 

  • Hong YC, Uhm HS, Kim HS (2005) Decomposition of phosgene by microwave plasma-torch generated at atmospheric pressure. IEEE Trans Plasma Sci 33(2):958–963.

    Article  CAS  Google Scholar 

  • Hsieh LT, Lee WJ, Chen CY, Wu YPG, Chen SJ, Wang YF (1998) Decomposition of methyl chloride by using an RF plasma reactor. J Hazard Mater 63(1):69–90.

    Article  CAS  Google Scholar 

  • Ingelsten HH, Hildesson A, Fridell E, Skoglundh M (2004) The influence of surface acidity on NO2 reduction by propane under lean conditions. J Mol Catal A-Chem 209(1–2):199–207.

    Article  CAS  Google Scholar 

  • Jarrige J, Vervisch P (2007) Decomposition of gaseous sulfide compounds in air by pulsed corona discharge. Plasma Chem Plasma Process 27(3):241–255.

    Article  CAS  Google Scholar 

  • Jones AP (1999) Indoor air quality and health. Atmos Environ 33(28):4535–4564.

    Article  CAS  Google Scholar 

  • Joshi AA, Locke BR, Arce P, Finney WC (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41(1):3–30.

    Article  CAS  Google Scholar 

  • Ken Y, Kensuke K, Takashi H, Hiroshi M, Shinji K, Hiroshi M, Toru Y (2007) Efficient decomposition of NO by ammonia radical-injection method using an intermittent dielectric barrier discharge. Thin Solid Films 515(9):4278–4282.

    Article  CAS  Google Scholar 

  • Khacef A, Cormier JM (2006) Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas: Removal of SO2 and NO x . J Phys D Appl Phys 39(6):1078–1083.

    Article  CAS  Google Scholar 

  • Khacef A, Cormier JM, Pouvesle JM (2002) NO x remediation in oxygen-rich exhaust gas using atmospheric pressure non-thermal plasma generated by a pulsed nanosecond dielectric barrier discharge. J Phys D Appl Phys 35(17):1491–1498.

    Article  CAS  Google Scholar 

  • Kiel JL, Sutter RE, Mason PA, Parker JE, Morales PJ, Stribling LJV, Alls JL, Holwitt EA, Seaman RL, Mathur SP (2002) Direct killing of anthrax spores by microwave-induced cavitation. IEEE Trans Plasma Sci 30(4):1482–1488.

    Article  CAS  Google Scholar 

  • Kim HH (2004) Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects. Plasma Process Polym 1(2):91–110.

    Article  CAS  Google Scholar 

  • Kim HH, Takashima K, Katsura S, Mizuno A (2001) Low-temperature NO x reduction processes using combined systems of pulsed corona discharge and catalysts. J Phys D Appl Phys 34(4):604–613.

    Article  CAS  Google Scholar 

  • Kim HH, Ogata A, Futamura S (2008) Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma. Appl Catal B Environ 79(4):356–367.

    Article  CAS  Google Scholar 

  • Kirkpatrick M, Locke BR (2005) Hydrogen, oxygen, and hydrogen peroxide formation in electrohydraulic discharge. Ind Eng Chem Res 44(12):4243–4248.

    Article  CAS  Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46.

    Article  CAS  Google Scholar 

  • Koutsospyros AD, Shu-Min Y, Christodoulatos C, Becker K (2005) Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor. IEEE Trans Plasma Sci 33(1):42–49.

    Article  CAS  Google Scholar 

  • Kuroki T, Takahashi M, Okubo M, Yamamoto T (2002) Single-stage plasma-chemical process for particulates, NO x , and SO x simultaneous removal. IEEE Trans Ind Appl 38(5):1204–1209.

    Article  CAS  Google Scholar 

  • Laguardia L, Vassallo E, Cappitelli F, Mesto E, Cremona A, Sorlini C, Bonizzoni G (2005) Investigation of the effects of plasma treatments on biodeteriorated ancient paper. Appl Surf Sci 252(4):1159–1166.

    Article  CAS  Google Scholar 

  • Laroussi M (2002) Nonthermal decontamination of biological media by atmospheric pressure plasmas: Review, analysis, and prospects. IEEE Trans Plasma Sci 30(4):1409–1415.

    Article  CAS  Google Scholar 

  • Laroussi M, Alexeff I, Kang WL (2000) Biological decontamination by nonthermal plasma. IEEE Trans Plasma Sci 28(1):184–188.

    Article  Google Scholar 

  • Laroussi M, Richardson JP, Dobbs FC (2002) Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology. Appl Phys Lett 81(4):772–774.

    Article  CAS  Google Scholar 

  • Lee HW, Chang MB (2001) Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor. Plasma Chem Plasma Process 21(3):329–343.

    Article  CAS  Google Scholar 

  • Lee KY, Park B.J., Lee DH, Lee IS, Hyun SO, Chung KH, Park JC (2005) Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 19(1–3):35–38.

    Article  CAS  Google Scholar 

  • Lei LC, Hao XL, Zhang XW, Zhou MH (2007) Wastewater treatment using a heterogeneous magnetite (Fe3O4) non-thermal plasma process. Plasma Process Polym 4(4):455–462.

    Article  CAS  Google Scholar 

  • Li R, Chen JR (2006) Studies on wettability of medical poly (vinyl chloride) by remote argon plasma. Appl Surf Sci 252(14):5076–5082.

    Article  CAS  Google Scholar 

  • Li JH, Ke R, Li W, Hao JM (2007) A comparison study on non-thermal plasma-assisted catalytic reduction of NO by C3H6 at low temperatures between Ag/USY and Ag/Al2O3 catalysts. Catal Today 126(3–4):272–278.

    Article  CAS  Google Scholar 

  • Liu HX, Chen JR, Yang LQ, Zhou Y (2008) Long-distance oxygen plasma sterilization: Effects and mechanisms. Appl Surf Sci 254(6):1815–1821.

    Article  CAS  Google Scholar 

  • Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res 45(3):882–905.

    Article  CAS  Google Scholar 

  • Louis AR (2005) Nonthermal plasma applications to the environment: Gaseous electronics and power conditioning. IEEE Trans Plasma Sci 33(1):129–137.

    Article  CAS  Google Scholar 

  • Lovejoy ER, Murrells TP, Ravishankara AR, Howard CJ (1990) Oxidation of carbon disulfide by reaction with hydroxyl. 2. Yields of hydroperoxyl and sulfur dioxide in oxygen. J Phys Chem 94(6):2386–2393.

    Article  CAS  Google Scholar 

  • Lukes P, Appleton AT, Locke BR (2004) Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors. IEEE Trans Ind Appl 40(1):60–67.

    Article  CAS  Google Scholar 

  • Lukes P, Clupek M, Sunka P, Peterka F, Sano T, Negishi N, Matsuzawa S, Takeuchi K (2005) Degradation of phenol by underwater pulsed corona discharge in combination with TiO2 photocatalysis. Res Chem Intermediat 31(4–6):285–294.

    Article  CAS  Google Scholar 

  • Ma H, Chen P, Ruan R (2001) H2S and NH3 removal by silent discharge plasma and ozone combo-system. Plasma Chem Plasma Process 21(4):611–624.

    Article  CAS  Google Scholar 

  • Magne L, Pasquiers S (2005) LIF spectroscopy applied to the study of non-thermal plasmas for atmospheric pollutant abatement. C R Physique 6(8):908–917.

    Article  CAS  Google Scholar 

  • Magureanu M, Mandache NB, Parvulescu VI (2007) Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: Optimization of the reactor geometry and introduction of catalytic electrode. Appl Catal B Environ 74(3–4):270–277.

    Article  CAS  Google Scholar 

  • Malik MA (2003) Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water. Plasma Sources Sci Technol 12(4):26–32.

    Article  Google Scholar 

  • Marotta E, Scorrano G, Paradisi C (2005) Ionic reactions of chlorinated volatile organic compounds in air plasma at atmospheric pressure. Plasma Process Polym 2(3):209–217.

    Article  CAS  Google Scholar 

  • Martinez H, Rodriguez-Lazcanol Y, Castillo F (2007) Comparative study on the decomposition process of N-isopropyl-acrylamide in He, N2 and air plasmas. Plasma Sources Sci Technol 16(3):427–433.

    Article  CAS  Google Scholar 

  • Masayuki A, Toshifumi Y, Takayuki W, Junzou K, Yoshitake S (2007) Application to cleaning of waste plastic surfaces using atmospheric non-thermal plasma jets. Thin Solid Films 515(9):4301–4307.

    Article  CAS  Google Scholar 

  • Masuda S (1988) Pulse corona induced plasmachemical process: A horizon of new plasmachemical technologies. Pure Appl Chem 60(5):727–731.

    Article  CAS  Google Scholar 

  • McQuarrie DA, Rock PA (1984) General chemistry. Freeman, New York, NY, p. 624.

    Google Scholar 

  • McTaggart FK (1967) Plasma chemistry in electrical discharges. Elsevier, The Netherlands, p. 1.

    Google Scholar 

  • Mizuno A (2000) Electrostatic precipitation. IEEE Trans Dielectr Electr Insul 7(5):615–624.

    Article  CAS  Google Scholar 

  • Mizuno A (2007) Industrial applications of atmospheric non-thermal plasma in environmental remediation. Plasma Phys Control Fusion 49(5A):A1–A15.

    Article  CAS  Google Scholar 

  • Moeller TM, Alexander ML, Engelhard MH, Gaspar DJ, Luna ML, Irving PM (2000) Surface decontamination of simulated chemical warfare agents using a nonequilibrium plasma with off-gas monitoring. IEEE Trans Plasma Sci 28(4):1454–1459.

    Google Scholar 

  • Mok YS, Nam CM, Cho MH, Nam IS (2002) Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes. IEEE Trans Plasma Sci 30(1):408–416.

    Article  CAS  Google Scholar 

  • Montie TC, Kelly-Wintenberg K, Roth JR (2000) An overview of research using the on atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans Plasma Sci 28(1):41–50.

    Article  Google Scholar 

  • Moura FCC, Araujo MH, Costa RCC, Fabris JD, Ardisson JD, Macedo WAA, Lago RM (2005) Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 60(8):1118–1123.

    Article  CAS  Google Scholar 

  • Nair SA, Nozaki T, Okazaki K (2007) Methane oxidative conversion pathways in a dielectric barrier discharge reactor – Investigation of gas phase mechanism. Chem Eng J 132(1–3):85–95.

    Article  CAS  Google Scholar 

  • Nicole BS, Pierre T, Aurore R, François J, Stéphane P (2005) Removal of 2-Heptanone by dielectric barrier discharges – The effect of a catalyst support. Plasma Process Polym 2(3):256–262.

    Article  CAS  Google Scholar 

  • Oda T, Kato T, Takahashi T, Shimizu K (1998) Nitric oxide decomposition in air by using nonthermal plasma processing with additives and catalyst. IEEE Trans Ind Appl 34(2):268–272.

    Article  CAS  Google Scholar 

  • Ogata A, Einaga H, Kabashima H, Futamura S, Kushiyama S, Kim HH (2003) Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air. Appl Catal B Environ 46(1):87–95.

    Article  CAS  Google Scholar 

  • Oh SM, Kim HH, Einaga H, Ogata A, Futamura S, Park DW (2006) Zeolite-combined plasma reactor for decomposition of toluene. Thin Solid Films 508(1–2):418–422.

    Article  CAS  Google Scholar 

  • Ono R, Oda T (2000) Measurement of hydroxyl radicals in an atmospheric pressure discharge plasma by using laser-induced fluorescence. IEEE Trans Ind Appl 36(1):82–86.

    Article  CAS  Google Scholar 

  • Penetrante BM, Hsiao MC, Merritt BT, Vogtlin GE, Wallman PH (1995) Comparison of electrical discharge techniques for nonthermal plasma processing of NO in N2. IEEE Trans Plasma Sci 23(4):679–687.

    Article  CAS  Google Scholar 

  • Penetrante BM, Hsiao MC, Bardsley JN, Merritty BT, Vogtliny GE, Kuthiz A, Burkhartz CP, Baylessz JR (1997) Identification of mechanisms for decomposition of air pollutants by nonthermal plasma processing. Plasma Sources Sci Technol 6(3):251–259.

    Article  CAS  Google Scholar 

  • Pérez-Martinez JA, Pena-Eguiluz R, López-Callejas R, Mercado-Cabrera A, Valencia RA, Barocio SR, Benítez-Read JS, Pacheco-Sotelo JO (2007) An RF microplasma facility development for medical applications. Surf Coat Technol 201(9–11):5684–5687.

    Article  CAS  Google Scholar 

  • Peter AG, Whitehead JC, Wu JH (2007) Adaptive control for NOx removal in non-thermal plasma processing. Plasma Process Polym 4(5):556–562.

    Article  CAS  Google Scholar 

  • Petrovic ZL, Makabe T (1998) Nonequilibrium plasmas for material processing in microelectronics. Adv Mater Proc 282(2):47–56.

    Google Scholar 

  • Roe RM, Long SY, Bourham MA, Bures BL, Gray TK (2003) Use of atmospheric plasma for insect control. Proceedings of Beltwide Cotton Conferences. National Cotton Council, Atlanta, GA, pp. 1150–1156.

    Google Scholar 

  • Rudolph R, Francke KP, Miessner H (2002) Concentration dependence of VOC decomposition by dielectric barrier discharges. Plasma Chem Plasma Process 22(3):401–412.

    Article  CAS  Google Scholar 

  • Rutberg PG, Bratsev AN, Safronov AA, Surov AV, Schegolev VV (2002) The technology and execution of plasma-chemical disinfection of hazardous medical waste. IEEE Trans Plasma Sci 30(4):445–1448.

    Article  CAS  Google Scholar 

  • Sahni M, Finney WC, Locke BR (2005) Degradation of aqueous phase polychlorinated biphenyls (PCB) using pulsed corona discharges. J Adv Oxid Technol 8(1):105–111.

    CAS  Google Scholar 

  • Sano T, Negishi N, Sakai E, Matsuzawa S (2006) Contributions of photocatalytic/catalytic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO. J Mol Catal A-Chem 245(1–2):235–241.

    Article  CAS  Google Scholar 

  • Sato M, Ohgiyama T, Clements JS (1996) Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water. IEEE Trans Ind Appl 32(1):106–112.

    Article  CAS  Google Scholar 

  • Savinov SY, Lee H, Song HK, Na BK (2003) The effect of vibrational excitation of molecules on plasmachemical reactions involving methane and nitrogen. Plasma Chem Plasma Process 23(1):159–173.

    Article  CAS  Google Scholar 

  • Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: A review and comparison to other plasma sources. IEEE Trans Plasma Sci 26(6):1685–1694.

    Article  CAS  Google Scholar 

  • Shi Y, Ruan JJ, Wang X, Li W, Tan TE (2006) Evaluation of multiple corona reactor modes and the application in odor removal. Plasma Chem Plasma Process 26(2):187–196.

    Article  CAS  Google Scholar 

  • Siemens W (1857) Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendräten. Poggendorffs Ann Phys Chem 102:66–120.

    Article  Google Scholar 

  • Storch DG, Kushner MJ (1993) Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas. J Appl Phys 73(1):51–56.

    Article  CAS  Google Scholar 

  • Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Novel catalytic non-thermal plasma reactor for the abatement of VOCs. Chem Eng J 134(1–3):78–83.

    Article  CAS  Google Scholar 

  • Šunka P (2001) Pulse electrical discharges in water and their applications. Phys Plasmas 8(5):2587–2594.

    Article  CAS  Google Scholar 

  • Šunka P, Babicky V, Člupek M, Lukeš P, Šimek M, Schmidt J, Černak M (1999) Generation of chemically active species by electrical discharges in water. Plasma Sources Sci Technol 8(2):258–265.

    Article  Google Scholar 

  • Susanne S, Thorsten A, Stefan T, Sybille N, Dietrich K, Andreas S, Reinhold C (2007) Effects of pulsed electric field treatment of apple mash on juice yield and quality attributes of apple juices. Innovat Food Sci Emerg Technol 8(1):127–134.

    Article  CAS  Google Scholar 

  • Tezuka M, Iwasaki M (2001) Plasma-induced degradation of aniline in aqueous solution. Thin Solid Films 386(2):204–207.

    Article  CAS  Google Scholar 

  • Thevenet F, Guaitella O, Puzenat E (2007) Oxidation of acetylene by photocatalysis coupled with dielectric barrier discharge. Catal Today 122(1–2):186–194.

    Article  CAS  Google Scholar 

  • Tonks L, Langmuir I (1929) Oscillations in ionized gases. Phys Rev 33(2):195–210.

    Article  CAS  Google Scholar 

  • Trompeter FJ, Neff WJ, Franken O, Heise M, Neiger M, Liu SH, Pietsch GJ, Saveljew AB (2002) Reduction of Bacillus subtilis and Aspergillus niger spores using nonthermal atmospheric gas discharge. IEEE Trans Plasma Sci 30(4):1416–1422.

    Article  Google Scholar 

  • Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 68(10):1821–1829.

    Article  CAS  Google Scholar 

  • Wallis AE, Whitehead J, Zhang C (2007) Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2. Catal Lett 113(1–2):29–33.

    Article  CAS  Google Scholar 

  • Wang HJ, Li J, Quan X, Wu Y (2008) Enhanced generation of oxidative species and phenol degradation in a discharge plasma system coupled with TiO2 photocatalysis. Appl Cata B Environ 83(1–2):72–77.

    Article  CAS  Google Scholar 

  • Wen YZ, Jiang XZ (2001) Pulsed corona discharge-induced reactions of acetophenone in water. Plasma Chem Plasma Process 21(3):345–354.

    Article  CAS  Google Scholar 

  • Willberg DM, Lang PS, Hochemer RH, Kratel A, Hoffmann MR (1996) Degradation of 4-chlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor. Environ Sci Technol 30(8):2526–2534.

    Article  CAS  Google Scholar 

  • Xu RF, Hu XX, Hu WK, Xu XY (2003) Study of the mechanism of HCHO photocatalyst degraded by nanosized TiO2. Chem Res Appl 15(5):715–717 (in Chinese).

    CAS  Google Scholar 

  • Yamamoto T (1997) VOC decomposition by nonthermal plasma processing—A new approach. J Electrostat 42(1–2):227–238.

    Article  CAS  Google Scholar 

  • Yamamoto T, Rajanikanth BS, Masaaki O (2003) Performance evaluation of nonthermal plasma reactors for NO oxidation in diesel engine exhaust gas treatment. IEEE Trans Ind Appl 39(6):1608–1613.

    Article  CAS  Google Scholar 

  • Yan K, Kanazawa S, Ohkubo T, Nomoto Y (1999) Oxidation and reduction processes during NO x removal with corona-induced nonthermal plasma. Plasma Chem Plasma Process 19(3):421–443.

    Article  CAS  Google Scholar 

  • Yan K, van Heesch EJM, Pemen AJM, Huijbrechts PAHJ (2001) From chemical kinetics to streamer corona reactor and voltage pulse generator. Plasma Chem Plasma Process 21(1):107–137.

    Article  CAS  Google Scholar 

  • Yen A, Kim SS, Hecht MH, Frant MS, Murray B (2000) Evidence that the reactivity of the Martian soil is due to superoxide ions. Science 289(5486):1909–1912.

    Article  CAS  Google Scholar 

  • Yoshihiko I, Matsuei U, Hirohumi S (2006) NOx reduction behavior on alumina with discharging nonthermal plasma in simulated oxidizing exhaust gas. J Chem Technol Biotechnol 81(4):544–552.

    Article  CAS  Google Scholar 

  • Yu H, Xiu ZL, Ren CS, Zhang JL, Wang DZ, Wang YN, Ma TC (2005) Inactivation of yeast by dielectric barrier discharge (DBD) plasma in helium at atmospheric pressure. IEEE Trans Plasma Sci 33(4):1405–1409.

    Article  CAS  Google Scholar 

  • Zhang A, Futamura S, Yamamoto T (1999) Nonthermal plasma chemical processing of bromomethane. J Air Waste Manage Assoc 49(12):1442–1448.

    CAS  Google Scholar 

  • Zhang JB, Zheng Z, Zhang YN, Feng JW, Li JH (2008) Low-temperature plasma-induced degradation of aqueous 2,4-dinitrophenol. J Hazard Mater 154(1–3):506–512.

    Article  CAS  Google Scholar 

  • Zhou YX, Nifuku M, Hajois G, Asada S, Katoh H (2001) An investigation on pulse discharge effect on the surface chemical transformation of fly ash. Thin Solid Films 386(2):195–199.

    Article  CAS  Google Scholar 

  • Zhou YX, Yan P, Cheng ZX, Nifuku M, Liang XD, Guan ZC (2003) Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash. Powder Technol 135–136:345–353.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor L. Zhou for her valuable discussions and comments. We are also grateful to David M. Whitacre for his suggestions during editing. This work was supported by the National Natural Science Foundation of China, No. 30571636.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-hong Bai .

Editor information

David M. Whitacre

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bai, Yh., Chen, Jr., Li, Xy., Zhang, Ch. (2009). Non-thermal Plasmas Chemistry as a Tool for Environmental Pollutants Abatement. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Vol 201. Reviews of Environmental Contamination and Toxicology, vol 201. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0032-6_4

Download citation

Publish with us

Policies and ethics