Skip to main content

Procedures for Analysis of Atrazine and Simazine in Environmental Matrices

  • Chapter
  • First Online:
Book cover Reviews of Environmental Contamination and Toxicology Vol 200

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 200))

Abstract

The triazine herbicides, particularly atrazine and simazine, are among the most popular groups of pesticides. A great majority of the triazine herbicides are derived from the s-triazine structure, a six-membered heterocycyle with symmetrically located nitrogen atoms that are substituted at the 2, 4, and 6 ring positions. Table 1 contains a list of abbreviations and acronyms used in this article. Table 2 presents a listing of the chemical names, designations and CAS numbers for members of the triazine herbicide class.

The s-triazines are stereochemically stable and certain of their degradation products are environmentally persistent, remaining in soil after application for several months to many years (Pacácková et al. 1996). The structures for atrazine and simazine, and an overview of their physical and chemical properties, are presented in Fig. 1 and Table 3, respectively.

Atrazine and simazine herbicides are readily absorbed by plant roots. After entering plants, these herbicides act by interfering with the enzyme systems responsible for the photolysis of water, thereby halting photosynthesis. Triazines are effective as pre- and postemergence herbicides for broad spectrum control of annual and perennial grasses and annual broad-leaved weeds (Dean et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate G, Penteado JC, Cuzzi JD, Vitti GC, Lichtig J, Masumi JC (2004) Influence of humic acid on adsorption and desorption of atrazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine onto a clay-rich soil sample. J Agric Food Chem 52:6747–6754.

    Article  CAS  Google Scholar 

  • Abgekodo KM, Legube B, Dard S (1996) Atrazine and simazine removal mechanisms by nanoflitration: influence of natural organic matter concentration. Wat Res 11:2535–2542.

    Google Scholar 

  • Abuknesha RA, Griffith HM (2004) Evaluation of a polyclonal antiserum to pentachlorothiophenol-aceticacid-KLH immunogen: binding properties and use with heterologous PCP derivatives in ELISA for pentachlorophenol. Anal Bioanal Chem 379:411–418.

    Article  CAS  Google Scholar 

  • Ahmed FA (2001) Analyses of pesticides and their metabolites in foods and drinks. Trends Anal Chem 20:649–661.

    Article  CAS  Google Scholar 

  • Andreu V, Picó Y (2004) Determination of pesticides and their degradation products in soil: critical review and comparison of methods. Trends Anal Chem 23:772–789.

    Article  CAS  Google Scholar 

  • Babić S, Petrović M, Kaštelan-Macan M (1998) Ultrasonic solvent extraction of pesticides from soil. J Chromatogr A 823:3–9.

    Article  Google Scholar 

  • Baran S, Oleszczuk P (2003) Determination of triazines herbicides in soils of different organic matter content. Chem Anal (Warsaw) 48:817–827.

    CAS  Google Scholar 

  • Baranowska I, Pieszko C (2000a) Derivative spectrophotometry in the analysis of mixtures of phenols and herbicides. Analyst 125:2335–2338.

    Article  CAS  Google Scholar 

  • Baranowska I, Pieszko C (2000b) Derivative spectrophotometry in the analysis of pesticides. Chem Anal 45:458–593.

    Google Scholar 

  • Baranowska I, Pieszko C (2000c) Determination of selected herbicides and phenols in water and soil by solid-phase extraction and high-performance liquid chromatography. J Chromatogr Sci 38:211–218.

    CAS  Google Scholar 

  • Baranowska I, Barchańska H, Pyrsz A (2005) Distribution of pesticides and heavy metals in trophic chain. Chemosphere 60:1590–1599.

    Article  CAS  Google Scholar 

  • Baranowska I, Barchańska H, Pacak E (2006) Procedures of trophic chain samples preparation for determination of triazines by HPLC and metals by ICP-AES methods. Environ Pollut 143:206–211.

    Article  CAS  Google Scholar 

  • Baranowska I, Barchańska H, Abukhnesha RA, Price RG, Stalmach A (2008) ELISA and HPLC methods for atrazine and simazine determination in trophic chains samples. Ecotoxicol Environ Saf 70:341–348.

    Article  CAS  Google Scholar 

  • Barchańska H (2007) Badania nad oznaczaniem atrazyny i symazyny oraz wybranych metali w ogniwach łańcuchów troficznych [Determination of atrazine, simazine and selected metals in trophic chain samples]. Doctoral thesis, Faculty of Chemistry, The Silesian University of Technology, pp 60–128.

    Google Scholar 

  • Barrek S, Paisse O, Grenier-Loustalot M-F (2003) Determination of residual pesticides in olive oil by GC-MS and HPLC-MS after extraction by size-exclusion chromatography. Anal Bioanal Chem 376:355–359.

    CAS  Google Scholar 

  • Barriuso E, Houot S (1996) Rapid mineralization of s-triazine ring of atrazine in soils in retention to soil management. Soil Biol Biochem 28:1341–1348.

    Article  CAS  Google Scholar 

  • Barriuso E, Koskinen W, Sadowski MJ (2004) Solvent extraction characterization bioavailability of atrazine residues in soils. J Agric Food Chem 52:6552–6556.

    Article  CAS  Google Scholar 

  • Basheer Ch, Jegadesan S, Valiyaveettil S, Lee HK, (2005) Sol-gel-coated oligomers as novel stationary phases for solid-phase microextraction. J Chromatogr A 1087:252–258.

    Article  CAS  Google Scholar 

  • Batista M, Di-Corcia A, Marchetti M (1989) Extraction and isolation of triazine herbicides from water and vegetables by a double trap tandem system. Anal Chem 61:935.

    Article  Google Scholar 

  • Borba da Cuhna AC, López de Alda MJ, Barceló D, Pizzalato TM (2004) Multianalyte determination of different classes of pesticides (acidic, triazines, phenyl ureas, anilines, organophosphates, molinate and propanil) by liquid chromatography-electrospray-tandem mass spectrometry. Anal Bianal Chem 378:940–954.

    Article  CAS  Google Scholar 

  • Buldini PL, Ricci L, Sharma JL (2002) Recent applications of sample preparation techniques in food analysis. J Chromatogr A 975:47–70.

    Article  CAS  Google Scholar 

  • Camel V (1997) The determination of pesticides residues and metabolites using supercritical fluid extraction. Trends Anal Chem 16:351–369.

    Article  CAS  Google Scholar 

  • Camel V (2000) Microwave-assisted solvent extraction of environmental samples. Trends Anal Chem 19:229–249.

    Article  CAS  Google Scholar 

  • Carabias-Martinez R (2006) Comparison of a non-aqueous capillary electrophoresis method with high performance liquid chromatography for the determination of herbicides and metabolites in water samples. J Chromatogr A 1122:194–201.

    Article  CAS  Google Scholar 

  • Carabias-Martinez R, Rodriguez-Gonzalo E, Dominguez-Alvarez J, Hernandez-Medez J (2000) Analysis of pesticide residues in matrices with high lipid contents by membrane separation coupled on-line to a high-performance liquid chromatography system. J Chromatogr A 869:451–461.

    Article  CAS  Google Scholar 

  • Carabias-Martinez R, Rodriguez-Gonzago E, Herrero-Herrandez E, Roman FJS-S, Flores MGP (2002) Determination of herbicides and metabolites by solid-phase extraction and liquid chromatography. Evaluation of pollution due to herbicides in surface and groundwaters. J Chromatogr A (2002) 950:157–166.

    CAS  Google Scholar 

  • Carabias-Martinez R, Rodriguez-Gonzalo E, Revilla-Ruiz P, Hermandez-Medez J (2005) Pressurized liquid extraction in the analysis of food and biological samples. J Chromatogr A 1089:1–17.

    Article  CAS  Google Scholar 

  • Crespo C, Marce RM, Borrull F (1994) Determination of various pesticides using membrane extraction disks and gas chromatography-gas spectrometry. J Chromatogr A 670:135–144.

    Article  CAS  Google Scholar 

  • da Silva C, de Lima E, Tavares F (2003) Investigation of preconcentration strategies for the trace analysis of multi-residue pesticides in real samples by capillary electrophoresis. Chromatogr A 1014:109–116.

    Article  CAS  Google Scholar 

  • Dean JR, Xiong G (2000) Extraction of organic pollutants from environmental matrices: selection of extraction technique. Trends Anal Chem 19:553–565.

    Article  CAS  Google Scholar 

  • Dean JR, Wade G, Barnabas J (1996) Determination of triazine herbicides in environmental samples. J Chromatogr A 733:295–335.

    Article  CAS  Google Scholar 

  • Delaunay N, Pichon V, Hennion M-C (2000) Immunoaffinity solid-phase extraction for the trace-analysis of low-molecular-mass analytes in complex sample matrices. J Chromatogr B 745:15–37.

    Article  CAS  Google Scholar 

  • De Prado R, Lopez-Martinez N, Gonzalez-Guitierrez J (2000) Identification of two mechanisms of atrazine resistance in Setaria faberi and Setaria viridis biotypes. Pesticide Biochem Physiol 67:114–124.

    Article  CAS  Google Scholar 

  • Durand G, Boouvot V, Barcelð D (1992) Determination of the levels of herbicides in estuarine water by gas and liquid chromatography. J Chromatogr 607:319–327.

    Article  CAS  Google Scholar 

  • Falqui-Cao C, Urruty L, Pommier J-J, Mantury M (2001) Focused microwave assistance for extracting some pesticide residues from strawberries into water before their determination by SPME/HPLC/DAD. J Agric Food Chem 35:5092–5097.

    Article  CAS  Google Scholar 

  • Farenhorst A, Topp E, Bowman B, Tomlin A (2000) Earthworms and the dissipation and distribution of atrazine in the soil profile. Soil Biol Biochem 32:23–33.

    Article  CAS  Google Scholar 

  • Ferrer I, Pichon V, Chen L, Hennion MC, Barceló D (1997) Automated sample preparation with extraction columns by means of anti-isoproturon imunosorbents for the determination of phenylures herbicides in water followed by liquid chromatography - diode array detection and liquid chromatographic - atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 777:91–98.

    Article  CAS  Google Scholar 

  • Ferrer C, Gómez MJ, Garcia-Reyes JF, Ferrer I (2005) Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. J Chromatogr A 1069:183–194.

    Article  CAS  Google Scholar 

  • Franek M, Kolař V, Eremin SA (1995) Enzyme immunoassays for s-triazines herbicides and their application in environmental and food analysis. Anal Chim Acta 311:349–356.

    Article  CAS  Google Scholar 

  • Funari E, Barbieri L, Bottoni P, Del Carlo G, Forti S, Giuliano G, Marinelli A, Santini C, Zavatti A (1998) Comparison of the leaching properties of alachlor, metolachlor, triazines and some of their metabolites in an experimental field. Chemosphere 36:1759–1773.

    Article  CAS  Google Scholar 

  • Gang S, Lee HK (2003) Determination of triazines in soil by microwave-assisted extraction followed by solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr A 985:167–174.

    Article  Google Scholar 

  • Garcinuno RM, Fernádez-Hernando P, Cámara C (2003) Evaluation of pesticide uptake by Lupinus seeds. Wat Res 37:3481–3489.

    Article  CAS  Google Scholar 

  • Gascón J, Oubina A, Barceló D (1997) Detection of endocrine-disruptors pesticides by enzyme-linked immunosorbent assay (ELISA): application to atrazine. Trends Anal Chem 16:554–563.

    Article  Google Scholar 

  • Gong A, Ye Ch (1998) Analysis of trace atrazine and simazine in environmental samples by liquid chromatography-fluorescence detection with pre-column derivatization reaction. J Chromatogr A 827: 57–63.

    Article  CAS  Google Scholar 

  • Hamada M, Wintersteiger R (2002) Rapid screening of triazines and quantitative determination in drinking water. J Biochem Biophys Methods 53:229–239.

    Article  CAS  Google Scholar 

  • Helaleh MIH, Al-Omair A, Ahmed N, Gevao B (2005) Quantitative determination of organochlorine pesticides in sewage sludges using soxtec, soxhlet and pressurized liquid extractions and ion trap mass-mass spectrometric detection. Anal Bioanal Chem 382:1127–1134.

    Article  CAS  Google Scholar 

  • Herwig U, Klumpp E, Narres HD, Schwuger MJ (2001) Physicochemical interactions between atrazine and clay minerals. Appl Clay Sci 18:211–222.

    Article  CAS  Google Scholar 

  • Hogenboom AC, Niessen WMA, Brinkman UATh (1997) Rapid target analysis of microcontaminants in water by on-line single-short-column liquid chromatography combined with atmospheric pressure chemical ionization tandem mass spectrometry. J Chromatogr A 777:81–90.

    Article  CAS  Google Scholar 

  • Hogenboom AC, Niessen WMA, Brinkman UATh (1999) Rapid target analysis of microcontaminants in water by on-line single-short-column liquid chromatography combined with atmospheric pressure chemical ionization ion-trap mass spectrometry. J Chromatogr A 794:201–210.

    Article  Google Scholar 

  • Hogendoorn E, van Zoonen E (2000) Recent and future developments of liquid chromatography in pesticide trace analysis. J Chromatogr A 892:435–453.

    Article  CAS  Google Scholar 

  • Houot S, Topp E, Yassir A, Soulas G (2000) Dependence of accelerated degradation of atrazine on soil pH in French and Canadian soils. Soil Biol Biochem 32:615–625.

    Article  CAS  Google Scholar 

  • Johnson PD, Rimmer DA, Brown RH (1997) Adaptation and application of a multi-residue method for the determination of a range of pesticides, including phenoxy acid herbicides in vegetation, based on high-resolution gel permeation chromatographic clean-up and gas chromatographic analysis with mass-selective detection. J Chromatogr A 765:3–11.

    Article  CAS  Google Scholar 

  • Jönsson JA, Mathiasson L (1999) Liquid membrane extraction in analytical sample preparation. Trends Anal Chem18:318–325.

    Article  Google Scholar 

  • Katz I, Dosoretz C, Mandelbaum RM, Green M (2001) Atrazine degradation under denitrifying conditions in continuous culture of pseudomonas ADP. Wat Res 35:3272–3275.

    Article  CAS  Google Scholar 

  • Kesari R, Gupta VK (1998) A sensitive spectrophotometry method for the determination of dithiocarbamate fungicide and its application in environmental samples. Talanta 47:1085–1092.

    Article  CAS  Google Scholar 

  • Kim JY, Mulchanblani A, Wilfried Ch (2003) An immunoassay for atrazine using tunable immunosorbent. Anal Biochem 251:251–256.

    Google Scholar 

  • King JW, Zhang Z (1998) Selective extraction of pesticides from lipid-containing matrixes using supercritical binary gas mixtures. Anal Chem 70:1431–1436.

    Article  CAS  Google Scholar 

  • Kördel W, Wahle U, Knoche H, Hund K (1995) Degradation capacity of chlorotoluron and simazine in subsoil horizons. Sci Total Environ 171:43–50.

    Article  Google Scholar 

  • Kreuzig R, Koinecke A, Bahadir MJ(2000) Use of supercritical fluid extraction in the analysis of pesticides in soil. Biochem Biophys Method 43:403–409.

    Article  CAS  Google Scholar 

  • Kumazawa T, Suzuki O (2000) Separation methods for amino group-possessing pesticides in biological samples. J Chromatogr B 747:241–254.

    Article  CAS  Google Scholar 

  • Kumazawa T, Sato K, Seno H, Suzuki O (1992) Rapid isolation with Sep - Pack C18 cartridges and capillary gas chromatography of triazine herbicides in human body fluids. Forensic Sci Int 54:159–164.

    Article  CAS  Google Scholar 

  • Lacassie E, Marquet P, Gaulier J-M, Dreyfuss M-F, Lachâtre G (2001) Sensitive and specific multiresidue methods for the determination of pesticides of various classes in clinical and forensic toxicology. Forensic Sci Int 121:116–125.

    Article  CAS  Google Scholar 

  • Lanyi K, Dinya Z (2003) Photodegradation study of some triazine-type herbicides. Microchem J 75:1–14.

    Article  CAS  Google Scholar 

  • Lehotay SJ (1997) Supercritical fluid extraction of pesticides in food. J Chromatogr A 785:289–312.

    Article  CAS  Google Scholar 

  • Lehotay SJ, Valverde-Garcia A (1998) Evaluation of different solid-phase traps for automated collection and clean-up in the analysis of multiple pesticides in fruits and vegetables after supercritical fluid extraction. J Chromatogr A 765:69–74.

    Article  Google Scholar 

  • Lentza-Rizos Ch, Avramides EJ, Cherasco F (2001) Low-temperature clean-up method for the determination of organophosphorus insecticides in olive oil. J Chromatogr A 912:135–142.

    Article  CAS  Google Scholar 

  • Lesan HM, Bhandari A (2003) Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis.Wat Res 37:1644–1654.

    Article  CAS  Google Scholar 

  • Liu W, Lee HK (1998) Quantitative analysis of pesticides by capillary column high performance liquid chromatography combined with solid-phase extraction. Talanta 45:631–639.

    Article  CAS  Google Scholar 

  • López-Avile V, Young R, Beckert WF (1994) Microwave-assisted extraction of organic compounds from standard reference soils and sediments. Anal Chem 66:1097–1106.

    Article  Google Scholar 

  • Luque-Garcia JL, de Castro MDL (2002) Coupling continuous subcritical water extraction, filtration, preconcentration, chromatographic separation and UV detection for the determination of chlorophenoxy acid herbicides in soils. J Chromatogr A 959:25–32.

    Article  CAS  Google Scholar 

  • Mallat E, Barcelo D, Barzen C, Gaulitz G, Abuknesha R (2001) Immunosensors for pesticide determination in natural waters. Trends Anal Chem 20:124–132.

    Article  CAS  Google Scholar 

  • Matsui J, Fujiawara K, Ugata S, Takeuchi T (2000) Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. J Chromatogr A 889:25–31.

    Article  CAS  Google Scholar 

  • McLaughlin RA, Barringer VM, Brady JF, Yokley RA (2008) Methods of analysis for triazine herbicides and their metabolites. In: The Triazine Herbicides, LeBaron HM, McFarland JE, Burnside OC (eds), Elsevier, New York, pp 243–274.

    Google Scholar 

  • Meakins N, Bubb JM, Lester JN (1996) The mobility, partitioning and degradation of atrazine and simazine in the salt march environment. Marine Wat Bull 12:812–819.

    Google Scholar 

  • Mendaš G, Drevenkar V, Zupančič-Kralj L (2001) Solid-phase extraction with styrene-divinylbenzene sorbent for high-performance liquid or gas chromatographic determination of urinary chloro- and methylthiotriazines. J Chromatogr A 918:351–359.

    Article  Google Scholar 

  • Menleuberg EP, Vree LG, Dogterom J (1999) Investigation of indicative methods in the Netherlands: validation of several commercial ELISAs for pesticides. Anal Chim Acta 399:143–149.

    Article  Google Scholar 

  • Menzinger F, Schmitt-Kopplin Ph, Freitag D, Kettrup A (2000) Analysis of agrochemicals by capillary electrophoresis. J Chromatogr A 891:45–67.

    Article  CAS  Google Scholar 

  • Motohashi N, Nagashima H, Parkanyi C (2000) Supercritical fluid extraction for the analysis of pesticide residues in miscellaneous samples. J Biochem Biophys Methods 43:313–328.

    Article  CAS  Google Scholar 

  • Mouvet C, Broussard S, Jeannot R, Maciag C, Abuknesha R, Ismail G (1995) Validation of commercially available ELISA microtiter plates for triazines in water samples. Anal Chim Acta 311:331–339.

    Article  CAS  Google Scholar 

  • Munoz I, Roses I (2000) Comparison of extraction methods for the determination of atrazine accumulation in freshwater molluscs (Physa Acuta Drap. and Ancylus fluviatilis Mull, Gastropoda). Wat Res 34:1846–2848.

    Article  Google Scholar 

  • Namieśnik J, Jamrógiewicz Z, Pilarczyk M, Torres L (2000) Przygotowanie próbek środowiskowych do analizy. 1th Ed. WNT, Warsaw, Poland, pp 72–79.

    Google Scholar 

  • Núśez O, Moyano E, Galceran MT (2005) LC-MS/MS analysis of organic toxics in ford. Trends Anal Chem 24:683–703.

    Article  CAS  Google Scholar 

  • Ojeda CB, Rojas FS (2004) Recent developments in derivative ultraviolet/visible absorption spectrophotometry. Anal Chim Acta 518:1–24.

    Article  CAS  Google Scholar 

  • Olness A, Basta NT, Rinke J (2002) Redox effects on resin extraction of herbicides from soil. Talanta 57:383–391.

    Article  CAS  Google Scholar 

  • Pacácková V, Štulik K, Jiskra J (1996) High-performance separation in the determination of triazines herbicides and their residues. J Chromatogr A 754:17–31.

    Article  Google Scholar 

  • Pesando D, Robert S, Huitorel P, Gutknecht E, Pereira L, Girard J-P, Ciapa B (2004) Effects of methoxychlor, dieldrin and lindane on sea urchin fertilization and early development. Aquat Toxicol 66:225–239.

    Article  CAS  Google Scholar 

  • Pichon V, Hennion MC (1994) Determination of pesticides in environmental waters by automated on-line trace enrichment liquid chromatography. J Chromatogr A 665:269–281.

    Article  CAS  Google Scholar 

  • Pichon V, Roguiaux H, Fischer-Durand N, Ben-Rejeb F, La Goffic F, Hennion MC (1999) Characteristic of immunosorbents used as a new approach to selective solid-phase extraction in environmental analysis. Chromatographia 45:289–292.

    Article  Google Scholar 

  • Picó Y, Rodrigues R, Maňes J (2003) Capillary electrophoresis for the determination of pesticide residues. Trends Anal Chem 22:133–152.

    Article  CAS  Google Scholar 

  • Pinto GMF, Jardim ICSF (2000) Use of solid-phase extraction and high-performance liquid chromatography for the determination of triazine residues in water: validation of the method. J Chromatogr A 869:463–469.

    Article  CAS  Google Scholar 

  • Price RG, Baranowska I, Griffith HMT, Abuknesha RA, Barchańska H (2006) Analysis of herbicides: demonstration of the utility of enzyme immunoassay verification by HPLC. Biomarkers 11:291–305.

    Article  CAS  Google Scholar 

  • Pringle J, Anderson L, Raines R (1978) Residues in crops irrigated with water containing simazine. J Agric Food Chem 26:1143–1148.

    Article  CAS  Google Scholar 

  • Prosen H, Zupančič-Kralj L (2005) Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environ Pollut 133:517–529.

    Article  CAS  Google Scholar 

  • Ralph PJ (2000) Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence. Aquat Bot 66:141–152.

    Article  CAS  Google Scholar 

  • Ribeiro A, Rodriguez-Maroto J, Mateus EP, Gomes H (2005) Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine. Experimental and modeling. Chemosphere 59:1229–1239.

    CAS  Google Scholar 

  • Richter P, Sepúlveda B, Oliva R, Calderón K, Segula R (2003) Screening and determination of pesticides in soil using continuous subcritical water extraction and gas chromatography-mass spectrometry J Chromatogr A 994:169–177.

    Article  CAS  Google Scholar 

  • Sabik H, Cooper S, Lafrance P, Fournier J (1995) Determination of atrazine, its degradation products and metolachlor in runoff water and sediments using solid-phase extraction. Talanta 42:717–724.

    Article  CAS  Google Scholar 

  • Sadeghi AM, Isensee AR (2001) Impact of hairy vetch cover crop on herbicide transport under field and laboratory conditions. Chemosphere 44:109–118.

    Article  CAS  Google Scholar 

  • Schachterle S, Feigel C (1996) Pesticide residue analysis in fresh produce by gas chromatography-tandem mass spectrometry. J Chromatogr A 754:411–422.

    Article  CAS  Google Scholar 

  • Schutz S, Duhr HE, Wollnik A (1994) Structural elucidation and trace analysis with combined hyphenated chromatoraphic and mass spectrometric methods. Potential using hybrid sector mass spectrometry-time-of-fly mass spectrometry for pesticides analysis. J Chromatogr A 683:141–148.

    Google Scholar 

  • Scutaru B, Giersch T, Cozmei C, Hock B (1998) Immunoenzymatic determination of atrazine in rat tissue samples. Toxicol 127:11–16.

    Article  CAS  Google Scholar 

  • Singh N, Megharaj M, Kookana RS, Naidu R, Sethunathan N (2004) Atrazine and simazine degradation in Pennisetum rhizosphere. Chemosphere 56:257–263.

    Article  CAS  Google Scholar 

  • Smith RM (2002) Extractions with superheated water. J Chromatogr A 975:31–46.

    Article  CAS  Google Scholar 

  • Sparr Eskilsson C, Bjśrklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250.

    Article  CAS  Google Scholar 

  • Stajnbaher D, Zupančič-Kralj L (2003) Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 1015:185–198.

    Article  CAS  Google Scholar 

  • Tadeo JL, Sanchez-Brunete C, Garcia-Valcarcel AJ, Martinez L, Perez RA (1996) Determination of cereal herbicide residues in environmental samples by gas chromatography. J Chromatogr A 754:347–365.

    Article  CAS  Google Scholar 

  • Tadeo J, Sánchez-Brunete C, Pérez R, Fernández MD (2000) Analysis of herbicide residues in cereals, fruits and vegetables. J Chromatogr A 882:175–191.

    Article  CAS  Google Scholar 

  • Thomas DH, Beck-Westermeyer M, Hage DS (1994) Determination of atrazine in water using tandem high-performance immunoaffinity chromatography and reversed-phase liquid chromatography. Anal Chem 66:3823–3834.

    Article  CAS  Google Scholar 

  • Thruman EM, Meyer M, Pomes MJ, Perry C (1990) Enzyme-linked immunosorbent assay compared with gas chromatography/mass spectrometry for the determination of triazine herbicides in water. J Anal Chem 62:2043–2048.

    Article  Google Scholar 

  • Ting K-Ch, Tamashiro GS (1996) Off-line high performance liquid chromatography and solid-phase extraction clean-up for confirmation of pesticide residues in fresh produce by gas chromatography-mass spectrometry. J Chromatogr 754:255–462.

    Article  Google Scholar 

  • Topp E, Gutzman D, Bourgoin B, Miixette J (1995) Rapid mineralization of the herbicide atrazine in alluvial sediments and enrichment cultures. J Environ Toxicol Chem 14:743–747.

    Article  CAS  Google Scholar 

  • Torres CM, Picó Y, Manes J (1996) Determination of pesticides residues in fruit and vegetables. J Chromatogr A 754:301–331.

    Article  CAS  Google Scholar 

  • Turiel E, Fernández P, Pérez-Conde C, Cámara C (2000) Trace-level determination of triazines and several degradation products in environmental waters by disk solid-phase extraction and micellar electro kinetic chromatography. J Chromatogr A 872:299–307.

    Article  CAS  Google Scholar 

  • Tuzmiński T, Soczewiński E (2002) Correlation of retention parameters of pesticides in normal and reversed-phase systems and their utilization for the separation of a mixture of 14 triazines and urea herbicides by means of two-dimensional thin-layer chromatography. J Chromatogr A 961:277–283.

    Article  Google Scholar 

  • van der Hoff GR, van Beuzekom AC, Brinkman UATh, Baumann RA, van Zoonen (1996) Determination of organochlorine compounds in fatty matrices. Application of rapid off-line normal-phase liquid chromatographic clean-up. J Chromatogr A 754:487–496.

    Article  CAS  Google Scholar 

  • van der Velde EG, Ramlal MR, van Beuzekom AC, Hoogerbrugge R (1994) Effects of parameters on supercritical fluid extraction of triazines from soil by use of multiple linear regression. J Chromatogr A 683:125–139.

    Article  CAS  Google Scholar 

  • Van Emon JM, Lopez-Avila V (1992) Bioseparation and bioanalytical techniques in environmental monitoring. Anal Chem 64:79A–88A.

    Article  Google Scholar 

  • Vassilakis I, Tsipi D, Scoullos M (1998) Determination of a variety of chemical classes of pesticides in surface and ground waters by off-line solid-phase extraction, gas chromatography with electron-capture and nitrogen-phosphorus detection, and high-performance liquid chromatography with post-column derivatization and fluorescence detection. J Chromatogr A 823:49–58.

    Article  CAS  Google Scholar 

  • Volmer D, Levsen K, Wunsch G (1994) Thermospray liquid chromatographic—mass spectrometric multi-residue determination of 128 polar pesticides in aqueous environmental samples. J Chromatogr A 660:231–248.

    Article  CAS  Google Scholar 

  • Wittmann C, Hock B (1993) Analysis of atrazine residues in food by an enzyme immunoassay. J Agric Food Chem 41:1421–1425.

    Article  CAS  Google Scholar 

  • Xiong G, Liang J, Zou S, Zhang Z (1998) Microwave-assisted extraction of atrazine from soil followed by rapid detection using commercial ELISA kit. Anal Chim Acta 371:97–103.

    Article  CAS  Google Scholar 

  • Xu F, Liang X, Liu B, Su F (2002) Influence of methanol on retention of hydrophobic organic chemicals in soil leaching column chromatography. Chemosphere 48:149–156.

    Article  CAS  Google Scholar 

  • Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175.

    Article  CAS  Google Scholar 

  • Ying GG, Kookana RS, Mallavarpu M (2005) Release behaviour of triazines residues in stabilised contaminated soils. Environ Pollut 134:71–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Barchańska .

Editor information

David M. Whitacre

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barchańska, H., Baranowska, I. (2009). Procedures for Analysis of Atrazine and Simazine in Environmental Matrices. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Vol 200. Reviews of Environmental Contamination and Toxicology, vol 200. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0028-9_3

Download citation

Publish with us

Policies and ethics