Skip to main content

The Annual Cycle of Development of Trees and Process-Based Modelling of Growth to Scale Up From the Tree To the Stand

  • Chapter
  • First Online:
Phenology of Ecosystem Processes

Abstract

Climate change affects both the annual cycle of tree development and the processes related to tree growth. The annual cycle of development manifests as observable phenological events such as leaf unfolding, flowering and leaf fall, but also includes less apparent traits, such as changes in frost hardiness and photosynthetic capacity. Seasonality in these traits can be due either to a fixed sequence of events that take place even in a constant environment, or to fluctuations in environmental factors. Thus, in a constant environment, the latter mode of development displays no seasonality. In addition, and depending on the trait considered, the internal state of development affects the tree’s capacity to respond to environmental factors. Given that the effects of climate change on the seasonality of a particular phenological trait may depend on interactions between fixed and fluctuating development traits, in order to explore these effects the entire annual cycle of development must be modelled. The processes related to tree growth include photosynthesis, respiration and allocation at the level of the individual tree; at stand level they include resource availability and biotic interactions. In this chapter we present the general theory of the annual cycle of development of trees, with examples of climate change effects on phenological traits with different mode of development for tree species in the boreal, temperate and Mediterranean zone of Europe. A process-based model on tree growth is outlined, with focus on scaling up from the tree to the stand level in time and space. Examples of climate change are presented, based on a model that couples the annual cycle of development and the growth of trees. Phenological events are characterized by responses to temperature that are under strong selective pressure. Future lines of development in this field of research include an assessment of the adaptive potential of phenological events to climate change. An example of this genetic approach is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergh, J., McMurtrie, R.E. and Linder, S. (1998) Climatic factors controlling the productivity of Norway spruce: A model-bases analysis. For. Ecol. Manag. 110, 127–139.

    Article  Google Scholar 

  • Buiteveld, J., Vendramin, G.G., Leonardi, S., Kamer, K. and Geburek, T. (2007) Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. For. Ecol. Manag. 247, 98–106.

    Article  Google Scholar 

  • Cannell, M.G.R. (1990) Modelling the phenology of trees. Silva Carelica 15, 11–27.

    Google Scholar 

  • Cannell, M.G.R. and Smith, R.I. (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J. Appl. Ecol. 20, 951–963.

    Article  Google Scholar 

  • Cannell, M.G.R. and Thornley, J.H.M. (2000) Modelling the components of plant respiration: Some guiding principles. Ann. Bot. 85, 45–54.

    Article  CAS  Google Scholar 

  • Chuine, I. (1998) Modelisation de la phenologie des arbres de la zone temperee et ses implications en biologie evolutive, Ecole Nationale Superieure Agronomique de Montpellier, Montpellier.

    Google Scholar 

  • Chuine, I., Cour, P. and Rousseau, D.D. (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ. 21, 455–466.

    Article  Google Scholar 

  • Davis, M.B. and Kabinski, C. (1992). Changes in geographical range from greenhouse warming: effects on biodiversity in forests. In: Peters, R.L. and Lovejoy, T.E. (eds.), Global Warming and Biological Diversity. Yale University Press, Yale, pp. 297–309.

    Google Scholar 

  • Davis, M.B. and Shaw, R.G. (2001) Range shift and adaptive responses to Quaternary climate change. Science 292, 673–679.

    Article  CAS  Google Scholar 

  • Fuchigami, L.H., Weiser, C.J., Kobayashi, K., Timmis, R. and Gusta, L.V. (1982). A degree growth stage model and cold acclimation in temperate woody plants. In: P.H. Li and A. Sakai (eds.), Plant Cold Hardiness and Freezing Stress. Plant Proceedings of an International Seminar on Plant Hardiness Held at the Sapporo Educational and Cultural Hall. Sappora, Japan, August 11–14, 1981.

    Google Scholar 

  • Geburek, T. (2005). Sexual reproduction in forest trees. In: Geburek, T. and Turok, J. (eds.), Conservation and Management of Forest Genetic Resoucres in Europe. Arbora Publishers, Zvolen

    Google Scholar 

  • Goudriaan, J. and Van Laar, H.H. (1994) Modelling Potential Crop Growth Processes. Kluwer, The Netherlands.

    Google Scholar 

  • Grote, R. (1998) Integrating dynamic morphological properties into forest growth modelling: II Allocation and mortality. Forest Ecol. Manag. 111, 193–210.

    Article  Google Scholar 

  • Hampe, A. (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467.

    Article  Google Scholar 

  • Hamrick, J.L. (2004) Response of forest trees to global environmental changes. Forest Ecol. Manag. 197, 323–335.

    Article  Google Scholar 

  • Hamrick, J.L. and Godt, M.J.W. (1996) Effects of life history traits on genetic diversity in plant species. Phil. T. Roy. Soc. B 351, 1291–1298.

    Article  Google Scholar 

  • Hänninen, H. (1990) Modelling the annual growth rhythm of trees: conceptual, experimental, and applied aspects. Silva Carelica 15, 35–45.

    Google Scholar 

  • Hänninen, H. (1995) Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of budburst phenology. Can. J. Bot. 73, 183–199.

    Article  Google Scholar 

  • Hänninen, H. and Kramer, K. (2007) A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fenn. 41, 167–205.

    Google Scholar 

  • Hänninen, H. and Lundell, R. (2007). Dynamic models in plant ecophysiology. In: Taulavuori, E. and Taulavuori, K. (eds.), Physiology of Northern Plants Under Changing Environment. Research Signpost, Kerala, India, pp. 157–175.

    Google Scholar 

  • Hari, A.J. (1972) Physiological state of development in biological models of growth and maturation. Ann. Bot. Fenn. 9, 107–115.

    Google Scholar 

  • Hari, P.L. and Rasanen, P. (1970) A dynamic model of the daily heigth incement of plants. Ann. Bot. Fenn. 7, 375–378.

    Google Scholar 

  • Jump, A. and Penuelas, J. (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020.

    Article  Google Scholar 

  • Kellomäki, S., Hänninen, H. and Kolström, M. (1995) Computations on frost damage to Scots pine under climatic warming in boreal conditions. Ecol. Appl. 5, 42–52.

    Article  Google Scholar 

  • Kellomäki, S., Vaisanen, H., Hänninen, H., Kolström, T., Lauhanen, R., Mattila, U. and Pajari, B. (1992) A simulation model for the succession of the boreal forest ecosystem. Silva Fenn. 26, 1–18.

    Google Scholar 

  • Koski, V. and Sievänen, R. (1985). Timing growth cessation in relation to the variations in the growing season. In: P.M.A. Tigerstedt, P. Puttonen & V. Koski (eds). Crop Physiology of Forest Trees. Proceedings of an International Conference on Managing Forest Trees as Cultivated Plants held in Finland, July 23–28, 1985.

    Google Scholar 

  • Kramer, K. (1994a) A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant Cell Environ. 17, 367–377.

    Article  Google Scholar 

  • Kramer, K. (1994b) Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol. 31, 172–181.

    Article  Google Scholar 

  • Kramer, K. (1995a) Modelling comparison to evaluate the importance of phenology for the effects of climate change in growth of temperate-zone deciduous trees. Climate Res. 5, 119–130.

    Article  Google Scholar 

  • Kramer, K. (1995b) Phenotypic plasticity of the phenology of seven European tree species in relation to climatic warming. Plant Cell Environ. 18, 93–104.

    Article  Google Scholar 

  • Kramer, K., Buiteveld, J., Forstreuter, M., Geburek, T., Leonardi, S., Menozzi, P., Povillon, F., Schelhaas, M.J., du Cros, E.T., Vendramin, G.G. and van der Werf, D.C. (2008) Bridging the gap between ecophysiological and genetic knowledge to assess the adaptive potential of European Beech. Ecol. Modell., 333–353.

    Google Scholar 

  • Kramer, K., Friend, A., and Leinonen, I. (1996) Modelling comparison to evaluate the importance of phenology and spring frost damage for the effects of climate change on growth of mixed temperate-zone deciduous forests. Climate Res. 7, 31–41.

    Article  Google Scholar 

  • Kramer, K., Leinonen, I., Bartelink, H.H., Berbigier, P., Borghetti, M. Bernhofer, Ch., Cienciala, E., Dolman, A.J., Froer, O. Gracia, C.A., Granier, A., Grünwald, T. Hari, P. Jans, W., Kellomäki, S., Loustau, D., Magnani, F., Markkanen, T., Matteucci, G., Mohren, G.M.J., Moors, E., Nissinen, A., Peltola, H., Sabaté, S., Sanchez, A., Sontag, M., Valentini R. and Vesala, T. (2002) Evaluation of 6 process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at 6 forest sites in Europe. Global Change Biol. 2002, 1–18.

    Google Scholar 

  • Kramer, K., Leinonen, I. and Loustau, D. (2000) The importance of phenology for the evaluation of impacts of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int. J. Biometeorol. 44, 67–75.

    Article  CAS  Google Scholar 

  • Kropff, M. (1993). Mechanisms of the competition for water. In: Kropff, M. and H., V.L.H. (eds.), Modelling Crop-Weed Interactions. CAB International, Wallingford, UK, pp. 63–76.

    Google Scholar 

  • Leinonen, I. (1996a) Dependence of dormancy release on temperature in different origins of pinus sylvestris and betula pendula seedlings. Scand. J. Forest Res. 11, 122–128.

    Article  Google Scholar 

  • Leinonen, I. (1996b) A simulation model for the annual frost hardiness and freeze damage of Scots Pine. Ann. Bot. 78, 687–693.

    Article  Google Scholar 

  • Leinonen, I., Repo, T., Hänninen, H. and Burr, K.E. (1995) A second-order dynamic model for the frost hardiness of trees. Ann. Bot. 76, 89–95.

    Article  Google Scholar 

  • Leonardi, S. and Menozzi, P. (1995) Genetic variability of Fagus sylvatica L. (beech) in Italy: the role of postglacial recolonization. Heredity 75, 35–44.

    Google Scholar 

  • Leuning, R. (1995) A critical appraisal of a combined stomatal- photosynthesis model for C-3 plants. Plant Cell Environ. 18, 339–355.

    Article  CAS  Google Scholar 

  • Leuning, R., Kelliher, F.M., Depury, D.G.G. and Schulze, E.D. (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ. 18, 1183–1200.

    Article  Google Scholar 

  • Loustau, D., Berbigier, P. and Granier, A. (1992) Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash’s analytical model of interception. J. Hydrol. 138, 469–485.

    Article  Google Scholar 

  • Loustau, D., Berbigier, P., Roumagnac, P., Arruda-Pacheco, C., David, J.S., Ferreira, M.I., Pereira, J.S. and Tavares, R. (1996) Transpiration of a 64-year-old maritime pine stand in Portugal 1. Seasonal course of water flux through maritime pine. Oecologia 107, 33–42.

    Article  Google Scholar 

  • Mäkelä, A. and Hari, P. (1986) Stand growth models based on carbon uptake and allocation in individual trees. Ecol. Modell. 33, 205–229.

    Article  Google Scholar 

  • Mäkelä, A., Hari, P., Berninger, F., Hänninen, H. and Nikinmaa, E. (2004) Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature. Tree Physiol. 24, 369–376.

    Google Scholar 

  • Mohren, G.M.J., Bartelink, H.H., Kramer, K., Magnani, F., Sabaté, S. and Loustau, D. (1999) Modelling long-term effects of CO2 increase and climate change on European forests, with emphasis on ecosystem carbon budgets. In: Ceulemans, R.J.M., Veroustraete, F., Gond, V. and van Rensbergen, J.B.H.F. (eds.), Forest Ecosystem Modelling, Upscaling and Remote Sensing. SPB Academic Publishing bv, The Netherlands, pp. 179–192.

    Google Scholar 

  • Parmesan, C. (2006) Ecological and evolutionairy responses to recent climate change. Annu. Rev. Ecol. Syst. 37, 912–929.

    Google Scholar 

  • Pelkonen, P. (1980) The uptake of carbon dioxide in Scots pine during spring. Flora 169, 386–397.

    Google Scholar 

  • Pelkonen, P. and Hari, P. (1980) The independence of the springtime recovery of CO2 uptake in Scots pine on temperature and internal factors. Flora 169, 398–404.

    Google Scholar 

  • Penning de Vries, F.W., Brunsting, A.H. and van Laar, H.H. (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J. Theor. Biol. 45, 339–377.

    Article  CAS  Google Scholar 

  • Petit, R.J. and Hampe, A. (2006) Some Evolutionary Consequences of Being a Tree. Annu. Rev. Ecol. Evol. Syst. 37, 187–214.

    Article  Google Scholar 

  • Reaumur, R.A.F.D. (1735) Observations du thermomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l’Amérique. Mem. Paris Acad. Sci. 1735 545 ff.

    Google Scholar 

  • Rehfeldt, G.E., Tchebakova, N.M., Parfenova, Y.I., Wykoff, W.R., Kuzmina, N.A. and Milyutin, L.I. (2002) Intraspecific responses to climate in Pinus sylvestris. Global Change Biol. 8, 912–929.

    Article  Google Scholar 

  • Repo, T. (1992) Seasonal changes of frost hardiness in Picea abies and Pinus sylvestris in Finland. Can. J. For. Res. 22, 1949–1957.

    Article  Google Scholar 

  • Repo, T. (1993) Impedance spectroscopy and temperature acclimation of forest treesUniversity of Joensuu, Faculty of Forestry, Joensuu, pp.53p.

    Google Scholar 

  • Repo, T. and Lappi, J. (1989) Estimation of standard error of impedance-estimated frost resistance. Scand. J. Forest Res. 4, 67–74.

    Article  Google Scholar 

  • Repo, T., Mäkelä, A. and Hänninen, H. (1990a) Modelling frost resistance of trees. Silva Carelica 15, 61–74.

    Google Scholar 

  • Repo, T., Tuovinen, T. and Savolainen, T. (1990b) Estimation of an electrical model of plant tissue using the impedance locus. Silva Carelica 15, 51–59.

    Google Scholar 

  • Ryan, M.G. (1995) Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content. Plant Cell Environ. 18, 765–772.

    Article  CAS  Google Scholar 

  • Ryan, M.G., Hubbard, R.M., Pongracic, S., Raison, R.J. and Mcmurtrie, R.E. (1996) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol. 16, 333–343.

    Google Scholar 

  • Sarvas, R. (1972) Investigations on the annual cycle of development on forest trees active period. Commun. Inst. For. Fenn. 76, 110.

    Google Scholar 

  • Sarvas, R. (1974) Investigations on the annual cycle of development of forest trees. Autumn dormancy and winter dormancy. Commun. Inst. For. Fenn. 84, 1–101.

    Google Scholar 

  • Spitters, C.J.T., Toussaint, H.A.J.M. and Goudriaan, J. (1986) Separating the diffuse and direct component of global radiation and its implications for modellingf canopy photosynthesis. Agric. For. Meteorol. 38, 217–229.

    Article  Google Scholar 

  • Thuiller, W., Albert, C., Araujo, M.B., Berry, P.M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G.F., Paterson, J., Schurr, F.M., Sykes, M.T. and Zimmermann, N.E. (2008) Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152.

    Article  Google Scholar 

  • Valentine, H.T. (1988) A carbon-balance model of stand growth: a derivation employing the Pipe-model theory and the self-thinning rule. Ann. Bot. 62, 389–396.

    Google Scholar 

  • Weiner, J. (1990) Asymmetric competition in plant populations. Trends Ecol. Evol. 5, 360–364.

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the strategic research program “Sustainable spatial development of ecosystems, landscapes, seas and regions” which is funded by the Dutch Ministry of Agriculture, Nature Conservation and Food Quality, and carried out by Wageningen University Research Centre. KK was also supported by the EU-FP6 Network of Excellence EVOLTREE (contract no. 016322). Joy Burrough advised on the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Kramer .

Editor information

Editors and Affiliations

Appendix

The annual cycle of development for boreal and temperate zone trees. See Fig. 1 for a schematic representation of the four phenological phases and processes.

Potential Rates

Phase 1: active growth

$$R_a (t) = \left\{ {\begin{array}{l} {0,T(t) < T_b } \\ {T(t) - T_b ,T(t) \ge T_b } \\\end{array}}\right.$$
(Eqn. A1)
$$R_o (t) = \left\{ {\begin{array}{l} {0,T(t) < T_{o,\min } } \\ {\frac{1}{{1 + e^{(a_o \bullet (T(t)+b_o ))} }},T(t) \ge T_{o,\min } } \\\end{array}} \right.$$
(Eqn. A2)

Phase 2: lignification

$$R_1 \left( t \right) = \left\{ \begin{array}{l} 0,T\left( t\right) < T_b\\ T\left( t \right) - T_b ,T\left( t \right) \ge T_b\\\end{array}\right.$$
(Eqn. A3)

Phase 3: rest

$$Rr(t)\left\{ \begin{array}{l} 0,T(t)T_{r,\min}\\ \frac{T(t) - T_{r,\min}}{T_{r,opt} - T_{r,\min}}, T_{r,\min} \leq T(t) \leq T_{r, opt}\\ \frac{T(t)- T_{r,\max }}{T_{r,opt}- T_{r,\max }},T_{r, opt}\langle T(t) \leq T_{r, \max}\\0, T(t)\rangle T_{r,\max }\\ \end{array} \right.$$
(Eqn. A4)

Phase 4: quiescence

$$R_o \left( t \right) = \left\{ \begin{array}{l} 0,T\left( t \right) < T_{o,\min }\\\frac{1}{{1 + e^{\left( {a_o\bullet \left( {T\left( t \right) + b_o } \right)} \right)} }},T\left( t \right) \ge T_{o,\min }\\\end{array} \right.$$
(Eqn. A5)

Frost hardiness

$$R_h \left( t \right) = \frac{1}{{\tau _h }} \bullet \left( {\hat S_h \left( t \right) - S_h \left( t \right)} \right)$$
(Eqn. A6)
$$\Delta \hat S_{hT} \left( t \right) = \left\{ \begin{array}{l}\Delta \hat S_{hT,\min } ,T\left. {\left( t \right)} \right\rangle T_{h,1}\\ \Delta \hat S_{hT,\max }\bullet \left( {1 - \frac{{T_{\min} \left( t \right) - T_{h,2} }}{{T_{h,1}- T_{h,2} }}}\right),T_{h,2}\le T\left( t \right)T_{h,1}\\ \Delta \hat S_{hT,\max} ,T\left( t \right)\langle {T_{h,2} } \\ \end{array} \right.$$
(Eqn. A7)
$$\Delta \hat S_{hP} (t) = \left\{ \begin{array}{l}\Delta \hat S_{hP,\min } ,NL(t)\langle {NL_{h,1} } \\ \frac{{\Delta\hat S_{hP,\max } }}{NL_{h,2}- NL_{h,1}} \bullet (NL(t) - NL_{h,1}),NL_{h,1}\leq NL(t) \leq NL_{h,2}\\\Delta \hat S_{hP,\max } ,NL(t) {NL_{h,2}} \rangle NL_{h, 2}\\0,Phase = 1 \wedge C_h= 0\end{array} \right.$$
(Eqn. A8)

Recovery of photosynthetic capacity

$$R_p= \frac{1}{{\tau _p }} \cdot \left( {\frac{1}{{1 + c_p\cdot a_p ^{ - \left( {\hat s_p- S_p } \right)} }} - \frac{1}{{1 + c_p\cdot a_p ^{\left( {\hat S_p- S_p } \right)} }}} \right)$$
(Eqn. A9)

States

Phase 1: active growth

$$S_a \left( t \right) = \int\limits_{t_{a,i} }^t {C_{aT} R_a \left( t \right)dt + C_{ap} NL\left( t \right)}$$
(Eqn. A10)
$$S_a \left( t \right) = \int\limits_{t_{a,i} }^t {C_o \left( t \right)R_o \left( t \right)dt}$$
(Eqn. A11)

end of active growth if \(S_a \left. {\left( t \right)} \right\rangle S_a^*\) then:

● Phase = 2

● Sl(t) = 0

● tl,i = 0

Phase 2: lignification

$$S_l \left( t \right) = \int\limits_{t_{l,i} }^t {R_l } \left( t \right)dt$$
(Eqn. A12)

end of lignification if \(S_l \left. {\left( t \right)} \right\rangle S_l^*\) then:

● Phase = 3

$$S_o \left( t \right) = 0$$

$$S_r \left( t \right) = 0$$

● to,i = 0

● to,i = 0

Phase 3: rest

$$S_r \left( t \right) = \int\limits_{t_{r,j} }^t {R_r \left( t \right)dt}$$
(Eqn. A13)

end of rest (= rest completion) if\(S_r \left. {\left( t \right)} \right\rangle S_r^*\) then:

● Phase = 4

Phase 4: quiescence

$$S_o \left( t \right) = \int\limits_{t_{o,j} }^t {C_o } \left( t \right)R_o \left( t \right)a$$
(Eqn. A14)
$$C_h (t) = \left\{ {\begin{array}{l} {0,S_r (t) < S_r^* } \\ {1,S_r (t) \ge S_r^* } \\\end{array}}\right.$$
(Eqn. A15)

end of quiescence (= bud burst) if \(S_o \left. {\left( t \right)} \right\rangle S_o^*\)then:

● Phase = 1

\(S_a \left( t \right) = 0\)

● ta,i = 0

Frost hardiness

$$S_h \left( t \right) = \int\limits_0^t {R_h } \left( t \right)dt$$
(Eqn. A16)
$$\hat S_h \left( t \right) = \hat S_{h,\min }+ C_h \left( t \right)\left( {\Delta \hat S_{hT} \left( t \right)\Delta \hat S_{hP} \left( t \right)} \right)$$
(Eqn. A17)
$$C_h (t) = \left\{ {\begin{array}{l} {MAX\left( {0,1 - \frac{{S_o (t)}}{{S_h^* }}} \right),Phase = 1} \\ {\frac{{S_l (t)}}{{S_l^* }},Phase = 2} \\ {1,Phase = 3} \\ {MAX\left( {0,1 - \frac{{S_o (t)}}{{S_{o,h}^* }}} \right),Phase = 4} \\\end{array}} \right.$$
(Eqn. A18)

Fraction of needle area damaged by frost

$$d_f= a_f+ b_f e^{c_f .S_h \left( t \right)}$$
(Eqn. A19)
$$D\left( T \right) = \frac{1}{{1 + e^{e_f\cdot \left( {S_h \left( t \right) - T\min \left( t \right)} \right)} }}$$
(Eqn. A20)

Recovery of photosynthetic capacity

$$S_p \left( t \right) = \int\limits_o^t {R_p \left( t \right)dt}$$
(Eqn. A21)
$$\hat S_p \left( t \right) = b_p T\left( t \right)$$
(Eqn. A22)
$$K_p \left( t \right) = \frac{{S_p \left( t \right)}}{{S_p^* }}$$
(Eqn. A23)

Table A1 Variables for models of the annual cycle of trees
Table A2 Parameters for models of the annual cycle of trees

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kramer, K., Hänninen, H. (2009). The Annual Cycle of Development of Trees and Process-Based Modelling of Growth to Scale Up From the Tree To the Stand. In: Noormets, A. (eds) Phenology of Ecosystem Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0026-5_9

Download citation

Publish with us

Policies and ethics