Skip to main content

Land Surface Phenology

Convergence of Satellite and CO2 Eddy Flux Observations

  • Chapter
  • First Online:
Phenology of Ecosystem Processes

Abstract

Land surface phenology (LSP) is a key indicator of ecosystem dynamics under a changing environment. Over the last few decades, numerous studies have used the time series data of vegetation indices derived from land surface reflectance acquired by satellite-based optical sensors to delineate land surface phenology. Recent progress and data accumulation from CO2 eddy flux towers offers a new perspective for delineating land surface phenology through either net ecosystem exchange of CO2 (NEE) or gross primary production (GPP). In this chapter, we discussed the potential convergence of satellite observation approach and CO2 eddy flux observation approach. We evaluated three vegetation indices (Normalized Difference Vegetation Index, Enhanced Vegetation Index, and Land Surface Water Index) in relation to NEE and GPP data from five CO2 eddy flux tower sites, representing five vegetation types (deciduous broadleaf forests, evergreen needleleaf forest, temperate grassland, cropland, and tropical moist evergreen broadleaf forest). This chapter highlights the need for the community to combine satellite observation approach and CO2 eddy flux observation approach, in order to develop better understanding of land surface phenology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldocchi, D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bern-hofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X.H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K.T.P., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K. and Wofsy, S. (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434.

    Article  Google Scholar 

  • Baldocchi, D., Valentini, R., Running, S., Oechel, W. and Dahlman, R. (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosys-tems. Global Change Biol. 2, 159–168.

    Article  Google Scholar 

  • Baldocchi, D. and Wilson, K. (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol. Modell. 142, 155–184.

    Article  CAS  Google Scholar 

  • Barford, C.C., Wofsy, S.C., Goulden, M.L., Munger, J.W., Pyle, E.H., Urbanski, S.P., Hutyra, L., Saleska, S.R., Fitzjarrald, D. and Moore, K. (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294, 1688–1691.

    Article  CAS  Google Scholar 

  • Boegh, E., Soegaard, H., Broge, N., Hasager, C.B., Jensen, N.O., Schelde, K. and Thomsen, A. (2002) Airborne multispectral data for quantifying leaf area index, nitrogen concentra-tion, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 81, 179–193.

    Article  Google Scholar 

  • Boles, S.H., Xiao, X.M., Liu, J.Y., Zhang, Q.Y., Munkhtuya, S., Chen, S.Q. and Ojima, D. (2004) Land cover characterization of Temperate East Asia using multi-temporal VEGETATION sensor data. Remote Sens. Environ. 90, 477–489.

    Article  Google Scholar 

  • Ceccato, P., Flasse, S. and Gregoire, J.M. (2002a) Designing a spectral index to estimate vegetation water content from remote sensing data – Part 2. Validation and applications. Remote Sens. Environ. 82, 198–207.

    Article  Google Scholar 

  • Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S. and Gregoire, J.M. (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Envi-ron. 77, 22–33.

    Article  Google Scholar 

  • Ceccato, P., Gobron, N., Flasse, S., Pinty, B. and Tarantola, S. (2002b) Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 – Theoretical approach. Remote Sens. Environ. 82, 188–197.

    Article  Google Scholar 

  • Churkina, G., Schimel, D., Braswell, B.H. and Xiao, X.M. (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biol. 11, 1777–1787.

    Article  Google Scholar 

  • Delbart, N., Kergoat, L., Le Toan, T., Lhermitte, J. and Picard, G. (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens. Environ. 97, 26–38.

    Article  Google Scholar 

  • Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K.J., Elbers, J.A., Goldstein, A.H., Grelle, A., Granier, A., Guomundsson, J., Hollinger, D., Kowalski, A.S., Katul, G., Law, B.E., Malhi, Y., Meyers, T., Monson, R.K., Munger, J.W., Oechel, W., Paw, K.T., Pilegaard, K., Rannik, U., Reb-mann, C., Suyker, A., Valentini, R., Wilson, K. and Wofsy, S. (2002) Seasonality of eco-system respiration and gross primary production as derived from FLUXNET measure-ments. Agric. For. Meteorol. 113, 53–74.

    Article  Google Scholar 

  • Fu, Y.L., Yu, G.R., Sun, X.M., Li, Y.N., Wen, X.F., Zhang, L.M., Li, Z.Q., Zhao, L. and Hao, Y.B. (2006a) Depression of net ecosystem CO2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. Agric. For. Meteorol. 137, 234–244.

    Article  Google Scholar 

  • Fu, Y.L., Yu, G.R., Wang, Y.F., Li, Z.Q. and Hao, Y.B. (2006b) Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis steppe in Inner Mongolia. Sci. China D 49, 196–206.

    Article  Google Scholar 

  • Gao, B.C. (1996) NDWI – A normalized difference water index for remote sensing of vegeta-tion liquid water from space. Remote Sens. Environ. 58, 257–266.

    Article  Google Scholar 

  • Gao, X., Huete, A.R., Ni, W.G. and Miura, T. (2000) Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 74, 609–620.

    Article  Google Scholar 

  • Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C. and Wofsy, S.C. (1996) Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. Science 271, 1576–1578.

    Article  CAS  Google Scholar 

  • Goward, S.N., Markham, B., Dye, D.G., Dulaney, W. and Yang, J.L. (1991) Normalized Difference Vegetation Index measurements from the Advanced Very High-Resolution Ra-diometer. Remote Sens. Environ. 35, 257–277.

    Article  Google Scholar 

  • Hollinger, D., Aber, J., Dail, B., Davidson, E.A., Goltz, S.M., Hughes, H., Leclerc, M.Y., Lee, J.T., Richardson, A.D., Rodrigues, C., Scott, N.A., Achuatavarier, D. and Walsh, J. (2004) Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biol. 10, 1689–1706.

    Article  Google Scholar 

  • Hollinger, D.Y., Goltz, S.M., Davidson, E.A., Lee, J.T., Tu, K. and Valentine, H.T. (1999) Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biol. 5, 891–902.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G. (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213.

    Article  Google Scholar 

  • Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W.Z., Nemani, R.R. and Myneni, R. (2006) Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405, doi:10.1029/2005GL025583.

    Article  Google Scholar 

  • Huete, A.R., Liu, H.Q., Batchily, K. and vanLeeuwen, W. (1997) A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59, 440–451.

    Article  Google Scholar 

  • Hunt, E.R. and Rock, B.N. (1989) Detection of changes in leaf water-content using near-infrared and middle-infrared reflectances. Remote Sens. Environ. 30, 43–54.

    Article  Google Scholar 

  • Hunt, E.R., Rock, B.N. and Nobel, P.S. (1987) Measurement of leaf relative water-content by infrared reflectance. Remote Sens. Environ. 22, 429–435.

    Article  Google Scholar 

  • Jenkins, J.P., Braswell, B.H., Frolking, S.E. and Aber, J.D. (2002) Detecting and predicting spatial and interannual patterns of temperate forest springtime phenology in the eastern US. Geophys. Res. Lett. 29, 2201, doi:10.1029/2001GL014008.

    Article  Google Scholar 

  • Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., Salomon-son, V.V., Privette, J.L., Riggs, G., Strahler, A., Lucht, W., Myneni, R.B., Knyazikhin, Y., Running, S.W., Nemani, R.R., Wan, Z.M., Huete, A.R., van Leeuwen, W., Wolfe, R.E., Giglio, L., Muller, J.P., Lewis, P. and Barnsley, M.J. (1998) The Moderate Resolution Im-aging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Rem. Sens. 36, 1228–1249.

    Article  Google Scholar 

  • Knyazikhin, Y., Martonchik, J.V., Myneni, R.B., Diner, D.J. and Running, S.W. (1998) Syn-ergistic algorithm for estimating vegetation canopy leaf area index and fraction of ab-sorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. D103, 32257–32275.

    Article  Google Scholar 

  • Li, J., Yu, Q., Sun, X., Tong, X., Ren, C., Wang, J., Liu, E., Zhu, Z. and Yu, G. (2006) Carbon dioxide exchange and the mechanism of environmental control in a farmland ecosystem in North China Plain. Sci. China D 46, 226–240.

    Article  Google Scholar 

  • Lieth, H. (Ed.) (1974) Phenology and Seasonality Modeling. Springer, New York, pp. 444.

    Google Scholar 

  • Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., Votava, P., Ne-mani, R.R. and Running, S.W. (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231.

    Article  Google Scholar 

  • Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G. and Nemani, R.R. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702.

    Article  CAS  Google Scholar 

  • Myneni, R.B., Tucker, C.J., Asrar, G. and Keeling, C.D. (1998) Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J. Geophys. Res. D103, 6145–6160.

    Article  Google Scholar 

  • Myneni, R.B. and Williams, D.L. (1994) On the relationship between fAPAR and NDVI. Remote Sens. Environ. 49, 200–211.

    Article  Google Scholar 

  • Philippon, N., Jarlan, L., Martiny, N., Camberlin, P. and Mougin, E. (2007) Characterization of the interannual and intraseasonal variability of West African vegetation between 1982 and 2002 by means of NOAA AVHRR NDVI data. J. Clim. 20, 1202–1218.

    Article  Google Scholar 

  • Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A. and Klooster, S.A. (1993) Terrestrial ecosystem production – a process model-based on global satellite and surface data. Global Biogeochem. Cycles 7, 811–841.

    Article  Google Scholar 

  • Prince, S.D. and Goward, S.N. (1995) Global primary production: A remote sensing approach. J. Biogeogr. 22, 815–835.

    Article  Google Scholar 

  • Richardson, A.D., Bailey, A.S., Denny, E.G., Martin, C.W. and O’Keefe, J. (2006) Phenology of a northern hardwood forest canopy. Global Change Biol. 12, 1174–1188.

    Article  Google Scholar 

  • Roberts, D.A., Dennison, P.E., Gardner, M.E., Hetzel, Y., Ustin, S.L. and Lee, C.T. (2003) Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer. IEEE Trans. Geosci. Rem. Sens. 41, 1297–1310.

    Article  Google Scholar 

  • Ruimy, A., Saugier, B. and Dedieu, G. (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. D99, 5263–5283.

    Article  Google Scholar 

  • Sakamoto, T., Van Nguyen, N., Kotera, A., Ohno, H., Ishitsuka, N. and Yokozawa, M. (2007) Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong delta from MODIS time-series imagery. Remote Sens. Environ. 109, 295–313.

    Article  Google Scholar 

  • Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., da Rocha, H.R., de Camargo, P.B., Crill, P., Daube, B.C., de Freitas, H.C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M., Munger, J.W., Pyle, E.H., Rice, A.H. and Silva, H. (2003) Carbon in amazon forests: Unexpected seasonal fluxes and disturbance-induced losses. Science 302, 1554–1557.

    Article  CAS  Google Scholar 

  • Schwartz, M.D. (Ed.) (2003) Phenology: An Integrative Environmental Science. Kluwer, Dordrecht, The Netherlands, pp. 592.

    Google Scholar 

  • Serrano, L., Ustin, S.L., Roberts, D.A., Gamon, J.A. and Penuelas, J. (2000) Deriving water content of chaparral vegetation from AVIRIS data. Remote Sens. Environ. 74, 570–581.

    Article  Google Scholar 

  • Shaw, R.H., Silversides, R.H. and Thurtell, G.W. (1974) Some observations of turbulence and turbulent transport within and above plant canopies. Bound.-Lay. Meteorol. 5, 429–449.

    Article  Google Scholar 

  • Stockli, R. and Vidale, P.L. (2004) European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 25, 3303–3330.

    Article  Google Scholar 

  • Studer, S., Stockli, R., Appenzeller, C. and Vidale, P.L. (2007) A comparative study of satel-lite and ground-based phenology. Int. J. Biometeorol. 51, 405–414.

    Article  CAS  Google Scholar 

  • Tucker, C.J. (1979) Red and photographic infrared linear combinations for monitoring vegeta-tion. Remote Sens. Environ. 8, 127–150.

    Article  Google Scholar 

  • Van Schaik, C.P., Terborgh, J.W. and Wright, S.J. (1993) The phenology of tropical forests – adaptive significance and consequences for primary consumers. Ann. Rev. Ecol. Syst. 24, 353–377.

    Article  Google Scholar 

  • Vermote, E.F. and Vermeulen, A. (1999) Atmospheric correction algorithm: Spectral reflec-tance (MOD09), MODIS Algorithm Technical Background Document, version 4.0University of Maryland, Department of Geography, pp.107.

    Google Scholar 

  • Waring, R.H., Law, B.E., Goulden, M.L., Bassow, S.L., Mccreight, R.W., Wofsy, S.C. and Bazzaz, F.A. (1995) Scaling gross ecosystem production at Harvard Forest with remote-sensing – a comparison of estimates from a constrained quantum-use efficiency model and eddy-correlation. Plant Cell Environ. 18, 1201–1213.

    Article  Google Scholar 

  • White, M.A., Hoffman, F., Hargrove, W.W. and Nemani, R.R. (2005) A global framework for monitoring phenological responses to climate change. Geophys. Res. Lett. 32, L04705.

    Article  Google Scholar 

  • White, M.A. and Nemani, A.R. (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biol. 9, 967–972.

    Article  Google Scholar 

  • White, M.A. and Nemani, R.R. (2006) Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens. Environ. 104, 43–49.

    Article  Google Scholar 

  • White, M.A., Running, S.W. and Thornton, P.E. (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 42, 139–145.

    Article  Google Scholar 

  • White, M.A., Thornton, P.E. and Running, S.W. (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cycles 11, 217–234.

    Article  CAS  Google Scholar 

  • Wofsy, S.C., Goulden, M.L., Munger, J.W., Fan, S.M., Bakwin, P.S., Daube, B.C., Bassow, S.L. and Bazzaz, F.A. (1993) Net Exchange of CO2 in a mid-latitude Forest. Science 260, 1314–1317.

    Article  CAS  Google Scholar 

  • Wright, S.J. and van Schaik, C.P. (1994) Light and the phenology of tropical trees. The Am. Nat. 143, 192–199.

    Article  Google Scholar 

  • Xiao, X., Boles, S., Frolking, S., Salas, W., Moore, B., Li, C., He, L. and Zhao, R. (2002a) Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int. J. Remote Sens. 23, 3009–3022.

    Article  Google Scholar 

  • Xiao, X., Boles, S., Liu, J.Y., Zhuang, D.F. and Liu, M.L. (2002b) Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 82, 335–348.

    Article  Google Scholar 

  • Xiao, X., Shu, J., Wang, Y., Ojima, D. and Bonham, C. (1996) Temporal variation in above-ground biomass of Leymus chinense steppe from species to community levels in the Xilin River basin, Inner Mongolia, China. Vegetation 123, 1–12.

    Article  Google Scholar 

  • Xiao, X.M., Braswell, B., Zhang, Q.Y., Boles, S., Frolking, S. and Moore, B. (2003) Sensitiv-ity of vegetation indices to atmospheric aerosols: continental-scale observations in North-ern Asia. Remote Sens. Environ. 84, 385–392.

    Article  Google Scholar 

  • Xiao, X.M., Hagen, S., Zhang, Q.Y., Keller, M. and Moore, B. (2006) Detecting leaf phenol-ogy of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sens. Environ. 103, 465–473.

    Article  Google Scholar 

  • Xiao, X.M., Hollinger, D., Aber, J., Goltz, M., Davidson, E.A., Zhang, Q.Y. and Moore, B. (2004a) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89, 519–534.

    Article  Google Scholar 

  • Xiao, X.M., Wang, Y.F., Jiang, S., Ojima, D.S. and Bonham, C.D. (1995) Interannual Varia-tion in the Climate and Aboveground Biomass of Leymus-Chinense Steppe and Stipa-Grandis Steppe in the Xilin River Basin, Inner-Mongolia, China. J. Arid Environ. 31, 283–299.

    Article  Google Scholar 

  • Xiao, X.M., Zhang, Q.Y., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore, B. and Ojima, D. (2004b) Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 91, 256–270.

    Article  Google Scholar 

  • Xiao, X.M., Zhang, Q.Y., Saleska, S., Hutyra, L., De Camargo, P., Wofsy, S., Frolking, S., Boles, S., Keller, M. and Moore, B. (2005) Satellite-based modeling of gross primary pro-duction in a seasonally moist tropical evergreen forest. Remote Sens. Environ. 94, 105–22.

    Article  Google Scholar 

  • Zhang, Q.Y., Xiao, X.M., Braswell, B., Linder, E., Baret, F. and Moore, B. (2005) Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371.

    Article  Google Scholar 

  • Zhang, X.Y., Friedl, M.A. and Schaaf, C.B. (2006) Global vegetation phenology from Moder-ate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. 111, G04017.

    Article  Google Scholar 

  • Zhang, X.Y., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C. and Huete, A. (2003) Monitoring vegetation phenology using MODIS. Remote Sens. En-viron. 84, 471–475.

    Article  Google Scholar 

  • Zhao, F.H., Yu, G.R., Li, S.G., Ren, C.Y., Sun, X.M., Mi, N., Li, J. and Ouyang, Z. (2007) Canopy water use efficiency of winter wheat in the North China Plain. Agric. Water Manage. 93, 99–108.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by NASA Land Cover and Land Use Change Program (the Northern Eurasia Earth Science Partnership Initiative (NEESPI); NN-H-04-Z-YS-005-N, and NNG05GH80G), and NASA Interdisciplinary Science program (NAG5-11160, NAG5-10135), and National Key Research and Development Program of China ( 2002CG412501) and International Partnership Project of Chinese Academy of Sciences ( CXTD-Z2005-1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xiao, X., Zhang, J., Yan, H., Wu, W., Biradar, C. (2009). Land Surface Phenology. In: Noormets, A. (eds) Phenology of Ecosystem Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0026-5_11

Download citation

Publish with us

Policies and ethics