Skip to main content

Climatic and Phenological Controls of the Carbon and Energy Balances of Three Contrasting Boreal Forest Ecosystems in Western Canada

  • Chapter
  • First Online:
Phenology of Ecosystem Processes

Abstract

Seasonal and interannual variability in the carbon and energy cycles of boreal forests are controlled by the interaction of climate, ecophysiology and plant phenology. This study analyses eddy-covariance data from mature trembling aspen, black spruce and jack pine stands in western Canada. The seasonal cycles of the surface carbon and energy balances were tightly coupled to the seasonal cycle of soil temperature. The contiguous carbon-uptake period was ∼50 days longer for the black spruce and jack pine stands than the trembling aspen stand, with 30 days difference in spring and 20 days difference in autumn. The black spruce and jack pine carbon-uptake period spanned the warm season, with gross ecosystem photosynthesis beginning during spring thaw and continuing until air temperature dropped to below freezing in autumn. In contrast, the trembling aspen carbon-uptake period was determined by the timing of leaf emergence and senescence, which occurred well after spring thaw and before autumn freeze. Regression analysis identified spring temperature as the primary factor controlling annual net ecosystem production at all three sites, through its influence on the onset of the growing season. Precipitation and soil water content had significant but secondary influences on the annual carbon fluxes. The impact of spring warming on annual net ecosystem production was 2–3 times greater at the deciduous-broadleaf than the evergreen-coniferous sites, confirming the high sensitivity of boreal deciduous-broadleaf forests to spring warming. The analysis confirmed the pivotal role of phenology in the response of northern ecosystems to climate variability and change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APAR:

absorbed photosynthetically-active radiation (mol m 2 y 1) (Eqn. 8a, 8b)

CUP:

carbon-uptake period (days)

DOY:

day of year

EGS:

end date of growing season (Table 2)

EF:

evaporative fraction (Eqn. 3)

FN :

net ecosystem production (μmol m−2 s−1) or (g C m−2 y−1)

FP :

gross ecosystem photosynthesis (μmol m−2 s−1) or (g C m−2 y−1)

FR :

ecosystem respiration (μmol m−2 s−1) or (g C m−2 y−1)

GS:

growing season

H:

sensible heat flux density (W m−2)

LAI:

leaf area index

LGS:

length of growing season (days, Table 2)

NDVI:

broadband estimate of the normalized difference vegetation index (Eqn. 7)

OGS:

onset date of growing season (Table 2)

P:

annual total precipitation (mm)

P2y :

total precipitation from current and previous years (mm)

PAR:

photosynthetically-active radiation

Q:

sum of surface storage energy flux densities (W m−2)

Rn :

net radiation flux density (W m−2)

Rsd :

global incoming shortwave flux density (W m−2)

SWC:

soil volumetric water content

Ta :

air temperature above the forest canopy (°C)

Ts :

soil temperature at 5, 10 or 20-cm depth from the top of the surface organic horizon (°C)

β:

Bowen ratio (Eqn. 4)

ΣD:

cumulative degree days (°C days, Eqn. 5)

λE:

latent heat flux density (W m 2)

References

  • Angert, A., Biraud, S., Bonfils, C., Henning, C. C., Buermann, W., Pinzon, J., Tucker, C. J. and Fung, I. (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl. Acad. Sci. USA 102, 10823–10827.

    Article  CAS  Google Scholar 

  • Baldocchi, D. D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, U. K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K. and Wofsy, S. (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434.

    Article  Google Scholar 

  • Baldocchi, D. D., Black, T. A., Curtis, P. S., Falge, E., Fuentes, J.D., Granier, A., Gu, L., Knohl, A., Pilegaard, K., Schmid, H. P., Valentini, R., Wilson, K., Wofsy, S., Xu, L. and Yamamoto, S. (2005) Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. Int. J. Biomet. 49, 377–387.

    Article  Google Scholar 

  • Baldocchi, D. (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1–26.

    Article  CAS  Google Scholar 

  • Barr, A. G., Griffis, T.J., Black, T.A., Lee, X., Staebler, R. M., Fuentes, J. D., Chen Z. and Morgenstern, K. (2002) Comparing the carbon balances of boreal and temperate deciduous forest stands. Can. J. For. Res. 32, 813–822.

    Article  Google Scholar 

  • Barr, A. G., Black, T. A., Hogg, E. H., Kljun, N., Morgenstern, K., and Nesic, Z. (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric. For. Meteorol. 126, 237–255.

    Article  Google Scholar 

  • Barr, A. G., Morgenstern, K., Black, T. A., McCaughey, J. H., and Nesic Z. (2006) Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. For. Meteorol. 140, 322–337.

    Article  Google Scholar 

  • Barr, A. G., Black, T. A., Hogg, E. H., Griffis, T. J., Morgenstern, K., Kljun, N., Theede, A., and Nesic, Z. (2007) Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003. Global Change Biol. 13, 561–576.

    Article  Google Scholar 

  • Bergh, J. and Linder, S. (1999) Effects of soil warming on photosynthetic recovery in boreal Norway spruce stands. Global Change Biol. 5, 245–253.

    Article  Google Scholar 

  • Black, T. A., Chen, W. J., Barr, A. G., Arain, M. A., Chen, Z., Nesic, Z., Hogg, E. H., Neumann, H. H., Yang, P. C. (2000) Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys. Res. Lett. 27, 1271–1274.

    Article  Google Scholar 

  • Black, T. A., Gaumont-Guay, D., Jassal, R. S., Amiro, B., Jarvis, P. J., Gower, T., Kelliher, F., Dunn, A. and Wofsy, S. (2005) Measurement of CO2 exchange between boreal forest and the atmosphere. In The Carbon Balance of Terrestrial Biomes, eds. H. Griffiths and P.J. Jarvis, pp. 120–141. Garland Science/BIOS Scientific Publishers, Oxford.

    Google Scholar 

  • Blanken, P. D., Black, T. A., Yang, P. C., Neumann, H. H., Nesic, Z., Staebler, R., den Hartog, G., Novak, M. D. and Lee, X. (1997) Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J. Geophys. Res. 102, 28915–28928.

    Article  Google Scholar 

  • Bonan, G. B. and Shugart, H. H. (1989) Environmental factors and ecological processes in boreal forests. Annu. Rev. Ecol. Evol. Syst. 20, 1–28.

    Article  Google Scholar 

  • Brooks, J. R., Sprugel, D. G. and Hinckley, T. M. (1996) The effects of light acclimation during and after foliage expansion on photosynthesis of Abies amabilis foliage within the canopy. Oecologia 107, 21–32.

    Article  Google Scholar 

  • Carrara, A., Kowalski, A. S., Neirynck, J., Janssens, I. A., Yuste, J. C. and Ceulemans, R. (2003) Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric. For. Meteorol. 119, 209–227.

    Article  Google Scholar 

  • Chen, J. M., Govind, A., Sonnentag, O., Zhang, Y., Barr, A. and Amiro, B. (2006) Leaf area index measurements at Fluxnet-Canada forest sites. Agric. For. Meteorol. 140, 257–268.

    Article  Google Scholar 

  • Chen,W., Black, T. A., Yang, P., Barr, A. G., Neumann, H.H., Nesic, Z., Novak, M. D., Eley, J., Ketler, R. and Cuenca, C. (1999) Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biol. 5, 41–53.

    Article  CAS  Google Scholar 

  • Churkina, G., Schimel, D., Braswell, B. H. and Xiao, X. M. (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biol. 11, 1777–1787.

    Article  Google Scholar 

  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, Chr., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T. and Valentini, R. (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533.

    Article  CAS  Google Scholar 

  • Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. and Schwarz, M. D. (2007) Shifting seasonal phenology in response to global change. Trends Ecol. Evol. 22, 357–365.

    Article  Google Scholar 

  • Chapin, F. S. III, Callaghan, T. V., Bergeron, Y., Fukada, M., Johnstone, J. F., Juday, G. and Zimov, S. A. (2004) Global change and the boreal forest: thresholds, shifting states or gradual change? Ambio 33, 361–365.

    Google Scholar 

  • Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L. and Daube, B. C. (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biol. 13, 577–590.

    Article  Google Scholar 

  • Ensminger, I., Sveshnikov, D., Campbell, D. A., Funk, C., Jansson, S., Lloyd, J., Shibistova, O. and Öquist, G. (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biol. 10, 995–1008.

    Article  Google Scholar 

  • Ensminger, I., Schmidt, L. and Lloyd J. (2008) Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions. New Phytol. 177, 428–442.

    Article  CAS  Google Scholar 

  • Espinosa-Ruiz, A., Saxena, S., Schmidt, J., Mellerowicz, E., Miskolczi, P., Bako, L. and Bhalerao, R. (2004) Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. Plant J. 38, 603–615.

    Article  CAS  Google Scholar 

  • Gaumont-Guay, D., Margolis, H. A., Bigras, F. J. and Raulier, F. (2003) Characterizing the frost sensitivity of black spruce photosynthesis during cold acclimation. Tree Physiol. 5, 301–311.

    Google Scholar 

  • Gower, S. T., Vogel, J. G., Norman, J. M., Kucharik, C. J., Steele, S. J. and Stow, T. K. (1997) Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba. Canada. J. Geophys. Res. 102, 29029–29041.

    Article  CAS  Google Scholar 

  • Goulden, M. L., Munger, J. W., Fan, S. -M., Daube, B. C. and Wofsy, S. C. (1996) CO2 exchange by a deciduous forest: response to interannual climate variability. Science 271, 1576–1578.

    Article  CAS  Google Scholar 

  • Goulden, M. L., Wofsy, S. C., Harden, J. W., Trumbore, S. E., Crill, P. M., Gower, S. T., Fries, T., Daube, B. C., Fan, S. M., Sutton, D. J., Bazzaz, A. Munger, J. W. (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279, 214–217.

    Article  CAS  Google Scholar 

  • Gratani, L. and Ghia, E. (2002) Changes in morphological and physiological traits during leaf expansion of Arbutus unedo. Env. Exp. Bot. 48, 51–60.

    Article  Google Scholar 

  • Grelle, A., Lindroth, A. and Mölder, M. (1999) Seasonal variation of boreal forest surface conductance and evaporation. Agric. For. Meteorol. 98–99, 563–578.

    Article  Google Scholar 

  • Griffis, T. J., Black, T. A., Morgenstern, K., Barr, A. G., Nesic, Z., Drewitt, G., Gaumont-Guay, D. and McCaughey, J. H. (2003) Ecophysiological controls on the carbon balances of three southern boreal forests. Agric. For. Met. 117, 53–71.

    Article  Google Scholar 

  • Griffis, T. J., Black, T. A., Gaumont-Guay, D., Drewitt, G. B., Nesic, Z., Barr, A. G., Morgenstern, K. and Kljun, N. (2004) Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agric. Forest Meteorol. 125, 207–223.

    Article  Google Scholar 

  • Gu, L., Post, W. M., Baldocchi, D. D., Black, A., Verma, S., Vesala, T. and Wofsy, S. (2003) Phenology of vegetation photosynthesis. In Phenology: an Integrative Science, ed. M.D. Schwartz, pp. 467–488. Dordrecht: Kluwer.

    Google Scholar 

  • Hall, F. G., Knapp, D. E. and Huemmrich, K. F. (1997) Physically based classification and satellite mapping of biophysical characteristics in the southern boreal forest. J. Geophys. Res. 102, 29567–29580.

    Article  Google Scholar 

  • Häkkinen, R. and Hari, P. (1988) The efficiency of time and temperature driven regulation principles in plants at the beginning of the active period. Silva Fenn 22, 163–170.

    Google Scholar 

  • Hogg, E. H. (1997) Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agric. For. Meteorol. 84, 115–122.

    Article  Google Scholar 

  • Hogg, E. H. (2002) Boreal forest. In: Encyclopedia of Global Environmental Change. Volume 2, The Earth System: Biological and Ecological Dimensions of Global Environmental Change, ed. H. A. Mooney and J. G. Canadell, pp. 179–184. Chichester: Wiley.

    Google Scholar 

  • Hollinger, D. Y., Aber, J., Dail, B., Davidson, E. A., Goltz, S. M., Hughes, H., LeClerc, M. Y., Lee, J. T., Richardson, A. D., Rodrigues, C., Scott, N. A., Achuatavarier, D. and Walsh, J. (2004) Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biol. 10, 1689–1706.

    Article  Google Scholar 

  • Huemmrich, K. F., Black, T. A., Jarvis, P. G., McCaughey, J. H. and Hall, F. G., (1999) High temporal resolution NDVI from micrometeorological radiation sensors. J. Geophys. Res. 104, 27935–27944.

    Article  Google Scholar 

  • Huner, N. P. A., Öquist, G., Hurry, V. M., Krol, M., Falk, S. and Griffith M. (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosyn. Res. 37, 19–139.

    Article  CAS  Google Scholar 

  • Hunter, A. F. and Lechowicz, M. J. (1992) Predicting the timing of budburst in temperate trees. J. Appl. Ecol. 29, 597–604.

    Article  Google Scholar 

  • Jarvis, P. and Linder, S. (2000) Constraints to growth of boreal forests. Nature 405, 904–905.

    Article  CAS  Google Scholar 

  • Kljun N., Black, T.A., Griffis, T.J., Barr, A. G., Gaumont-Guay, D., Morgenstern, K., McCaughey, J. H. and Nesic, Z. (2007) Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems, 10, 1039–1055.

    Article  Google Scholar 

  • Krishnan, P., Black, T. A., Grant, N. J., Barr, A. G., Hogg, E. H., Jassal, R. S. and Morgenstern, K. (2006) Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agric. Forest Meteorol. 139, 208–223.

    Article  Google Scholar 

  • Krishnan, P., Black, T. A., Barr, A. G., Grant, N. J., Gaumont-Guay, D., and Nesic, Z. (2008) Factors controlling the interannual variability in the carbon balance of a southern boreal black spruce forest. J. Geophys. Res. 113, D09109, doi:10.1029/2007JD008965.

    Google Scholar 

  • Kucharik, C. J., Norman, J. M. and Gower, S.T. (1998) Measurements of branch area and adjusting leaf area index indirect measurements. Agric. For. Meteorol. 91, 69–88.

    Article  Google Scholar 

  • Kurz, W. A., Stinson, G. and Rampley, G. (2007) Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos. Trans. R. Soc. Lond. B 363, 2261–2269.

    Google Scholar 

  • Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T. and Safranyik, L. (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990

    Article  CAS  Google Scholar 

  • Landsberg, J.J. and Gower, S.T. (1997) Applications of Physiological Ecology to Forest Management. San Diego, CA: Academic.

    Google Scholar 

  • Law, B. E., Falge, E., Gu, L., Baldocchi, D. D., Bakwin, P., Berbigier, P., Davis, K., Dolman, A. J., Falk, M., Fuentes, J. D. (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 113, 97–120.

    Article  Google Scholar 

  • Lechowicz, M. J. (1984) Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities. Amer. Nat. 124, 821–842.

    Article  Google Scholar 

  • Leith, H. (1974) Phenology and Seasonality Modeling. Springer: Berlin.

    Google Scholar 

  • Lindgren, K. and Hällgren, J.-E. (1993) Cold acclimation of Pinus contorta and Pinus sylvestris assessed by chlorophyll fluorescence. Tree Physiol. 13, 97–106.

    Google Scholar 

  • Lindroth, A., Lagergren, F., Aurela, M., Bjarnadottir, B., Christensen, T., Dellwik, E., Grelle, A., Ibrom, A., Johansson, T., Lankreijer, H., Launiainen, S., Laurila, T., Mölder, M., Nikinmaa, E., Pilegaard, K., Sigurdsson, B. D. and Vesala, T. (2008) Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests. Tellus B 60, 129–142.

    Google Scholar 

  • Lundmark, T., Hedén, J. and Hällgren, J.-E. (1988) Recovery from winter depression of photosynthesis in pine and spruce. Trees 2, 110–114.

    Article  Google Scholar 

  • Luyssaert, S., Janssens, I. A., Sulkava, M., Papale, D., Dolman, A. J., Reichstein, M., Hollmén, J., Martin, J. G., Suni, T., Vesala, T., Loustau, D., Law, B. E. and Moors, E. J. (2007) Photosynthesis drives anomalies in net carbon-exchange of pine forests at different latitudes. Global Change Biol. 13, 2110–2127.

    Article  Google Scholar 

  • MacDonald, K., Kimball, J. S., Njoku, E., Zimmerman, R. and Zhao, M. (2004) Variability in springtime thaw in the terrestrial high latitudes: monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interact. 8, 1–23.

    Article  Google Scholar 

  • Mackay, D. S., Ewers, B. E., Cook, B. D. and Davis, K. J. (2007) Environmental drivers of evapotranspiration in a shrub wetland and an upland forest in northern Wisconsin. Water Resour. Res. 43, W03442, doi:10.1029/2006WR005149.

    Google Scholar 

  • McMillan, A. M. S., Winston, G. C. and Goulden, M. L. (2008) Age-dependent response of boreal forest to temperature and rainfall variability. Global Change Biol. 14, 1–13.

    Article  Google Scholar 

  • Margolis, H. A., Flanagan, L. B., and Amiro, B.D. (2006) The Fluxnet-Canada Research Network: Influence of climate and disturbance on carbon cycling in forests and peatlands. Agric. For. Meteorol. 140, 1–5.

    Article  Google Scholar 

  • Mellander, P.-E., Bishop, K. and Lundmark, T. (2004) The influence of soil temperature on transpiration: a plot scale manipulation in a young Scots pine stand. Forest Ecol. Manag. 195, 15–28.

    Article  Google Scholar 

  • Monson, R. K., Sparks, J. P., Rosenstiel, T. N., Scott-Denton, L. E., Huxman, T. E., Harley, P. C., Turnipseed,A. A., Burns, S. P, Backlund, B. and Jia, H. (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 146, 130–147.

    Article  Google Scholar 

  • Morgenstern, E. K. (1996) Geographic Variation in Forest Trees. Vancouver: University of British Columbia Press.

    Google Scholar 

  • Morgenstern, K., Black, T. A., Humphreys, E. R., Griffis, T. J., Drewitt, G. B., Cai, T., Nesic, Z., Spittlehouse, D. L. and Livingston, N. J. (2004) Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Nino La Nina cycle. Agric. For. Meteorol. 123, 201–219.

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. and Nemani, R. R. (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702.

    Article  CAS  Google Scholar 

  • Ottander, C., Campbell, D. and Öquist, G. (1995) Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197, 176–183.

    Article  CAS  Google Scholar 

  • Öquist G., Gardestrom, P. and Huner, N.P.A. (2001) Metabolic changes during cold acclimation and subsequent freezing and thawing. In Conifer Cold Hardiness, Vol. 1, ed. S.J. Colombo, pp. 137–163. Dordrecht: Kluwer.

    Google Scholar 

  • Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, H., Fang, J., Barr, A., Chen, A., Grelle, A., Hollinger, D. Y., Laurila., T., Lindroth, A., Richardson, A. D. and Vesala, T. (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52.

    Article  CAS  Google Scholar 

  • Richardson, A. D., Hollinger, D. Y., Aber, J., Ollinger, S. V., Braswell, B. (2007) Environmental variation is directly responsible for short- but not longterm variation in forest-atmosphere carbon exchange. Global Change Biol. 13, 788–803.

    Article  Google Scholar 

  • Rupp, T. S., Chapin. F. S. III and Starfield, A. M. (2001) Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in northwestern Alaska. Climatic Change 48, 399–416.

    Article  Google Scholar 

  • Savitch, L. V., Leonardos, E. D., Krol, M., Jansson, S., Grodzinski, B., Huner, N. P. A. and Öquist,G. (2002) Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ. 25, 761–771.

    Article  CAS  Google Scholar 

  • Sellers, P. J., Hall, F. G., Kelly, R. D., Black, A., Baldocchi, D., Berry, J., Ryan, M., Ranson, J. K., Crill, P. M., Lettenmaier, D. P., Margolis, H., Cihlar, J., Newcomer, J., Fitzjarrald, D., Jarvis, P. G., Gower, S. T., Halliwell, D., Williams, D., Goodison, B., Wickland, D. E. and Guertin, F. E. (1997) BOREAS in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res. 102, 28731–28769.

    Article  Google Scholar 

  • Slaney, M. (2006) Impact of Elevated Temperature and [CO2] on Spring Phenology and Photosynthetic Recovery of Boreal Norway Spruce. Doctoral thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 47 pp.

    Google Scholar 

  • Spaans, E. J. A. and Baker, J. M. (1996) The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic. Soil Sci. Soc. Am. J. 60, 13–19.

    Article  CAS  Google Scholar 

  • Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wotton, B. M., Amiro, B. D., Flannigan, M. D., Hirsch, K. G., Logan, K. A., Martel, D. L. and Skinner, W. R. (2002) Large forest fires in Canada, 1959–1997. J. Geophys. Res. 108, FFR5.1–FFR5.12.

    Article  Google Scholar 

  • Suni, T., Berninger, F., Vesala, T., Markkanen, T., Hari, P., Mäkelä, A., Ilvesniemi, H., Hänninen, H., Nikinmaa, E., Huttula, T., Laurila, T., Aurela, M., Grelle, A., Lindroth, A., Arneth, A., Shibistova, O. and Lloyd, J. (2003a) Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biol. 9, 1410–1426.

    Article  Google Scholar 

  • Suni, T., Berninger, F., Markkanen, T., Keronen, P., Rannik, Ü. and T. Vesala. (2003b) Interannual variability and timing of growing-season CO2 exchange in a boreal forest. J. Geophys. Res. 108, 4265, doi:10.1029/2002JD002381.

    Article  Google Scholar 

  • Troeng, E. and Linder, S. (1982) Gas exchange in a 20-year-old stand of Scots pine. I. Net photosynthesis of current and 1-year-old shoots within and between seasons. Physiol. Plantarum 54, 7–14.

    Article  CAS  Google Scholar 

  • Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjarrald, D., Czikowsky, M. and Munger, J. W. (2007) Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J. Geophys. Res. 112, G02020, doi:10.1029/2006JG000293.

    Google Scholar 

  • Welp, L. R., Randerson, J. T. and Liu, H.P. (2007) The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric. For. Meteorol. 147, 172–185.

    Article  Google Scholar 

  • White, M. A., Running, S. W. and Thornton, P. E. (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 42, 139–145.

    Article  Google Scholar 

  • White, M. A. and Nemani, R. R. (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biol. 9, 967–972.

    Article  Google Scholar 

  • Wilson, K. B. and Baldocchi, D. D. (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric. For. Meteorol. 100, 1–18.

    Article  Google Scholar 

  • Zalasky, H., (1976) Frost damage in poplar on the prairies. For. Chron. 52, 61–64.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of Charmaine Hrynkiw, Dell Bayne, Erin Thompson, Joe Eley, Alison Theede, Bruce Cole, Craig Smith and Steve Enns, who oversaw the meteorological measurements and data management; Zoran Nesic, Andrew Sauter, Rick Ketler, Dominic Lessard, Dan Finch and Sheila McQueen, who provided laboratory, field and data management support for the flux measurements; and Barry Goodison and Bob Stewart, who championed the BERMS program. Financial support was provided by the Climate Research Division of Environment Canada, the Canadian Forest Service, Parks Canada, the Action Plan 2000 on Climate Change, the Program of Energy Research and Development, the Climate Change Action Fund, the Natural Sciences and Engineering Research Council of Canada, the Canadian Foundation for Climate and Atmospheric Sciences, the BIOCAP Canada Foundation, and the National Aeronautic and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Barr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barr, A., Black, T.A., McCaughey, H. (2009). Climatic and Phenological Controls of the Carbon and Energy Balances of Three Contrasting Boreal Forest Ecosystems in Western Canada. In: Noormets, A. (eds) Phenology of Ecosystem Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0026-5_1

Download citation

Publish with us

Policies and ethics