Skip to main content

Marine Natural Products and their Synthetic Derivatives for Cancer Therapy

  • Chapter
  • First Online:
Alternative and Complementary Therapies for Cancer
  • 1357 Accesses

Abstract

The ocean, which covers approximately 70% of the Earth’s surface, is a natural treasury of resources that houses about 80% of all the varieties of life on our planet. The past 20 years have seen a decrease in Earth’s land area while its population increases, and the “blue revolution,” which represents ocean exploration, has launched a new frontier in science focusing on effective exploration of the ocean and its resources, which represented a minor source for the discovery of natural chemical entities and new drugs, compared to terrestrial land resources. At the end of the twentieth century, bioresources in the ocean environment have emerged as an important source for the discovery of new biopharmaceuticals. The diversity of marine compounds offers a great advantage of being developed into new drugs because of their unique and complex structures, developed through old and underexplored specie evolution. Over 20,000 natural marine products are now isolated/identified from a variety of ocean lifeforms, including from sponge, ascidian, aplysia, marine algae, and coral. Compounds with biomedical applications identified to date include alkaloids, terpenoids, steroids, polypeptides, polyethers, macrolides, and polysaccharids. Among these classes of chemicals, approximately 50% are believed to be biologically bioactive and at least 0.1% have novel structures. Some have reached clinical applications, such as the antiviral drug Vidarabine (Ara A) (1) (Fig.24.1) and the antitumor drug Cytarabine (Ara C) (2) (Fig. 24.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan LT. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry (Elsevier). 2007;68(7):954–79.

    CAS  Google Scholar 

  2. Banerjee S, Wang ZW, Mohammad M, Sarkar FH, et al. Efficacy of selected natural products as therapeutic agents against cancer. J Nat Prod. 2008;71:492–6.

    PubMed  CAS  Google Scholar 

  3. Dembitsky VM, Gloriozova TA, Vladimir VP. Novel antitumor agents: marine sponge alkaloids, their synthetic analogues and derivatives. Mini Rev Med Chem. 2005;5:319–36.

    PubMed  CAS  Google Scholar 

  4. Mayer AMS, Gustafson KR. Marine pharmacology in 2001–2: antitumour and cytotoxic compounds. Eur J Cancer 2004;40:2676–704.

    PubMed  CAS  Google Scholar 

  5. Mayer AMS, Gustafson KR. Marine pharmacology in 2003–2004: anti-tumour and cytotoxic compounds. Eur J Cancer 2006;42:2241–70.

    CAS  Google Scholar 

  6. Kobayashi J, Murayama T, Ishibashi M, Kosuge S, et al. New indole alkaloids from the Okinawan marine sponge Hyrtios erecta. Tetrahedron 1990;46(23):7699–702.

    CAS  Google Scholar 

  7. Helbecque N, Moquin C, Bernier JL, Morel E, et al. Grossularine-1 and grossularine-2, carbolines from Dendrodoa grossularia as possible intercalative agents. Cancer Biochem Biophys. 1987;9(3):271–9.

    PubMed  CAS  Google Scholar 

  8. Moquin-Pattey C, Guyot M. Cytotoxic α-carbolines from the tunicate: Dendrodoa grossularia. Tetrahedron 1989;45 (11):3445–50.

    CAS  Google Scholar 

  9. Gul W, Hamann MT. Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci. 2005;78:442–53.

    PubMed  CAS  Google Scholar 

  10. Deveau AM, Labroli MA, Dieckhaus CM, Barthen MT, et al. The synthesis of amino-acid functionalized beta-carbolines as topoisomerase II inhibitors. Bioorg Med Chem Lett. 2001;11:1251–5.

    PubMed  CAS  Google Scholar 

  11. Funayama Y, Nishio K, Wakabayashi K, Nagao M, et al. Effects of beta- and gamma-carboline derivatives of DNA topoisomerase activities. Mutat Res. 1996;349:183–91.

    PubMed  Google Scholar 

  12. Song Y, Wang J, Teng S, Kesuma D, et al. Beta-carbolines as specific inhibitors of cyclin-dependent kinases. Bioorg Med Chem Lett. 2002;12:1129–32.

    PubMed  CAS  Google Scholar 

  13. Song Y, Kesuma D, Wang J, Deng Y, et al. Specific inhibition of cyclin-dependent kinases and cell proliferation by harmine. Biochem Biophys Res Commun. 2004;317:128–32.

    PubMed  CAS  Google Scholar 

  14. Castro AC, Dang LC, Soucy F, Grenier L, et al. Novel IKK inhibitors: β-carbolines. Bioorg Med Chem Lett. 2003;13:2419–22.

    PubMed  CAS  Google Scholar 

  15. Beljanski M, Beljanski MS. Selective inhibition of in vitro synthesis of cancer DNA by alkaloids of beta-carboline class. Exp Cell Biol. 1982;50:79–87.

    PubMed  CAS  Google Scholar 

  16. Xiao S, Lin W, Wang C, Yang M. Synthesis and biological evaluation of DNA targeting flexible side-chain substituted β-carboline derivatives. Bioorg Med Chem Lett. 2001;11:437–41.

    PubMed  CAS  Google Scholar 

  17. Davidson BS. Ascidians: producers of amino acid-derived metabolites. Chem Rev. 1993;93:1771–91.

    CAS  Google Scholar 

  18. Rinehart KL Jr, Kobayashi J, Harbour GC, Gilmore J, et al. Eudistomins A-Q, β-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J Am Chem Soc. 1987;109:3378–87.

    CAS  Google Scholar 

  19. Tsuda M, Kobayashi J. Structures and biogenesis of manzamines and related alkaloids. Heterocycles 1997;46:765–94.

    CAS  Google Scholar 

  20. (a) Jiménez C, Quiñoá E, Adamczeski M, Hunter LM, et al. Novel sponge-derived amino acids 12: tryptophan-derived pigments and accompanying sesterterpenes from Fascaplysinopsis reticulata. J Org Chem. 1991;56:3403–10. (b) Bourguet-Kondracki ML, Martin MT, Guyot M. A new-carboline alkaloid isolated from the marine sponge Hyrtios erecta. Tetrahedron Lett. 1996;37:3457–60.

    Google Scholar 

  21. Sandler JS, Colin PL, Hooper JNA, Faulkner DJ. Cytotoxic β-carboline and cyclic peroxides from the Palauan sponge Plakortis nigra. J Nat Prod. 2002;65:1258–61.

    PubMed  CAS  Google Scholar 

  22. Urban S, Hickford S, Blunt J, Munro M. Bioactive marine alkaloids. Curr Org Chem. 2000;4:765–807.

    CAS  Google Scholar 

  23. Andersen RJ, Faulkner DJ, Cun-heng H, Van Duyne GD, et al. Metabolites of the marine prosobranch mollusc Lamellaria sp. J Am Chem Soc. 1985;107:5492–5.

    CAS  Google Scholar 

  24. Davis RH, Carroll AR, Pierens GK, Quinn RJ. New lamellarin alkaloids from the Australian ascidian, Didemnum chartaceum. J Nat Prod. 1999;62:419–24.

    PubMed  CAS  Google Scholar 

  25. Bailly C. A family of anticancer marine pyrrole alkaloids. Curr Med Chem Anti-Cancer Agents 2004;4:363–87.

    CAS  Google Scholar 

  26. Facompre M, Tardy C, Bal-Mahieu C, Colson P, et al. Lamellarin D: a novel inhibitor of topoisomerase I. Cancer Res. 2003;63:7392–99.

    PubMed  CAS  Google Scholar 

  27. Vanhuyse M, Kluza J, Tardy C, Otero G, et al. Lamellarin D: a novel pro-apoptotic agent from marine origin insensitive to P-glycoprotein-mediated drug efflux. Cancer Lett. 2005;221:165–75.

    PubMed  CAS  Google Scholar 

  28. Quesada AR, Garcia Gravalos MD, Fernandez Puentes JL. Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. Br J Cancer 1996;74:677–82.

    PubMed  CAS  Google Scholar 

  29. Kang H, Fenical W. Ningalins A-D: novel aromatic alkaloids from a Western Australian ascidian of the genus Didemnum. J Org Chem. 1997;62:3254.

    CAS  Google Scholar 

  30. (a) Lindquist N, Fenical W, Van Duyne GD, Clady J. New alkaloids of the lamellarin class from the marine ascidian Didemnum chartaceum (Sluiter, 1909). J Org Chem. 1988;53:4570. (b) Carrol AR, Bowden BF, Coll JC. Studies of Australian ascidians I. Six new lamellarin-class alkaloids from a colonial ascidian, Didemnum sp. Aust J Chem. 1993;46:489. (c) Urban S, Hobbs L, Hooper JNA, Capon RJ. Lamellarin-S: a new aromatic metabolite from an Australian tunicate, Didemnum sp. Aust J Chem. 1996;49:711. (d) Urban S, Capon RJ. Lamellarins Q and R: new aromatic metabolites from an Australian marine sponge, Dendrilla cactos. Aust J Chem. 1995;48:1491.

    Google Scholar 

  31. Boger DL, Soenen DR, Boyce CW, Hedrick MP, et al. Total synthesis of ningalin B utilizing a heterocyclic azadiene Diels-Alder reaction and discovery of a new class of potent multidrug resistant (MDR) reversal agents. J Org Chem. 2000;65:2479–83.

    PubMed  CAS  Google Scholar 

  32. Tao HC, Hwang I, Boger DL. Multidrug resistance reversal activity of permethyl ningalin B amide derivatives. Bioorg Med Chem Lett. 2004;14:5979–81.

    PubMed  CAS  Google Scholar 

  33. Boger DL, Boyce CW, Labroli MA, Sehon CA, et al. Total syntheses of ningalin A, lamellarin O, lukianol A, and permethyl storniamide A utilizing heterocyclic azadiene Diels-Alder reactions. J Am Chem Soc. 1999;121:54–62.

    CAS  Google Scholar 

  34. Palermo JA, Brasco MFR, Seldes AM. Storniamides A-D: alkaloids from a Patagonian sponge Cliona sp. Tetrahedron 1996;52:2727.

    CAS  Google Scholar 

  35. Yun JM, Sim TB, Hahm HS, Lee WK, et al. Efficient synthesis of enantiomerically pure 2-acylaziridines: facile syntheses of N-Boc-safingol, N-Boc-D-erythrosphinganine, and N-Boc-spisulosine from a common intermediate. J Org Chem. 2003;68:7675–80.

    PubMed  CAS  Google Scholar 

  36. Cuadros R, Montejo de Garcini E, Wandosel F, Faircloth G, et al. The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Lett. 2000;152:23–9.

    PubMed  CAS  Google Scholar 

  37. Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trial. J Nat Prod. 2004;67:1216–38.

    PubMed  CAS  Google Scholar 

  38. Crul M, Mathot RA, Giaccone G, et al. Population pharmacokinetics of the novel anticancer agent KRN7000. Cancer Chemother Pharmacol. 2002;49:287–93.

    PubMed  CAS  Google Scholar 

  39. Giaccone G, Punt CJA, et al. A phase I study of the natural killer T-cell ligand: α-galactosylceramide (KRN7000) in patients with sold tumors. Clin Canc Res. 2002;8:3702–9.

    CAS  Google Scholar 

  40. Chang DH, Osman K, ConnoUy J, et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of galactosylceramide loaded mature dendritic cells in cancer patients. J Exp Med. 2005;201:1503–17.

    PubMed  CAS  Google Scholar 

  41. Remiszewski SW. The discovery of NVP-LAQ824: from concept to clinic. Curt Med Chem. 2003;10:2393–402.

    CAS  Google Scholar 

  42. Grant S. The novel histone deacetylase inhibitor NVP-LAQ824: an addition to the therapeutic armamentarium in leukemia. Leukemia 2004;18(12):1931–3.

    PubMed  CAS  Google Scholar 

  43. Atadja P, Gao L, Kwon P, Trogani N, et al. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res. 2004;64:689–95.

    PubMed  CAS  Google Scholar 

  44. Catley L, Weisberg E, Tai YT, Atadja P, et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003;102:2615–22.

    PubMed  CAS  Google Scholar 

  45. Seotto KW. ET-743: more than an innovative mechanism of action. Anticancer Drugs 2002;13:S3–S6.

    Google Scholar 

  46. Takahashi N, Li WW, Banerjee D, et al. Sequence-dependent enhancement of cytotoxicity produced by ecteinascidin 743 (ET-743) with doxorubicin or paclitaxel in soft tissue sarcoma cells. Clin Cancer Res. 2001;7:3251–7.

    PubMed  CAS  Google Scholar 

  47. Brain EG. Safety and efficacy of ET-743: the French experience. Anticancer Drugs 2002;13:Sll–S14.

    Google Scholar 

  48. Lau L, Supko JG, Blaney S, et al. Ecteinascidin-743(yondelis) in children with refractory solid tumors. A children soncology group study. Clin Cancer Res. 2005;11:672–7.

    PubMed  CAS  Google Scholar 

  49. Proksch P, Edrada RA, Ebel R. Drugs from the seas: current status and microbiological implications. Appl Microb Biotech. 2002;59(2):l25–34.

    CAS  Google Scholar 

  50. Laverdiere C, Anders KE, Supko JG, et al. Phase II study of ecteinascidin 743 in heavily pretreated patients with recurrent osteosarcoma. Cancer 2003;98(4):832–40.

    PubMed  CAS  Google Scholar 

  51. Dubowchik GM, Firesone RA. The synthesis of branched steroidal prodrugs of nitrogen mustard for antitumor targeting via reconstituted LDL. Tetrahedron Lett. 1994;35:4523–6.

    CAS  Google Scholar 

  52. Delbarre A, Oberlin R, Roques B. Ellipticine derivatives with an affinity to the estrogen receptor, an approach to develop intercalating drugs with a specific effect on the hormone-dependent breast cancer. J Med Chem. 1985;28:752–61.

    PubMed  CAS  Google Scholar 

  53. Thmas GL, Guo C, Boyd MR, Fuchs PL. Outer-ring stereochemical modulation of cytotoxicity in cephalostatin. Org Lett. 2000;2(1):33–6.

    Google Scholar 

  54. Faulkner DJ. Marine natural products. Nat Prod Rep. 2001;18:1–49.

    PubMed  CAS  Google Scholar 

  55. D’Auria MV, Minale L, Riccio R. Polyoxygenated steroids of marine origin. Chem Rev. 1993;93:1839–95.

    Google Scholar 

  56. Funel C, Berrue F, Roussakis C, Rodriguez R, et al. New cytotoxic steroids from the Indian Ocean sponge Axinella cf. bidderi. J Nat Prod. 2004;67(3):491–4.

    PubMed  CAS  Google Scholar 

  57. Aoki S, Yoshioka Y, Miyamoto Y, Higuchi K, et al. Agosterol A, a novel polyhydroxylated sterol acetate reversing multidrug resistance from a marine sponge of Spongia sp. Tetrahedron Lett. 1998;39:6303–6.

    CAS  Google Scholar 

  58. Nobutoshi M, Masanori S, Mari M, Motomasa K. Total synthesis of agosterol A: an MDR-modulator from a marine sponge. Chemistry – A Eur J. 2001;7 (12):2663–70.

    Google Scholar 

  59. Cole SPC, Bhardwaj G, Gerlach JH, Mackie JE, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992;258:1650–4.

    PubMed  CAS  Google Scholar 

  60. Aoki S, Setiawan A, Yoshioka Y, Higuchi K, et al. Reversal of multidrug resistance in human carcinoma cell line by agosterols, marine spongean sterols. Tetrahedron 1999;55:13965–72.

    CAS  Google Scholar 

  61. Wang W, Li F, Alam N, Liu Y, et al. New saponins from the starfish Certonardoa semiregularis. J Nat Prod. 2002;65:1649–56.

    PubMed  CAS  Google Scholar 

  62. Wang W, Li F, Hong J, Lee CO, et al. Four new saponins from the starfish Certonardoa semiregularis. Chem Pharm Bull. 2003;51:435–9.

    PubMed  CAS  Google Scholar 

  63. Wang W, Li F, Hong J, Lee CO, et al. Bioactive sterols from the starfish Certonardoa semiregularis. J Nat Prod. 2003;66:384–91.

    PubMed  CAS  Google Scholar 

  64. Wang W, Hong J, Lee CO, Im KS, et al. Cytotoxic sterols and saponins from the starfish Certonardoa semiregularis. J Nat Prod. 2004;67:584–91.

    PubMed  CAS  Google Scholar 

  65. Gan Y, Wientjes MG, Au JL-S. Expression of basic fibroblast growth factor correlates with resistance to paclitaxel in human patient tumors. Pharm Res. 2006;23(6):1324–31.

    PubMed  CAS  Google Scholar 

  66. Mukhopadhyay S, Maitra U. Chemistry and biology of bile acids. Curr Sci. 2004;87(12):1666–83.

    CAS  Google Scholar 

  67. Matile J, Beroua N, Nakanishi K, Wood R. Structural studies by exciton coupled circular dichroism over a large distance: porphyrin derivatives of steroids, dimeric steroids, and brevetoxin B. J Am Chem Soc. 1996;118:5198–206.

    CAS  Google Scholar 

  68. Guthre JP, Cossa J, Darson BA. A water soluble dimeric steroid with catalytic properties, rate enhancements from hydrophobic binding. Can J Chem. 1986;64:2456–69.

    Google Scholar 

  69. Schmidt A, Beckert A, Weiss RD. Simple procedure for reductive coupling of steroids with a cross-conjugated dienone system. Tetrahedron Lett. 1992;33:4299–300.

    CAS  Google Scholar 

  70. Pettit GR, Inoue M, Kamano Y, Herald DL, et al. Isolation and structure of the powerful cell growth inhibitor cephalostatin. J Am Chem Soc. 1988;110(6):2006–7.

    CAS  Google Scholar 

  71. Pettit JM, Xu JP, Schmidt JM. Isolation and structure of the exceptional Pterobranchia human cancer inhibitors cephalostatins 16 and 1. Bioorg Med Chem Lett. 1995;5:2027–30.

    CAS  Google Scholar 

  72. Camen B, Raimunda F, Perez-Martin I, Tierry P, et al. A convenient synthesis of C-22 and sterioisomers of cephalostatin north 1 side chain from spirostan sapogenin. Org Lett. 2002;4(8):1295–8.

    Google Scholar 

  73. Yuexian L, Dias JR. Dimeric and oligomeric steroids. Chem Rev. 1997;97:283–304.

    Google Scholar 

  74. Shawakfeh KQ, Al-Said NH, Al-Zoubi RM. Synthesis of bis-diosgenin pyrazine dimers: new cephalostatin analogs. Steroids 2008;73(6):579–84.

    PubMed  CAS  Google Scholar 

  75. Schmitz FJ, Bowden FJ, Toth SI. Marine biotechnology. Antitumor and cytotoxic compounds from marine organisms. Mar Biotechnol. 1993;1:197–308.

    Google Scholar 

  76. Rinehart KL, Gloer JB, Cook JC, Mizsak SA, et al. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate. J Am Chem Soc. 1981;103:1857–9.

    CAS  Google Scholar 

  77. (a) Wright AE, Forleo DA, Gunawardana GP, Gunasekera SP, et al. Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J Org Chem. 1990;55:4508–12. (b) Rinehart KL, Holt TG, Fregeau NL, Stroh JG, et al. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem. 1990;55:4512–15.

    Google Scholar 

  78. Fukuzawa S, Matsunaga S, Fusetani N. A highly cytotoxic dimeric steroidal alkaloid, from the tunicate Ritterella tokioka. J Org Chem. 1994;59(21):6164–6.

    CAS  Google Scholar 

  79. Ganesan A. The dimeric steroid-pyrazine marine alkaloids: challenges for isolation, synthesis, and biological studies. Angew Chem Int Ed Engl. 1996;35(6):611–15.

    CAS  Google Scholar 

  80. Moore KS, Wehrli S, Roder H, et al. Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci. 1993;90:1354–8.

    PubMed  CAS  Google Scholar 

  81. Sills AKJ, Williams JI, Tyler BM, Epstein DS, et al. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature. Cancer Res. 1998;58:2784–92.

    PubMed  CAS  Google Scholar 

  82. Pettit GR, Day JF, Hartwell JL, Wood HB. Antineoplastic components of marine animals. Nature 1970;227:962–3.

    PubMed  CAS  Google Scholar 

  83. (a) Schwartsmann G, Brondani da Rocha A, Mattei J, Lopes RM. Marine-derived anticancer agents in clinical trials. Expert Opin Investig Drugs 2003;12:1367–83. (b) Luesch H, Harrigan GG, Goetz G, Horgen FD. The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr Med Chem. 2002;9:1791–806. (c) Sennett SH, McCarthy PJ, Wright AE, Pomponi SA. Natural products from marine invertebrates: the harbor branch oceanographic institution experience. Pharm News 2002;9:483–8. (d) Mayer AMS. Current marine pharmacology contributions to new drug development in the biopharmaceutical industry. Pharm News 2002;9:479–82. (e) Mayer AMS, Gustafson KR. Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int J Cancer 2003;105:291–9.

    Google Scholar 

  84. Pettit GR. Synthetic peptides. Amsterdam: Elsevier; 1982. Vol. 6.

    Google Scholar 

  85. Pettit GR, Tan R, Herald DL, Cerny RL, et al. Antineoplastic agents 277, isolation and structure of phakellistatin 3 and isophakellistatin 3 from a Republic of Comoros marine sponge. J Org Chem. 1994;59:1593.

    CAS  Google Scholar 

  86. Pettit GR, Xu JP, Cichacz Z, Schmidt JM, et al. Antineoplastic agents 303, isolation and structure of the human cell growth inhibitory phakellistatin 4 from the western Pacific sponge Phakellia costata. Heterocycles 1994;40:501.

    Google Scholar 

  87. Rinehart KL, Gloer JB, Cook JC, Mizsak SA, et al. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate. J Am Chem Soc. 1981;103:1857–9.

    CAS  Google Scholar 

  88. Rinehart KL, Gloer JB, Hughes RG, Renis HE, et al. Didemnins: antiviral and antitumor depsipeptides from a Caribbean tunicate. Science 1981;212:933–5.

    PubMed  CAS  Google Scholar 

  89. Rinehart KL. Antitumor compounds from tunicates. Med Res Rev. 2000;20:1–27.

    PubMed  CAS  Google Scholar 

  90. Vera MD, Joullie MM. Natural products as probes of cell biology: 20 years of didemnin research. Med Res Rev. 2002;22:102–45.

    PubMed  CAS  Google Scholar 

  91. Caufield CE, Musser JH. Macrocyclic immunomodulators. Annu Rep Med Chem. 1989;25:195–204.

    Google Scholar 

  92. Rinehart KL, Lithgow-Bertelloni AM, Dehydrodidemnin B. WO 9104985; 1991.

    Google Scholar 

  93. Raymond E, Paz-Ares L, Izquierdo M, Belanger K, et al. Phase I trials with aplidine, a new marine derived anticancer compound. Eur J Can. 2001;37 Suppl 6:S32.

    Google Scholar 

  94. Raymond E, Ady-Vago N, Ribrag V, Faivre S, et al. Phase I and pharmacokinetic study of aplidine, a marine derived compound, given as a 24 h infusion every 2 weeks in patients (pts) with advanced solid tumors and non-Hodgkin lymphoma (NHL). Ann Oncol. 2000;11 Suppl 4:134.

    Google Scholar 

  95. Izquierdo MA, Bowman A, Martı´nez M, Cicchella B, et al. A phase I study of aplidine (APL), a marine derived compound, given as an infusion weekly×3 in advanced solid tumors and non-Hodgkin lymphoma patients (pts). Ann Oncol. 2000;11 Suppl 4:134.

    Google Scholar 

  96. Maroun J, Belanger K, Seymour L, Soulieres D, et al. Phase I study of aplidine (APL) in a 1 hour daily infusion × 5 q 3 weeks in patients (pts) with solid tumors and low intermediate grade non Hodgkins lymphomas: a National Cancer Institute of Canada-Clinical Trials Group (NCIC-CTG) study. Ann Oncol. 2000;11 Suppl 4:134.

    Google Scholar 

  97. Williams PG, Yoshida WY, Moore RE, Paul VJ. Tasipeptins A and B: new cytotoxic depsipeptides from the marine cyanobacterium Symploca sp. J Nat Prod. 2003;66:620–4.

    PubMed  CAS  Google Scholar 

  98. Gerwick WH, Tan LT, Sitachitta N, Cordell GA. Nitrogen-containing metabolites from marine cyanobacteria. In: Cordell GA, editor. The Alkaloids. San Diego: Academic Press; 2001. Vol. 57, pp. 75–184.

    Google Scholar 

  99. Schmidt EW, Raventos SC, Bifano M, Menendez AT, et al. Scleritodermin A, a cytotoxic cyclic peptide from the lithistid sponge Scleritoderma nodosum. J Nat Prod. 2004;67:475.

    PubMed  CAS  Google Scholar 

  100. Maryanoff BE, Greco MN, Zhang HC, Andrade-Gordon P, et al. Macrocyclic peptide inhibitors of serine proteases, convergent total synthesis of cyclotheonamides A and B via a late-stage primary amine intermediate. Study of thrombin inhibition under diverse conditions. J Am Chem Soc. 1995;117:1225.

    CAS  Google Scholar 

  101. Lewis SD, Ng AS, Baldwin JJ, Fusetani N, et al. Inhibition of thrombin and other trypsin-like serine proteinases by cyclotheonamide A. Thromb Res. 1993;70:173.

    PubMed  CAS  Google Scholar 

  102. Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today 1992;13:136.

    PubMed  CAS  Google Scholar 

  103. Long BH, Wang L, Lorico A, Wang RR, et al. Mechanisms of resistance to etoposide and teniposide in acquired resistant human colon and lung carcinoma cell lines. Cancer Res. 1991;51:5275–84.

    PubMed  CAS  Google Scholar 

  104. Talpir R, Benayahu Y, Kashman Y, Pannell L, et al. Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett. 1994;35:4453–6.

    CAS  Google Scholar 

  105. Coleman JE, de Silva ED, Kong FM, Andersen RJ, et al. Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron 1995;51(39):10653–62.

    CAS  Google Scholar 

  106. Anderson HJ, Coleman JE, Andersen RJ, Roberge M. Cytotoxic peptides hemiasterlin, hemiasterlin A, and hemiasterlin B include mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol. 1997;39(3):223–6.

    PubMed  CAS  Google Scholar 

  107. Gamble WR, Durso NA, Fuller RW, Westergaard CK, et al. Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphonochalina spp. sponges. Bioorg Med Chem. 1999;7:1611–15.

    PubMed  CAS  Google Scholar 

  108. Loganzo F, Discafani CM, Annable T, Beyer C, et al. A synthetic analogue of the tripeptide hemiasterlin is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res. 2003;63:1838–45.

    PubMed  CAS  Google Scholar 

  109. Williams PG, Yoshida WY, Quon MK, Moore RE, et al. The structure of palau'amide, a potent cytotoxin from a species of the marine cyanobacterium Lyngbya. J Nat Prod. 2003;66:1545.

    PubMed  CAS  Google Scholar 

  110. Li WL, Yi YH, Wu HM, Xu QZ, et al. Isolation and structure of the cytotoxic cycloheptapeptide phakellistatin 13. J Nat Prod. 2003;66:146–8.

    PubMed  CAS  Google Scholar 

  111. Pettit GR, Tan R. Isolation and structure of phakellistatin 14 from the western Pacific marine sponge Phakellia sp. J Nat Prod. 2005;68:60–3.

    CAS  Google Scholar 

  112. Pettit GR, Tan R, Ichihara Y, Williams MD, et al. Isolation and structure of the human cancer cell growth inhibitory cyclic octapeptides phakellistatin 10 and 11 from Phakellia sp. J Nat Prod. 1995;58(6):961–5.

    PubMed  CAS  Google Scholar 

  113. Pettit GR, Clewlow PJ, Dufresne C, Doubek DL, et al. Antineoplastic agents. 193. Isolation and structure of the cyclic peptide hymenistatin 1. Can J Chem. 1990;68:708–11.

    CAS  Google Scholar 

  114. Pettit GR, Srirangam JK, Herald DL, Erickson KL, et al. Antineoplastic agents. 251. Isolation and structure of stylostatin 1 from the Papua New Guinea marine sponge Stylotella aurantium. J Org Chem. 1992;57:7217–20.

    CAS  Google Scholar 

  115. Pettit GR, Herald CL, Boyd MR, Leet JE, et al. Antineoplastic agents. 219. Isolation and structure of the cell growth inhibitory constituents from the Western Pacific marine sponge Axinella sp. J Med Chem. 1991;34:3339–40.

    PubMed  CAS  Google Scholar 

  116. Kobayashi J, Tsuda M, Nakamura TI, Mikami Y, et al. Hymenamides A and B, new proline-rich cyclic heptapeptides from the Okinawan marine sponge Hymeniacidon sp. Tetrahedron 1993;49:2391–402.

    CAS  Google Scholar 

  117. Tsuda M, Shigemori H, Mikami Y, Kobayashi J. Hymenamides CE. New cyclic heptapeptides with two proline residues from the Okinawan marine sponge Hymeniacidon sp. Tetrahedron 1993;49:6785–96.

    CAS  Google Scholar 

  118. Tsuda M, Sasaki T, Kobayashi J. Hymenamides G, H, J, and K, four new cyclic octapeptides from the Okinawan marine sponge Hymeniacidon sp. Tetrahedron 1994;49:4667–80.

    Google Scholar 

  119. Kobayashi J, Nakamura T, Tsuda M. Hymenamide F, new cyclic heptapeptide from marine sponge Hymeniacidon sp. Tetrahedron 1996;52:6355–60.

    CAS  Google Scholar 

  120. Morita H, Kobata H, Takeya K, Itokawa H. Cyclic peptides from higher plants. V. Pseudostellarin G, a new tyrosinase inhibitory cyclic octapeptide from Pseudostellaria heterophylla. Tetrahedron Lett. 1994;35:3563–4.

    CAS  Google Scholar 

  121. Morita H, Kayashita T, Kobata H, Gonda A, et al. Cyclic peptides from higher plants. VI. Pseudostellarins A-C, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla. Tetrahedron 1994;50:6797–804.

    CAS  Google Scholar 

  122. Morita H, Gonda A, Takeya K, Itokawa H. Cyclic peptides from higher plants. 29. Cycloleonuripeptides from Leonurus heterophyllus. Bioorg Med Chem Lett. 1996;6:767–70.

    CAS  Google Scholar 

  123. Morita H, Kayashita T, Shishido A, Takeya K, et al. Cyclic peptides from higher plants. 26. Dichotomins A-E, new cyclic peptides from Stellaria dichotoma L. var. lanceolata Bge. Tetrahedron 1996;52:1165–76.

    CAS  Google Scholar 

  124. Hiroshi M, Young SY, Takeya K, Itokawa H, et al. A cyclic heptapeptide from Vaccaria segetalis. Phytochemistry 1996;42:439–41.

    Google Scholar 

  125. Morita H, Takeya K, Itokawa H. Cyclic octapeptides from Stellaria dichotoma var. lanceolata. Phytochemistry 1997;45:811–45.

    Google Scholar 

  126. Zhao YR, Zhou J, Wang XK, Wu HM, et al. Three cyclopeptides from Stellaria delavayi. Phytochemistry 1997;46:709–14.

    CAS  Google Scholar 

  127. Napolitano A, Bruno I, Riccio R, Gomez-Paloma L. Synthesis, structure, and biological aspects of cyclopeptides related to marine phakellistatins 7–9. Tetrahedron 2005;61:6808–15.

    CAS  Google Scholar 

  128. Garo E, Starks CM, Jensen PR, Fenical W, et al. Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J Nat Prod. 2003;66:423–6.

    PubMed  CAS  Google Scholar 

  129. Lin Y, Shao Z, Jiang G, Zhou S, et al. Penicillazine, a unique quinolone derivative with 4H-5,6-dihydro-1,2-oxazine ring system from the marine fungus Penicillium sp. (Strain 386) from the South China Sea. Tetrahedron 2000;56:9607–9.

    CAS  Google Scholar 

  130. Wan XB, Doridot G, Joullie MM. Progress towards the total synthesis of trichodermamides A and B: construction of the oxazine ring moiety. Org Lett. 2007;9(6):977–86.

    PubMed  CAS  Google Scholar 

  131. Milanowski DJ, Gustafson KR, Rashid MA, Pannell LK, et al. Gymnangiamide, a cytotoxic pentapeptide from the marine hydroid Gymnangium regae. J Org Chem. 2004;69:3036–42.

    PubMed  CAS  Google Scholar 

  132. Leclercq PA, Smith LC, Desiderio DM Jr. Modification, permethylation, and mass spectrometry of arginine-containing oligopeptides at the 100 nanomolar level. Biochem Biophys Res Commun. 1971;45:937–44.

    PubMed  CAS  Google Scholar 

  133. Takita T, Shimada N, Yagisawa N, Kato K, et al. Chemistry of pheganomycins, new peptide antibiotics. Proc 15th Symp Pept Chem. 1977:121–6.

    Google Scholar 

  134. Hashimoto K, Tsujimura T, Moriyama Y, Yamatodani A, et al. Transforming and differentiation-inducing potential of constitutively activated c-kit mutant genes in the IC-2 murine interleukin-3-dependent mast cell line. Am J Pathol. 1996;148:189–200.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jiang, T., Zhang, P., Chen, S., Li, G. (2010). Marine Natural Products and their Synthetic Derivatives for Cancer Therapy. In: Alaoui-Jamali, M. (eds) Alternative and Complementary Therapies for Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0020-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0020-3_24

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0019-7

  • Online ISBN: 978-1-4419-0020-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics