Skip to main content

Relativistic Symmetries in the Electronic Structure and Properties of Molecules

  • Chapter
  • First Online:
Relativistic Methods for Chemists

Abstract

Double groups and time reversals are finding increasing attention in recent years to calculate molecular electronic properties including relativistic effects. In the present review we have initially developed the concept of double groups for diatomic and polyatomic systems and demonstrated the use of double groups in diverse molecular properties. The concept of time reversal has been introduced as a symmetry property to mitigate the problem of CP (C: charge conjugation; P: parity) violation. The applications of time reversal in explaining molecular electronic properties have been collected together with a discussion on its role in double group symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herzberg, G.: Molecular Spectra and Molecular Structure, Volume 1: Spectra of Diatomic Molecules. Van Nostrand Reinhold, New York (1950)

    Google Scholar 

  2. Herzberg, G.: Molecular Spectra and Molecular Structure, Volume 3: Electronic Spectra and Electronic Structure of Polyatomic Molecules. Van Nostrand Reinhold, New York (1996)

    Google Scholar 

  3. Bunker, P.R., Jensen, P.: Molecular Symmetry and Spectroscopy. NRC Research Press, Ottawa, Canada (1998)

    Google Scholar 

  4. Flurry, R.L. Jr.: Symmetry Groups, Theory and Applications. Prentice-Hall, Upper Saddle River, NJ (1980)

    Google Scholar 

  5. Bethe, H.A.: Splitting of terms in crystals. Ann. Physik 3, 133–206 (1929)

    Article  CAS  Google Scholar 

  6. Hammermesh, M.: Group Theory and Its Application to Physical Problems. Dover, New York (1989)

    Google Scholar 

  7. Tinkham, M.: Group Theory and Quantum Mechanics. McGraw Hill, New York (1997)

    Google Scholar 

  8. Balasubramanian, K.: Relativistic Effects in Chemistry, Part A. Wiley, New York (1997)

    Google Scholar 

  9. Stedman, G.E., Butler, P.H.: Time reversal symmetry in applications of point group theory. J. Phys. A 13, 3125–3140 (1980)

    Article  Google Scholar 

  10. Barron, L.D., Buckingham, A.D.: Time reversal and molecular properties. Acc. Chem. Res. 34, 781–789 (2001)

    Article  CAS  Google Scholar 

  11. Sadlej, A.J.: Methods of relativistic quantum chemistry. In: B.O. Roos (ed.) Lecture Notes in Quantum Chemistry II, pp. 203–230. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. McGlynn, S.P., Vanquickenborne, L.G., Kinoshita, M., Carroll, D.G.: Introduction to Applied Quantum Chemistry. Holt, Rinehart & Winston, New York (1972)

    Google Scholar 

  13. Balasubramanian, K., Pitzer, K.S.: Electron structure calculations including CI for ten low lying states of { Pb}2 and { Sn}2. Partition function and dissociation energy of { Sn}2. J. Chem. Phys. 78, 312 (1983)

    Google Scholar 

  14. Hang, T., Liao, M., Wang, Y., Wu, G., Balasubramanian, K.: A flexible correlation group table (CGT) method for the relativistic configuration interaction wavefunctions. J. Math. Chem. 28, 213–239 (2000)

    Article  Google Scholar 

  15. Pitzer, R.M., Winter, N.W.: Electronic structure methods for heavy-atom molecules. J. Phys. Chem. 92, 3061–3063 (1988)

    Article  CAS  Google Scholar 

  16. Ballhusen, C.J.: Introduction to Ligand Field Theory. McGraw Hill, New York (1962)

    Google Scholar 

  17. Newman, D.J., Ng, B.K.C. (Eds.).: Crystal Field Hand Book. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  18. Balasubramanian, K.: Relativistic Effects in Chemistry, Part B. Wiley, New York (1997)

    Google Scholar 

  19. Roszak, S., Krauss, M., Alekseyev, A.B., Liebermann, H.-P., Buenker, R.J.: Spin-orbit configuration interaction calculation of the potential energy curves of iodine oxide. J. Phys. Chem. A 104, 2999–3003 (2000)

    Article  CAS  Google Scholar 

  20. Das, K.K., Balasubramanian, K.: Spectroscopic properties of low-lying electronic states of { Au}2. J Mol. Spectrosc. 140, 280–294 (1990)

    Article  CAS  Google Scholar 

  21. Chattopadhyay, A., Das, K.K.: Electronic states of TlX (X = As, Sb, Bi): A configuration interaction study. J. Phys. Chem. A 108, 7306–7317 (2004)

    Article  CAS  Google Scholar 

  22. Chattopadhya, S., Das, K.K.: Electronic spectrum of { SiSe}+: A MRDCI study. Chem. Phys. Lett. 399, 140–146 (2004)

    Article  Google Scholar 

  23. Giri, D., Das, K.K.: Theoretical studies of the electronic spectrum of SnSe. Chem. Phys. Lett. 411, 144 (2005)

    Article  CAS  Google Scholar 

  24. Giri, D., Das, K.K.: Electronic states of SnS and { SnS}+: A configuration interaction study. J. Phys. Chem. A 109, 7207–7215 (2005)

    Article  CAS  Google Scholar 

  25. Banerjee, A., Pramanik, A., Das, K.K.: Ab initio configuration interaction study of the low-lying electronic states of InF. Chem. Phys. Lett. 429, 62–67 (2006)

    Article  CAS  Google Scholar 

  26. Giri, D., Pati, K., Das, K.K.: Relativistic configuration interaction study of the electronic spectrum of SnTe and { SnTe}+. J. Chem. Phys. 124, 154301–154313 (2006)

    Article  Google Scholar 

  27. Chakrabarti, S., Das, K.K.: Electronic states and spectroscopic properties of GeSi. J. Mol. Spectrosc. 252, 160–168 (2008)

    Article  CAS  Google Scholar 

  28. Alekseyev, A.B., Liebermann, H.-P., Buenker, R.J.: Spin-orbit configuration interaction study of ultraviolet photofragmentation of { XeH}+. Phys. Chem. Chem. Phys. 10, 5706–5713 (2008)

    Article  CAS  Google Scholar 

  29. Alekseyev, A.B., Buenker, R.J., Liebermann, H.-P.: Ab-initio study of the { KrH}+ photodissociation. J. Chem. Phys. 128, 234308 (2008)

    Article  Google Scholar 

  30. Majumdar, D., Balasubramanian, K.: A theoretical study of the potential energy curves and spectroscopic constants of VC. Mol. Phys. 101, 1369–1376 (2003)

    Article  CAS  Google Scholar 

  31. Barrow, R.F.: The band spectrum of SnTe emission. Proc. Phys. Soc. (London) 52, 380–387 (1940)

    Google Scholar 

  32. Barrow, R.F.: The absorption spectrum of SnTe. Proc. Phys. Soc. (London) 56, 78–85 (1944)

    Google Scholar 

  33. Klotzbucher, W.E., Ozin, G.A.: Optical spectra of hafnium, tungsten, rhenium and ruthenium atoms and other heavy transition metal atoms and clusters (Zr 1,2, Pd 1,2, Au 1,2,3) in noble gas mixtures. Inorg. Chem. 19, 3767–3776 (1980)

    Article  Google Scholar 

  34. Majumdar, D., Dai, D., Balasubramanium, K.: Theoretical study of the electronic states of platinum trimer ({ Pt}3). J. Chem. Phys. 113, 7919–7927 (2000)

    Article  CAS  Google Scholar 

  35. Majumdar, D., Dai, D., Balasubramanium, K.: Theoretical study of the electronic states of platinum pentamer ({ Pt}5). J. Chem. Phys. 113, 7928–7938 (2000)

    Article  CAS  Google Scholar 

  36. Balasubramanian, K., Majumdar, D.: Spectroscopic properties of lead trimer ({ Pb}3 and { Pb}3 +): Potential energy surfaces, spin-orbit and Jahn-Teller effects. J. Chem. Phys. 115, 8795–8809 (2001)

    Article  CAS  Google Scholar 

  37. Roszak, S., Balasubramanian, K.: Electronic structure and thermodynamic properties of { LaC}2. J. Phys. Chem. 100, 11255–11259 (1996)

    Article  CAS  Google Scholar 

  38. Wielgus, P., Majumdar, D., Roszak, S., Leszczynski, J.: Structure and properties of the low-lying electronic states of { CeC}2 and { CeC}2 +. J. Chem. Phys. 127, 124307–124313 (2007)

    Article  Google Scholar 

  39. Majumdar, D., Balasubramanian, K., Nitche, H.: A comparative theoretical study of bonding in \({\textrm{ UO}}_{2}^{++}\), { UO}2 +, { UO}2, { UO}2 −, OUCO, { O}2{ U}({ CO})2 and { UO}2{ CO}3. Chem. Phys. Lett. 361, 143–151 (2002)

    Article  CAS  Google Scholar 

  40. Galiardi, L., Heaven, M.C., Krogh, W., Roos, B.O.: The electronic spectrum of { UO}2 molecule. J. Am. Chem. Soc. 127, 86–91 (2005).

    Article  Google Scholar 

  41. Hargittai, M.: Structural effects in molecular metal halides. Acc. Chem. Res. 42, 453–462 (2008)

    Article  Google Scholar 

  42. Majumdar, D., Roszak, S., Balasubramanian, K.: Interaction of benzene ({ B}{ z}) with Pt and { Pt}2: A theoretical study on { Bz} − { Pt}2, { Bz}{ z} − { Pt}, { Bz}{ z}{ Pt}2 and { Bz}3{ Pt}3 clusters. J. Chem. Phys. 114, 10300–10310 (2001)

    Article  CAS  Google Scholar 

  43. Matsusita, T., Asada, T., Koseki, S.: Relativistic study on emission mechanism in palladium and platinum complexes. J. Phys. Chem. A 110, 13295–13302 (2006)

    Article  Google Scholar 

  44. Bersuker, I.B.: Modern aspects of Jahn-Teller effect theory and application. Chem. Rev. 101, 1067–1114 (2001)

    Article  CAS  Google Scholar 

  45. Brooks, J., Babayan, Y., Lamansky, S., Djurovich, P.I., Tsybam, I., Bau, R., Thomson, M.E.: Synthesis and characterizations of phosphorescent cyclometalated platinum complexes. Inorg. Chem. 41, 3055–3066 (2002)

    Article  CAS  Google Scholar 

  46. Cocchi, M., Kalinowski, J.: Highly efficient electrophosphorescent light emitting diodes with reduced quantum efficiency roll off at large current densities. Appl. Phys. Lett. 84, 1052–1054 (2004)

    Article  CAS  Google Scholar 

  47. Schmidt, J., Strasser, J., Yersin, H.: Determination of relaxation paths in the manifold of excited states of Pt(2-thpy)2 and [Ru(bpy)3}2 + by time-resolved excitation and emission. Inorg. Chem. 36, 3957–3965 (1997)

    Article  CAS  Google Scholar 

  48. Balasubramanian, K.: Relativistic double group spinor representations of nonrigid molecules. J. Chem. Phys. 120, 5524–5535 (2004)

    Article  CAS  Google Scholar 

  49. Christenson, J.H., Cronin, J.W., Fitch, V.L., Turlay, R.: Evidence for the 2π decay of the K 2 0 meson. Phys. Rev. Lett. 13, 138–140 (1964)

    Article  Google Scholar 

  50. Mayer, J.: Construction of linearly independent relativistic symmetry orbitals for finite double-point groups including time reversal symmetry. Int. J. Quantum Chem. 33, 445–465 (1988)

    Article  Google Scholar 

  51. Mayer, J.: Addendum to construction of linearly independent relativistic symmetry orbitals for finite double-point groups including time reversal symmetry. Int. J. Quantum Chem. 61, 929–933 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devashis Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Majumdar, D., Roszak, S., Leszczynski, J. (2010). Relativistic Symmetries in the Electronic Structure and Properties of Molecules. In: Barysz, M., Ishikawa, Y. (eds) Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9975-5_9

Download citation

Publish with us

Policies and ethics