Skip to main content

An Introduction to Relativistic Quantum Chemistry

  • Chapter
  • First Online:
Relativistic Methods for Chemists

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 10))

Abstract

Chemistry is governed by the shell structure of the atoms. This holds in particular concerning the periodic system of chemical elements. Non-relativistic quantum chemistry describes the motion of electrons and nuclei and their mutual interactions to a first approximation. It reproduces a large fraction of chemistry of the more important lighter elements sufficiently well. A significant amount of chemical insight can already be gained from the analysis of the atomic one-electron orbitals. However, while valence electrons have ‘non-relativistically small’ energies, they become ‘relativistically fast’ in the neighborhood of heavy nuclei. The importance of relativistic effects in the atomic valence shells increases approximately as Z2. Relativity significantly changes the chemical trends at the bottom of the periodic table. The relativistic effects of the valence electrons can be classified as direct and indirect ones. The direct ones are due to the increase of the effective mass with velocity, to the change of the electric nuclear attraction of a spinning electron, and to the magnetic spin-orbit coupling. The indirect effects on the valence electrons are due to the relativistic changes of nuclear shielding and Pauli repulsion by the inner orbitals. The changes of the radial, the angular, and the quaternionic phase behavior of the relativistic atomic valence orbitals modify the atomic bonding properties, the energetics, the structure and properties of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In principle there are no local contributions to property expectation-values in holistic quantum mechanics. However, choosing a specific integral representation, discussion of local contributions to this integral can still give physical insight, see below Section 1.3 and Footnote 11.

  2. 2.

    We use the English modification of Galileo Galelei’s name.

  3. 3.

    In his famous, often-cited dictum, [134] expressed four ideas: First – The fundamental physical laws for a ‘mathematical theory of chemistry’ are completely known. (It is not clear whether Dirac realized that a ‘mathematical theory of chemistry’ comprises only a fraction of chemistry. Another question is which proper chemists, computational chemists, theoretical chemists or philosophers of chemistry are aware of this significant aspect.) Second – the relativistic theory is incomplete. (This is still valid, but the left-over problems are mainly relevant to elementary particle physics and cosmology. Most chemically relevant problems of the physical theory of relativity are now solved.) Third – relativity is irrelevant to chemistry. (Now, we know it better.) Fourth – The two main and permanent problems of theoretical chemistry are to develop computational approaches to calculate reasonably accurate observable values, and to derive interpretational tools for a physical understanding of the complex chemical processes in matter.

  4. 4.

    This comprises the approximation of static and dynamic two-electron correlations, the neglect of non-adiabatic electron-nuclear couplings, the neglect of relativistic electron dynamics, or the neglect of environmental perturbations by 3K cosmic background radiation, or perturbations by the condensed phase surroundings.

  5. 5.

    One should distinguish between an expansion which can give, in principle, the correct value, and an approximation consisting only of the first term of the expansion. There are the lowest-order BO approximation and the BO expansion. There are the Hartree, Hartree–Fock and Kohn–Sham orbital approximations and the post-independent-particle expansions.

  6. 6.

    The IUPAC recommends lanthanoids and actinoids instead of former lanthanides and actinides. ‘-ides’ are usually anionic compounds such as halides, sulfides, etc. See http://en.wikipedia.org/wiki/Lanthanoid.

  7. 7.

    Let ‘superheavy’ be defined as Z > 100.

  8. 8.

    This means without accounting for any quantum interference effects.

  9. 9.

    0 4 and 1 4 mean the 4 ×4 zero- and unit-matrices.

  10. 10.

    For Z larger than about 165, the electronic 1s level dives into the positronic continuum of the extended nucleus, with spontaneous electron–positron pair production.

  11. 11.

    Of course, quantum mechanics is a holistic theory without physically defined local contributions to an observable expectation value. However, in a concrete calculation of a physical value, or in a specific explanation of the physical mechanism, one applies one specific formula chosen from a gauge-invariant set. This then gives one of the many complementary, internally consistent pictures of physical realty. For instance, we here choose \(+1/{2}_{\ \mathrm{a}}{ \int }^{\mathrm{e}}\mathrm{d}r \cdot \vert \nabla \Psi {(r)\vert }^{2}\) with positive definite integrand for local contributions of the kinetic energy T. It gives a somewhat different picture than \(-1/{2}_{\ \mathrm{a}}{ \int }^{\mathrm{e}}\mathrm{d}r \cdot ({\Psi }^{{_\ast}}\cdot {\nabla }^{2}\Psi )\). For the total energy we choose \({}_{\mathrm{a}}{ \int }^{\mathrm{e}}\mathrm{d}r \cdot ({\Psi }^{{_\ast}}\cdot \hat{\mathrm{H}}\Psi ) = E {\cdot }_{\mathrm{a}}{ \int }^{\mathrm{e}}\mathrm{d}r \cdot \rho (r)\). In the present Figures, a means the nuclear position, r = 0, and e corresponds to the upper integration limit plotted on the abscissa.

  12. 12.

    This has sometimes been called the ‘sausage phenomenon’, reminding of the carnival song ‘everything has an end, only the sausage (and the molecular potential curve) has two ends.

  13. 13.

    We here define the orbital energy of a many-electron open-shell atom as the difference of the configuration average energies of the neutral and the ionized species.

  14. 14.

    These few elements are the only ones, where the ubiquitous so-called (n + l, n) text book rule holds!

  15. 15.

    A (separated) shell is stable, because its energy is low and therefore filled up. Chemists sometimes apply the inverted pseudo-logics: A shell becomes stable by filling it up.

References

  1. Fricke, B.: Struct. Bond. 21, 89–144 (1975)

    CAS  Google Scholar 

  2. Pyykkö, P.: Adv. Quant. Chem. 11, 353–409 (1978)

    Article  Google Scholar 

  3. Pyykkö, P.: Chem. Rev. 88, 563–594 (1988)

    Google Scholar 

  4. Pyykkö, P., Desclaux, J.P.: Acc. Chem. Res. 12, 276–281 (1979)

    Article  Google Scholar 

  5. Balasubramanian, K., Pitzer, K.S.: Adv. Chem. Phys. 67, 287–319 (1987)

    CAS  Google Scholar 

  6. Schwerdtfeger, P. (ed.): Relativistic Electronic Structure Theory, Part 1, Fundamentals. Elsevier, Amsterdam (2002)

    Google Scholar 

  7. Schwerdtfeger, P. (ed.): Relativistic Electronic Structure Theory, Part 2, Applications. Elsevier, Amsterdam (2004)

    Google Scholar 

  8. Heß, B.A. (ed.): Relativistic Effects in Heavy-Element Chemistry and Physics. Wiley, Chichester, GB (2003)

    Google Scholar 

  9. Dyall, K.G., Fægri, K.: Introduction to Relativistic Quantum Chemistry. Oxford University Press, Oxford, GB (2007)

    Google Scholar 

  10. Reiher, M., Wolf, A.: Relativistic Quantum Chemistry. Wiley-VCH, Weinheim (2009)

    Book  Google Scholar 

  11. Pyykkö, P.: Relativistic Theory of Atoms and Molecules, 3 vols. Springer, Berlin (1986–1993–2000)

    Google Scholar 

  12. Pyykkö, P.: DATABASE ‘RTAM’, Version 14.1; http://rtam.csc.fi/ (2009)

  13. Dirac, P.A.M.: Proc. Roy. Soc. Lond. A 117, 610–624 (1928)

    Article  Google Scholar 

  14. Hellmann, H.: Einführung in die Quantenchemie. Deuticke, Leipzig and Wien (1937); Gel’man G Kvantovaya Khimiya. ONTI, Moscow/Leningrad (1937)

    Google Scholar 

  15. Hellmann, H. alias Gel’man, G.: Front Nauki Tekh. (Russian) 6, 34–48; 7, 39–50 (1936)

    Google Scholar 

  16. Glashow, S.L.: Interactions: A Journey Through the Mind of a Particle Physicist and the Matter of This World. Warner Books, New York (1988)

    Google Scholar 

  17. Wang, S.G., Schwarz, W.H.E.: Angew. Chem. 121, 3456–3467 (2009); Angew. Chem. Int. Ed. 48, 3404–3415

    Google Scholar 

  18. Dolg, M., van Wüllen, C. (eds.): Chem. Phys. 311, issue 1–2 (2005)

    Google Scholar 

  19. Rocke, A.J.: Chemical Atomism in the Nineteenth Century. Ohio State University Press, Columbus, OH (1984)

    Google Scholar 

  20. Simonyi, K.: Kulturgeschichte der Physik. Urania-Verlag, Leipzig (1990)

    Google Scholar 

  21. Hocking, T.D., Carson, C.: The History of Modern Physics. University of California, Berkeley, CA (2005)

    Google Scholar 

  22. Sexl, R., Urbantke, H.K.: Relativity, Groups, Particles. Springer, Vienna (2001)

    Book  Google Scholar 

  23. Greiner, W., Reinhardt, J.: Theoretische Physk, vol.7. Quantenelektrodynamik. Harry Deutsch, Thun (1984)

    Google Scholar 

  24. Greiner, W., Reinhardt, J., Müller, B.: Theoretical physics, vol.4. Quantum Electrodynamics. Springer, Berlin (1992)

    Google Scholar 

  25. Cook, D.B.: Handbook of Computational Quantum Chemistry. Oxford University Press, Oxford, GB (1998)

    Google Scholar 

  26. Young, D.C.: Computational Chemistry. Wiley, New York (2002)

    Google Scholar 

  27. Lewars, E.: Computational Chemistry. Kluwer, Dordrecht (2004)

    Google Scholar 

  28. Helgaker, T., Klopper, W., Tew, D.P.: Mol. Phys. 106, 2107–2143 (2008)

    CAS  Google Scholar 

  29. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Heidelberg (2002)

    Google Scholar 

  30. Schwarz, W.H.E., Rutkowski, A., Wang, S.G.: Int. J. Quant. Chem. 57, 641–653 (1996)

    Article  CAS  Google Scholar 

  31. Mackintosh, A.R.: Bull. Am. Phys. Soc. 11, 215 (1966)

    Google Scholar 

  32. Onodera, Y., Okazaki, M.: J. Phys. Soc. Jpn 21, 1273–1281 (1966)

    Article  CAS  Google Scholar 

  33. Loucks, T.L.: Augmented Plane Wave Method. Benjamin, New York (1967)

    Google Scholar 

  34. Williams, A.O.: Phys. Rev. 58, 723–726 (1940)

    Article  CAS  Google Scholar 

  35. Mayers, D.F.: Proc. Roy. Soc. Lond. A 241, 93–109 (1957)

    Article  CAS  Google Scholar 

  36. Herman, F., Skillman, S.: Atomic Structure Calculations. Prentice-Hall, Englewood Cliffs, NJ (1963)

    Google Scholar 

  37. Fricke, B., Waber, J.T.: Actin. Rev. 1, 433 (1971)

    CAS  Google Scholar 

  38. Fricke, B., Greiner, W., Waber, J.T.: Theor. Chim. Acta 21, 235–260 (1971)

    Article  CAS  Google Scholar 

  39. Desclaux, J.P.: At. Data Nucl. Data Tabs. 12, 311406 (1973)

    Google Scholar 

  40. Rosén, A., Ellis, D.E.: Chem. Phys. Lett. 27, 595–599 (1974)

    Google Scholar 

  41. Desclaux, J.P., Pyykkö, P.: Chem. Phys. Lett. 29, 534–539 (1974)

    CAS  Google Scholar 

  42. Schwarz, W.H.E.: In Z.B. Maksić (ed.) The Concept of the Chemical Bond, pp. 593–643. Springer, Berlin (1990)

    Google Scholar 

  43. Liao, M.S., Schwarz, W.H.E.: Acta Cryst. B 50, 9–12 (1994)

    Google Scholar 

  44. Pyykkö, P., Atsumi, M.: Chem Eur J 15, 186–197 (2009)

    Article  CAS  Google Scholar 

  45. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol 2. Addison-Wesley, Reading, MA (1964 seq.)

    Google Scholar 

  46. Kragh, H.: Am. J. Phys. 52, 1024–1033 (1984)

    Google Scholar 

  47. Greiner, W.: Theoretical physics, vol. 3. Relativistic Quantum Mechanics. Springer, Berlin (1990); Greiner, W.: Theoretische Physik, vol. 6: Relativistische Quantenmechanik. Harry Deutsch, Thun (1990)

    Google Scholar 

  48. Kissel-Phillip, M., Schwarz, W.H.E.: Phys. Rev. A 38, 6027–6033 (1988)

    Article  CAS  Google Scholar 

  49. Döring, W.: Atomphysik und Quantenmechanik, vol.3. Anwendungen. Walter de Gruyter, Berlin (1979)

    Google Scholar 

  50. Levy-Leblond, J.M.: Commun. Math. Phys. 6, 286–311 (1967)

    Article  Google Scholar 

  51. Hurley, W.J.: Phys. Rev. D 3, 2339–2347; 4, 3605–3616 (1971)

    Google Scholar 

  52. Reiher, M., Wolf, A.: J. Chem. Phys. 121, 2037–2047, 10945–10956 (2004)

    Article  CAS  Google Scholar 

  53. Sadlej, A.J.: Struct. Chem. 18, 757–767 (2007)

    CAS  Google Scholar 

  54. Pauli, W.: Z. Physik. 43, 601–623 (1927)

    Article  CAS  Google Scholar 

  55. Berestetskii, V.B., Lifshitz, E.M., Pitayevskii, L.P.: Relativistic quantum theory. In: L.D. Landau, E.M. Lifshitz (eds.) Course of Theoretical Physics, vol 4a. Permagon, New York (1971 seq.)

    Google Scholar 

  56. Mastalerz, R., Lindh, R., Reiher, M.: Chem. Phys. Lett. 465, 157–164 (2008)

    CAS  Google Scholar 

  57. Newton, T.D., Wigner, E.P.: Rev. Mod. Phys. 21, 400–406 (1949)

    Article  Google Scholar 

  58. Baerends, E.J., Schwarz, W.H.E., Schwerdtfeger, P., Snijders, J.G.: J Phys B 23, 3225–3240 (1990)

    Article  CAS  Google Scholar 

  59. Autschbach, J., Schwarz, W.H.E.: Theor. Chem. Acc. 104, 82–88 (2000)

    Article  CAS  Google Scholar 

  60. Schwarz, W.H.E.: Theor. Chim. Acta 23, 147–154 (1971)

    Article  CAS  Google Scholar 

  61. Hafner, P., Schwarz, W.H.E.: Chem. Phys. Lett. 65, 537–541 (1979)

    CAS  Google Scholar 

  62. Rutkowski, A.: J. Phys. B 19, 149–158, 3431–3441, 3443–3455 (1986)

    Google Scholar 

  63. Kutzelnigg, W.: In: Schwerdtfeger (ed.) Relativistic Electronic Structure Theory, Part 2, Applications, pp. 664–757. Elsevier, Amsterdam (2004)

    Google Scholar 

  64. Condon, E.U., Shortley, G.H.: The Theory of Atomic Spectra. University Press, Cambridge, GB (1935)

    Google Scholar 

  65. Franke, R., Kutzlnigg, W.: Chem. Phys. Lett. 199, 561–566 (1992)

    CAS  Google Scholar 

  66. Mittleman, M.H.: Phys. Rev. A 24, 1167–1175 (1981)

    Article  CAS  Google Scholar 

  67. Sucher, J.: Phys. Rev. A 22, 348–362 (1980)

    Article  CAS  Google Scholar 

  68. Sucher, J.: Phys. Scripta. 36, 271–281 (1987)

    Article  CAS  Google Scholar 

  69. Esteban, M.J., Lewin, M., Séré: Bull. Am. Math. Soc. 45, 535–593 (2008)

    Article  Google Scholar 

  70. Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980 et seq.)

    Google Scholar 

  71. Sapirstein, J.: In: Schwerdtfeger, P. (ed.): Relativistic Electronic Structure Theory, Part 1, Fundamentals, pp. 468–522. Elsevier, Amsterdam (2002)

    Google Scholar 

  72. Berger, R.: In: Schwerdtfeger (ed.) Relativistic Electronic Structure Theory, Part 2, Applications, pp. 188–288. Elsevier, Amsterdam (2004)

    Google Scholar 

  73. Gordon, W.: Z. Physik. 48, 11–14 (1928)

    Article  CAS  Google Scholar 

  74. Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin (1957)

    Google Scholar 

  75. Molzberger, K., Schwarz, W.H.E.: Theor. Chim. Acta 94, 213–222 (1996)

    CAS  Google Scholar 

  76. Burke, V.M., Grant, I.P.: Proc. Phys. Soc. Lond. 90, 297–314 (1967)

    Article  CAS  Google Scholar 

  77. Pyper, N.C.: Chem. Phys. Lett. 73, 385–392; 74, 554–561 (1980)

    Google Scholar 

  78. Hafner, P., Habitz, P., Ishikawa, Y., Wechsel-Trakowski, E., Schwarz, W.H.E.: Chem. Phys. Lett. 80, 311–315 (1981)

    CAS  Google Scholar 

  79. Andrae, D.: J. Phys. B 30, 4435–4451 (1997)

    Article  CAS  Google Scholar 

  80. Desclaux, J.P.: In: Schwerdtfeger (ed.) Relativistic Electronic Structure Theory, Part 2, Applications, pp. 1–22. Elsevier, Amsterdam (2004)

    Google Scholar 

  81. Rutkowski, A., Schwarz, W.H.E., Koslowski, R.: Theor. Chim. Acta 87, 75–87 (1993)

    Article  CAS  Google Scholar 

  82. Bitter, T., Ruedenberg, K., Schwarz, W.H.E.: J. Comp. Chem. 28, 411–422 (2007)

    Article  CAS  Google Scholar 

  83. Ruedenberg, K., Schmidt, M.W.: J. Phys. Chem. A 113, 1954–1968 (2009)

    Article  CAS  Google Scholar 

  84. Pyykkö, P.: Int. J. Quant. Chem. 85, 18–21 (2001)

    Article  Google Scholar 

  85. Kutzelnigg, W.: Angew. Chem. 96, 262–286 (1984); Angew. Chem. Int. Ed 23, 272–295

    Google Scholar 

  86. Schwarz, W.H.E.: Theor. Chim. Acta 15, 235–243 (1969)

    Article  CAS  Google Scholar 

  87. Rose, S.J., Grant, I.P., Pyper, N.C.: J Phys B 11, 1171–1176 (1978)

    Article  CAS  Google Scholar 

  88. Hafner, P., Schwarz, W.H.E.: J. Phys. B 11, 217–233, 2975–2999 (1978)

    Article  CAS  Google Scholar 

  89. Autschbach, J., Siekierski, S., Seth, M., Schwerdtfeger, P., Schwarz, W.H.E.: J. Comp. Chem. 23, 804–813 (2002)

    Article  CAS  Google Scholar 

  90. Andrae, D.: Phys. Rep. 336, 413–525 (2000)

    Article  CAS  Google Scholar 

  91. Ishikawa, Y., Koc, K., Schwarz, W.H.E.: Chem. Phys. 225, 239–246 (1997)

    CAS  Google Scholar 

  92. Pyykkö, P., Zhao, L.B.: J. Phys. B 36, 1469–1478 (2003)

    Article  Google Scholar 

  93. Siegel, J.S.: Chirality 10, 24–27 (1998)

    CAS  Google Scholar 

  94. Avetisov, V., Goldanski, V.: Proc. Natl. Acad. Sci. USA 93, 11435–11442 (1996)

    Article  CAS  Google Scholar 

  95. Schwarz, W.H.E., Wechsel-Trakowski, E.: Chem. Phys. Lett. 85, 94–97 (1982)

    CAS  Google Scholar 

  96. Rosicky, F., Mark, F.: Theor. Chim. Acta 54, 35–51 (1979)

    CAS  Google Scholar 

  97. Mark, F., Schwarz, W.H.E.: Phys. Rev. Lett. 48, 673–676 (1982)

    Article  CAS  Google Scholar 

  98. Schwarz, W.H.E., Wallmeier, H.: Mol. Phys. 46, 1045–1061 (1982)

    CAS  Google Scholar 

  99. Grant, I.P.: Phys. Rev. A 25, 1230–1232 (1982)

    Article  CAS  Google Scholar 

  100. Schwerdtfeger, P., Dolg, M., Schwarz, W.H.E., Bowmaker, G.A., Boyd, P.D.W.: J. Chem. Phys. 91, 1762–1774 (1989)

    Article  CAS  Google Scholar 

  101. Schwarz, W.H.E.: Phys. Scripta. 36, 403–411 (1987)

    Article  CAS  Google Scholar 

  102. Rutkowski, A., Schwarz, W.H.E.: Theor. Chim. Acta 76, 391–410 (1990)

    Article  CAS  Google Scholar 

  103. Rutkowski, A., Rutkowska, D., Schwarz, W.H.E.: Theor. Chim. Acta 84, 105–114 (1992)

    Article  CAS  Google Scholar 

  104. Schwarz, W.H.E., Chu, S.Y., Mark, F.: Mol. Phys. 50, 603–623 (1983)

    CAS  Google Scholar 

  105. van Weezenbeck, E.M., Baerends, E.J., Snijders, J.G.: Theor. Chim. Acta 81, 139–155 (1991)

    Article  Google Scholar 

  106. Autschbach, J., Schwarz, W.H.E.: J. Phys. Chem. A B, 6039–6046 (2000)

    Google Scholar 

  107. Snijders, J.G., Pyykkö, P.: Chem. Phys. Lett. 75, 5–8 (1980)

    CAS  Google Scholar 

  108. Wang, S.G., Schwarz, W.H.E.: J. Mol. Struct. (THEOCHEM) 338, 347–362 (1995)

    Google Scholar 

  109. Wang, S.G., Liu, W.J., Schwarz, W.H.E.: J. Phys. Chem. 106, 795–803 (2002)

    Article  CAS  Google Scholar 

  110. Autschbach, J., Ziegler, T.: J. Chem. Phys. 113, 9410–9418 (2000)

    Article  CAS  Google Scholar 

  111. van Wüllen, C.: J. Comp. Chem. 23, 779–785 (2002)

    Article  CAS  Google Scholar 

  112. Grant, I.P., Pyper, N.C.: Nature 265, 715–717 (1977)

    Article  CAS  Google Scholar 

  113. Schwarz, W.H.E., Rutkowski, A., Collignon, G.: In: S. Wilson, I.P. Grant, B.L. Gyorffy (eds.) The Effects of Relativity on Atoms, Molecules, and the Solid State, pp. 135–148. Plenum, New York (1991)

    Google Scholar 

  114. van Wüllen, C., Langermann, N.: J. Chem. Phys. 126, 114106 (2007)

    Article  CAS  Google Scholar 

  115. Kaupp, M., Schleyer, P.v.R.: J. Am. Chem. Soc. 115, 1061–1073 (1993)

    Google Scholar 

  116. Schwarz, W.H.E., Wang, S.G.: Int. J. Quant. Chem. online since Sept. 22 (2009)

    Google Scholar 

  117. Pyykkö, P.: Phys. Scripta 20, 647–651 (1979)

    Article  Google Scholar 

  118. Connerade, J.P.: Contemp. Phys. 19, 415–448 (1978)

    CAS  Google Scholar 

  119. Connerade, J.P.: J. Phys. B 24, L109–L115 (1991)

    Article  CAS  Google Scholar 

  120. Wang, S.G., Qiu, Y.X., Fang, H., Schwarz, W.H.E.: Chem. Eur. J. 12, 4101–4114 (2006)

    Article  CAS  Google Scholar 

  121. Cohen-Tannoudji, C., Diu, B., Laloé, F.: Quantum Mechanics. Wiley, New York (1977)

    Google Scholar 

  122. Fleck, L.: Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Schwabe, Basel (1935); The Genesis and Development of a Scientific Fact. University of Chicago Press, Chicago, IL (1979)

    Google Scholar 

  123. Gordon, W.: Z. Physik. 40, 117–133 (1926)

    Article  CAS  Google Scholar 

  124. Hardekopf, G., Sucher, J.: Phys. Rev. A 30, 703–711 (1984)

    Article  Google Scholar 

  125. Hardekopf, G., Sucher, J.: Phys. Rev. A 31, 2020–2029 (1985)

    Article  CAS  Google Scholar 

  126. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962 et seq.)

    Google Scholar 

  127. Karwowski, J., Styszynski, J., Schwarz, W.H.E.: J. Phys. B 25, 2763–2764 (1992); J Phys B 24, 4877–4886 (1991)

    Google Scholar 

  128. Klein, O.: Z. Physik. 41, 407–442 (1927)

    Article  Google Scholar 

  129. Lichtenberg, G.C.: Sudelbuch No. 860, in (2000) The Waste Books. New York Review of Books, New York (1793)

    Google Scholar 

  130. Schwarz, W.H.E., van Wezenbeek, E.M., Baerends, E.J., Snijders, J.G.: J. Phys. B 22, 1515–1530 (1989)

    Article  CAS  Google Scholar 

  131. Schwarz, W.H.E., Andrae, D., Arnold, S.R., Heidberg, J., Hellmann, H., Hinze, J., Karachalios, A., Kovner, M.A., Schmidt, P.C., Zülicke, L.: Bunsenmagazin 1, 10–21, 60–70 (1999); http://www.tc.chemie.uni-siegen.de/hellmann/hh-engl_with_figs.pdf

  132. Swirles, B.: Proc. R. Soc. Lond. A 152, 625–649 (1935)

    Article  Google Scholar 

  133. Einstein, A.: Ann. Physik 17, xx–yy, zz–vv (1905)

    Google Scholar 

  134. Dirac, P.A.M.: Proc. Roy. Soc. Lond. A 123, 714–733 (1929)

    Article  CAS  Google Scholar 

  135. Mattheiss, L.F.: Phys. Rev. 151, 450–464 (1966)

    Article  CAS  Google Scholar 

  136. Malli, G., Oreg, J.: Chem. Phys. Lett. 69, 313–314 (1980)

    CAS  Google Scholar 

  137. Pitzer, K.S.: J. Chem. Phys. 63, 1032–1033 (1975)

    Article  CAS  Google Scholar 

  138. Pitzer, K.S.: Acc. Chem. Res. 12, 272–276 (1979)

    Article  Google Scholar 

  139. Schwarz, W.H.E., Rich, R.L.: J. Chem. Educ. 87, in press (2010)

    Google Scholar 

  140. Salam, A.: Int. Rev. Phys. Chem. 27, 405–448 (2008)

    CAS  Google Scholar 

  141. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms. Introduction to Quantum Electrodynamics. Wiley, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Eugen Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schwarz, W.H.E. (2010). An Introduction to Relativistic Quantum Chemistry. In: Barysz, M., Ishikawa, Y. (eds) Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9975-5_1

Download citation

Publish with us

Policies and ethics