Skip to main content

Formalisms for the Explicit Inclusion of Electronic Polarizability in Molecular Modeling and Dynamics Studies

  • Chapter
Book cover Multi-scale Quantum Models for Biocatalysis

Abstract

Current methodologies for modelling electronic polarization effects in empirical force fields are presented. Emphasis is placed on the mathematical details of the methods used to introduce polarizability, namely induced dipoles, Drude oscillators or fluctuating charge. Overviews are presented on approaches used to damp short range electrostatic interactions and on Extended Langrangian methods used to perform Molecular Dynamics simulations. The final section introduces the polarizable methods under development in the context of the program CHARMM

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ponder JW, Case DA (2003) Force fields for protein simulations. In: Daggett V, Eisendberg DS, Richards FM, Kuriyan J (eds) Protein Simulations, vol 66. Elsevier Academic Press, New York, pp 27–86

    Chapter  Google Scholar 

  2. Mackerell AD (2004) Empirical force fields for biological macromolecules: Overview and issues. J Comput Chem 25(13):1584–1604

    Article  CAS  Google Scholar 

  3. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  4. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  5. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  6. MacKerell AD Jr, Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) CHARMM: The energy function and its paramerization with an overview of the program. In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 1. John Wiley & Sons, Chichester, UK, p 271

    Google Scholar 

  7. Halgren TA, Damm W (2001) Polarizable force fields. Curr Opin Struct Biol 11(2):236–242

    Article  CAS  Google Scholar 

  8. Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations. In: Reviews in computational chemistry, vol 18. Wiley-Vch, Inc, New York, pp 89–146

    Google Scholar 

  9. Warshel A, Kato M, Pisliakov AV (2007) Polarizable force fields: history, test cases, and prospects. J Chem Theory Comput 3(6):2034–2045

    Article  CAS  Google Scholar 

  10. Lamoureux G, MacKerell AD, Roux B (2003) A simple polarizable model of water based on classical Drude oscillators. J Chem Phys 119(10):5185–5197

    Article  CAS  Google Scholar 

  11. Lamoureux G, Harder E, Vorobyov IV, Roux B, MacKerell AD (2006) A polarizable model of water for molecular dynamics simulations of biomolecules. Chem Phys Lett 418(1–3):245–249

    Google Scholar 

  12. Lamoureux G, Roux B (2003) Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J Chem Phys 119(6):3025–3039

    Article  CAS  Google Scholar 

  13. Ahlstrom P, Wallqvist A, Engstrom S, Jonsson B (1989) A molecular-dynamics study of polarizable water. Mol Phys 68(3):563–581

    Article  Google Scholar 

  14. Caldwell J, Dang LX, Kollman PA (1990) Implementation of nonadditive intermolecular potentials by use of molecular-dynamics – development of a water water potential and water ion cluster interactions. J Am Chem Soc 112(25):9144–9147

    Article  CAS  Google Scholar 

  15. Sprik M (1991) Computer-simulation of the dynamics of induced polarization fluctuations in water. J Phys Chem 95(6):2283–2291

    Article  CAS  Google Scholar 

  16. Millot C, Stone AJ (1992) Towards an accurate intermolecular potential for water. Molcular Phys 77(3):439–462

    Article  CAS  Google Scholar 

  17. Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force-fields – application to liquid water. J Chem Phys 101(7):6141–6156

    Article  CAS  Google Scholar 

  18. Giese TJ, York DM (2004) Many-body force field models based solely on pairwise Coulomb screening do not simultaneously reproduce correct gas-phase and condensed-phase polarizability limits. J Chem Phys 120(21):9903–9906

    Article  CAS  Google Scholar 

  19. Masia M, Probst M, Rey R (2004) On the performance of molecular polarization methods. I. Water and carbon tetrachloride close to a point charge. J Chem Phys 121(15):7362–7378

    Article  CAS  Google Scholar 

  20. Masia M, Probst M, Rey R (2005) On the performance of molecular polarization methods. II. Water and carbon tetrachloride close to a cation. J Chem Phys 123(16)

    Google Scholar 

  21. Friesner RA (2006) Modeling polarization in proteins and protein-ligand complexes: Methods and preliminary results. Adv Protein Chem 72: 79–104

    Article  CAS  Google Scholar 

  22. Swart M, van Duijnen PT (2006) DRF90: a polarizable force field. Mol Simul 32(6):471–484

    Article  CAS  Google Scholar 

  23. Gao JL, Habibollazadeh D, Shao L (1995) A polarizable intermolecular potential function for simulation of liquid alcohols. J Phys Chem 99(44):16460–16467

    Article  CAS  Google Scholar 

  24. Gao JL, Pavelites JJ, Habibollazadeh D (1996) Simulation of liquid amides using a polarizable intermolecular potential function. J Phys Chem 100(7):2689–2697

    Article  CAS  Google Scholar 

  25. Xie WS, Pu JZ, MacKerell AD, Gao JL (2007) Development of a polarizable intermolecular potential function (PIPF) for liquid amides and alkanes. J Chem Theory Comput 3(6):1878–1889

    Article  CAS  Google Scholar 

  26. Ma BY, Lii JH, Allinger NL (2000) Molecular polarizabilities and induced dipole moments in molecular mechanics. J Comput Chem 21(10):813–825

    Article  CAS  Google Scholar 

  27. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  CAS  Google Scholar 

  28. Reynolds CA, Ferenczy GG, Richards WG (1992) Methods for determining the reliability of semiempirical electrostatic potentials and potential derived charges. Theochem J Mol Struct 88, 249–269

    Article  CAS  Google Scholar 

  29. Ferenczy GG, Winn PJ, Reynolds CA (1997) Toward improved force fields: 2. Effective distributed multipoles. J Phys Chem A 101(30):5446–5455

    Article  CAS  Google Scholar 

  30. Ferenczy GG, Winn PJ, Reynolds CA, Richter G (1997) Effective distributed multipoles for the quantitative description of electrostatics and polarisation in intermolecular interactions. Abs Papers Am Chem Soc 214:38-COMP

    Google Scholar 

  31. Winn PJ, Ferenczy GG, Reynolds CA (1997) Toward improved force fields: 1. Multipole-derived atomic charges. J Phys Chem A 101(30):5437–5445

    Article  CAS  Google Scholar 

  32. Winn PJ, Ferenczy GG, Reynolds CA (1999) Towards improved force fields: III. Polarization through modified atomic charges. J Comput Chem 20(7):704–712

    Article  CAS  Google Scholar 

  33. Wu JH, Winn PJ, Ferenczy GG, Reynolds CA (1999) Solute polarization and the design of cobalt complexes as redox-active therapeutic agents. Int J Quant Chem 73(2):229–236

    Article  CAS  Google Scholar 

  34. Gooding SR, Winn PJ, Maurer RI, Ferenczy GG, Miller JR, Harris JE, Griffiths DV, Reynolds CA (2000) Fully polarizable QM/MM calculations: an application to the nonbonded iodine–oxygen interaction in dimethyl-2-iodobenzoylphosphonate. J Comput Chem 21(6):478–482

    Article  CAS  Google Scholar 

  35. Ferenczy GG, Reynolds CA (2001) Modeling polarization through induced atomic charges. J Phys Chem A 105(51):11470–11479

    Article  CAS  Google Scholar 

  36. Illingworth CJR, Gooding SR, Winn PJ, Jones GA, Ferenczy GG, Reynolds CA (2006) Classical polarization in hybrid QM/MM methods. J Phys Chem A 110(20):6487–6497

    Article  CAS  Google Scholar 

  37. Ferenczy GG (1991) Charges derived from distributed multipole series. J Comput Chem 12(8):913–917

    Article  CAS  Google Scholar 

  38. Chipot C, Angyan JG, Ferenczy GG, Scheraga HA (1993) Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties – a case-study of saturated-hydrocarbons. J Phys Chem 97(25):6628–6636

    Article  CAS  Google Scholar 

  39. Zhu SB, Yao S, Zhu JB, Singh S, Robinson GW (1991) A flexible polarizable simple point-charge water model. J Phys Chem 95(16):6211–6217

    Article  CAS  Google Scholar 

  40. Ren PY, Ponder JW (2002) Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations. J Comput Chem 23(16):1497–1506

    Article  CAS  Google Scholar 

  41. Grossfield A, Ren PY, Ponder JW (2003) Ion solvation thermodynamics from simulation with a polarizable force field. J Am Chem Soc 125(50):15671–15682

    Article  CAS  Google Scholar 

  42. Grossfield A, Ren PY, Ponder JW (2003) Single ion solvation thermodynamics from simulations. Biophys J 84(2):94A–94A

    Google Scholar 

  43. Ren PY, Ponder JW (2003) Polarizable atomic multipole water model for molecular mechanics simulation. J Phys Chem B 107(24):5933–5947

    Article  CAS  Google Scholar 

  44. Ren PY, Ponder JW (2004) Temperature and pressure dependence of the AMOEBA water model. J Phys Chem B 108(35):13427–13437

    Article  CAS  Google Scholar 

  45. Grossfield A (2005) Dependence of ion hydration on the sign of the ion’s charge. J Chem Phys 122(2)

    Google Scholar 

  46. Jiao D, King C, Grossfield A, Darden TA, Ren PY (2006) Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J Phys Chem B 110(37):18553–18559

    Article  CAS  Google Scholar 

  47. Rasmussen TD, Ren PY, Ponder JW, Jensen F (2007) Force field modeling of conformational energies: importance of multipole moments and intramolecular polarization. Int J Quant Chem 107(6):1390–1395

    Article  CAS  Google Scholar 

  48. Piquemal JP, Perera L, Cisneros GA, Ren PY, Pedersen LG, Darden TA (2006) Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: from energetics to structure. J Chem Phys 125(5):054511

    Article  CAS  Google Scholar 

  49. Applequist J, Carl JR, Fung K-K (1972) Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J Am Chem Soc 94(9):2952–2960

    Article  CAS  Google Scholar 

  50. Thole BT (1981) Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys 59(3):341–350

    Article  CAS  Google Scholar 

  51. Stone AJ (1997) The theory of intermolecular forces. Oxford University Press, Oxford

    Google Scholar 

  52. Vesely FJ (1977) N-particle dynamics of polarizable Stockmayer-type molecules. J Comput Phys 24(4):361–371

    Article  CAS  Google Scholar 

  53. Bernardo DN, Ding YB, Kroghjespersen K, Levy RM (1994) An anisotropic polarizable water model – incorporation of all-atom polarizabilities into molecular mechanics force-fields. J Phys Chem 98(15):4180–4187

    Article  CAS  Google Scholar 

  54. Pollock EL, Alder BJ, Patey GN (1981) Static dielectric properties of polarizable Stockmayer fluids. Physica A Stat Theor Phys 108(1):14–26

    Article  Google Scholar 

  55. van Belle D, Couplet I, Prevost M, Wodak SJ (1987) Calculations of electrostatic properties in proteins – analysis of contributions from induced protein dipoles. J Mol Biol 198(4):721–735

    Article  Google Scholar 

  56. Yu HB, Hansson T, van Gunsteren WF (2003) Development of a simple, self-consistent polarizable model for liquid water. J Chem Phys 118(1):221–234

    Article  CAS  Google Scholar 

  57. Yu HB, van Gunsteren WF (2004) Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice. J Chem Phys 121(19):9549–9564

    Article  CAS  Google Scholar 

  58. Anisimov VM, Lamoureux G, Vorobyov IV, Huang N, Roux B, MacKerell AD (2005) Determination of electrostatic parameters for a polarizable force field based on the classical Drude oscillator. J Chem Theory Comput 1(1):153–168

    Article  CAS  Google Scholar 

  59. Yu HB, van Gunsteren WF (2005) Accounting for polarization in molecular simulation. Comput Phys Commun 172(2):69–85

    Article  CAS  Google Scholar 

  60. Harder E, Anisimov VM, Vorobyov IV, Lopes PEM, Noskov SY, MacKerell AD, Roux B (2006) Atomic level anisotropy in the electrostatic modeling of lone pairs for a polarizable force field based on the classical Drude oscillator. J Chem Theory Comput 2(6):1587–1597

    Article  CAS  Google Scholar 

  61. Lamoureux G, Roux B (2006) Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J Phys Chem B 110(7):3308–3322

    Article  CAS  Google Scholar 

  62. Yu HB, Geerke DP, Liu HY, van Gunsteren WE (2006) Molecular dynamics simulations of liquid methanol and methanol–water mixtures with polarizable models. J Comput Chem 27(13):1494–1504

    Article  CAS  Google Scholar 

  63. Anisimov VM, Vorobyov IV, Roux B, MacKerell AD (2007) Polarizable empirical force field for the primary and secondary alcohol series based on the classical drude model. J Chem Theory Comput 3(6):1927–1946

    Article  CAS  Google Scholar 

  64. Lopes PEM, Lamoureux G, Roux B, MacKerell AD (2007) Polarizable empirical force field for aromatic compounds based on the classical Drude oscillator. J Phys Chem B 111(11):2873–2885

    Article  CAS  Google Scholar 

  65. Harder E, Anisimov VM, Whitfield TW, MacKerell AD, Roux B (2008) Understanding the dielectric properties of liquid amides from a polarizable force field. J Phys Chem B 112(11):3509–3521

    Article  CAS  Google Scholar 

  66. Drude P (2008) The theory of optics (1902). Kessinger Publishing Company

    Google Scholar 

  67. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8–26

    Article  CAS  Google Scholar 

  68. Bade WL (1957) Drude-model calculation of dispersion forces. I. General theory. J Chem Phys 27(6):1280–1284

    Article  CAS  Google Scholar 

  69. Bade WL, Kirkwood JG (1957) Drude-model calculation of dispersion forces. II. The linear lattice. J Chem Phys 27(6):1284–1288

    Article  CAS  Google Scholar 

  70. Bade WL (1958) Drude-model calculation of dispersion forces. III. The fourth-order contribution. J Chem Phys 28(2):282–284

    Article  CAS  Google Scholar 

  71. Amos AT (1996) Bond properties using a modern version of the Drude model. Int J Quant Chem 60(1):67–74

    Article  CAS  Google Scholar 

  72. Wang F, Jordan KD (2002) Application of a Drude model to the binding of excess electrons to water clusters. J Chem Phys 116(16):6973–6981

    Article  CAS  Google Scholar 

  73. Dick BG, Overhauser AW (1958) Theory of the dielectric constants of alkali halide crystals. Phys Rev 112(1):90–103

    Article  CAS  Google Scholar 

  74. Hanlon JE, Lawson AW (1959) Effective ionic charge in alkali halides. Phys Rev 113(2):472–478

    Article  CAS  Google Scholar 

  75. Jacucci G, McDonald IR, Singer K (1974) Introduction of the shell model of ionic polarizability into molecular dynamics calculations. Phys Lett A 50(2):141–143

    Article  Google Scholar 

  76. Lindan PJD, Gillan MJ (1993) Shell-model molecular-dynamics simulation of superionic conduction in CAF2. J Phys Conden Matter 5(8):1019–1030

    Article  CAS  Google Scholar 

  77. Mitchell PJ, Fincham D (1993) Shell-model simulations by adiabatic dynamics. J Phys Conden Matter 5(8):1031–1038

    Article  CAS  Google Scholar 

  78. Lindan PJD (1995) Dynamics with the shell-model. Mol Simul 14(4–5):303–312

    Article  CAS  Google Scholar 

  79. Noskov SY, Lamoureux G, Roux B (2005) Molecular dynamics study of hydration in ethanol-water mixtures using a polarizable force field. J Phys Chem B 109(14):6705–6713

    Article  CAS  Google Scholar 

  80. Hoye JS, Stell G (1980) Dielectric theory for polar molecules with fluctuating polarizability. J Chem Phys 73(1):461–468

    Article  Google Scholar 

  81. Pratt LR (1980) Effective field of a dipole in non-polar polarizable fluids. Mol Phys 40(2):347–360

    Article  CAS  Google Scholar 

  82. Lado F (1997) Molecular theory of a charged particle in a polarizable nonpolar liquid. J Chem Phys 106(11):4707–4713

    Article  CAS  Google Scholar 

  83. Cao J, Berne BJ (1993) Theory of polarizable liquid crystals: optical birefringence. J Chem Phys 99(3):2213–2220

    Article  CAS  Google Scholar 

  84. Saint-Martin H, Medina-Llanos C, Ortega-Blake I (1990) Nonadditivity in an analytical intermolecular potential – the water–water interaction. J Chem Phys 93(9):6448–6452

    Article  CAS  Google Scholar 

  85. de Leeuw NH, Parker SC (1998) Molecular-dynamics simulation of MgO surfaces in liquid water using a shell-model potential for water. Phys Rev B 58(20):13901–13908

    Article  Google Scholar 

  86. Saint-Martin H, Hernandez-Cobos J, Bernal-Uruchurtu MI, Ortega-Blake I, Berendsen HJC (2000) A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water–water interaction. J Chem Phys 113(24):10899–10912

    Article  CAS  Google Scholar 

  87. van Maaren PJ, van der Spoel D (2001) Molecular dynamics simulations of water with novel shell-model potentials. J Phys Chem B 105(13):2618–2626

    Article  CAS  Google Scholar 

  88. Whitfield TW, Varma S, Harder E, Lamoureux G, Rempe SB, Roux B (2007) Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models. J Chem Theory Comput 3(6):2068–2082

    Article  CAS  Google Scholar 

  89. Lu ZY, Zhang YK (2008) Interfacing ab initio quantum mechanical method with classical Drude osillator polarizable model for molecular dynamics simulation of chemical reactions. J Chem Theory Comput 4(8):1237–1248

    Article  CAS  Google Scholar 

  90. van Belle D, Froeyen M, Lippens G, Wodak SJ (1992) Molecular-dynamics simulation of polarizable water by an extended lagrangian method. Mol Phys 77(2):239–255

    Article  Google Scholar 

  91. Sprik M, Klein ML (1988) A polarizable model for water using distributed charge sites. J Chem Phys 89(12):7556–7560

    Article  CAS  Google Scholar 

  92. Patel S, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J Comput Chem 25(1):1–15

    Article  CAS  Google Scholar 

  93. Nalewajski RF (1991) Normal (decoupled) representation of electronegativity equalization equations in a molecule. Int J Quant Chem 40(2):265–285

    Article  CAS  Google Scholar 

  94. Chelli R, Procacci P (2002) A transferable polarizable electrostatic force field for molecular mechanics based on the chemical potential equalization principle. J Chem Phys 117(20):9175–9189

    Article  CAS  Google Scholar 

  95. Itskowitz P, Berkowitz ML (1997) Chemical potential equalization principle: direct approach from density functional theory. J Phys Chem A 101(31):5687–5691

    Article  CAS  Google Scholar 

  96. Nalewajski RF (1998) On the chemical potential/electronegativity equalization in density functional theory. Polish J Chem 72(7):1763–1778

    CAS  Google Scholar 

  97. Chelli R, Ciabatti S, Cardini G, Righini R, Procacci P (1999) Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method. J Chem Phys 111(9):4218–4229

    Article  CAS  Google Scholar 

  98. Bret C, Field MJ, Hemmingsen L (2000) A chemical potential equalization model for treating polarization in molecular mechanical force fields. Mol Phys 98(11):751–763

    Article  CAS  Google Scholar 

  99. Chelli R, Ciabatti S, Cardini G, Righini R, Procacci P (2000) Calculation of optical spectra in liquid methanol using molecular dynamics and the chemical potential equalization method (vol 111, p 4218, 1999). J Chem Phys 112(12):5515–5515

    Article  CAS  Google Scholar 

  100. Nalewajski RF (2000) Charge sensitivities of the externally interacting open reactants. Int J Quant Chem 78(3):168–178

    Article  CAS  Google Scholar 

  101. Llanta E, Ando K, Rey R (2001) Fluctuating charge study of polarization effects in chlorinated organic liquids. J Phys Chem B 105(32):7783–7791

    Article  CAS  Google Scholar 

  102. York DM (2002) Chemical potential equalization: a many-body force field for molecular simulations. Abs Papers Am Chem Soc 224:U472–U472

    Google Scholar 

  103. Smith PE (2004) Local chemical potential equalization model for cosolvent effects on biomolecular equilibria. J Phys Chem B 108(41):16271–16278

    Article  CAS  Google Scholar 

  104. Chelli R, Barducci A, Bellucci L, Schettino V, Procacci P (2005) Behavior of polarizable models in presence of strong electric fields. I. Origin of nonlinear effects in water point-charge systems. J Chem Phys 123(19):194109

    Article  CAS  Google Scholar 

  105. Medeiros M (2005) Monte Carlo simulation of polarizable systems: early rejection scheme for improving the performance of adiabatic nuclear and electronic sampling Monte Carlo simulations. Theor Chem Acc 113(3):178–182

    Article  CAS  Google Scholar 

  106. Piquemal JP, Chelli R, Procacci P, Gresh N (2007) Key role of the polarization anisotropy of water in modeling classical polarizable force fields. J Phys Chem A 111(33):8170–8176

    Article  CAS  Google Scholar 

  107. Warren GL, Davis JE, Patel S (2008) Origin and control of superlinear polarizability scaling in chemical potential equalization methods. J Chem Phys 128(14):144110

    Article  CAS  Google Scholar 

  108. Zhang Y, Lin H (2008) Flexible-boundary quantum-mechanical/molecular-mechanical calculations: partial charge transfer between the quantum-mechanical and molecular-mechanical subsystems. J Chem Theory Comput 4(3):414–425

    Article  CAS  Google Scholar 

  109. Rappe AK, Goddard WA (1991) Charge equilibration for molecular-dynamics simulations. J Phys Chem 95(8):3358–3363

    Article  CAS  Google Scholar 

  110. Kitao O, Ogawa T (2003) Consistent charge equilibration (CQEq). Mol Phys 101(1–2):3–17

    Article  CAS  Google Scholar 

  111. Nistor RA, Polihronov JG, Muser MH, Mosey NJ (2006) A generalization of the charge equilibration method for nonmetallic materials. J Chem Phys 125(9):094108

    Article  CAS  Google Scholar 

  112. Ogawa T, Kurita N, Sekino H, Kitao O, Tanaka S (2004) Consistent charge equilibration (CQEq) method: application to amino acids and crambin protein. Chem Phys Lett 397(4–6):382–387

    Article  CAS  Google Scholar 

  113. Sefcik J, Demiralp E, Cagin T, Goddard WA (2002) Dynamic charge equilibration-morse stretch force field: application to energetics of pure silica zeolites. J Comput Chem 23(16):1507–1514

    Article  CAS  Google Scholar 

  114. Tanaka M, Siehl HU (2008) An application of the consistent charge equilibration (CQEq) method to guanidinium ionic liquid systems. Chem Phys Lett 457(1–3):263–266

    Article  CAS  Google Scholar 

  115. Brodersen S, Wilke S, Leusen FJJ, Engel GE (2005) Comparison of static and fluctuating charge models for force-field methods applied to organic crystals. Cryst Growth Des 5(3):925–933

    Article  CAS  Google Scholar 

  116. Chen B, Xing JH, Siepmann JI (2000) Development of polarizable water force fields for phase equilibrium calculations. J Phys Chem B 104(10):2391–2401

    Article  CAS  Google Scholar 

  117. Liu YP, Kim K, Berne BJ, Friesner RA, Rick SW (1998) Constructing ab initio force fields for molecular dynamics simulations. J Chem Phys 108(12):4739–4755

    Article  CAS  Google Scholar 

  118. Stuart SJ, Berne BJ (1996) Effects of polarizability on the hydration of the chloride ion. J Phys Chem 100(29):11934–11943

    Article  CAS  Google Scholar 

  119. Stuart SJ, Berne BJ (1999) Surface Curvature Effects in the Aqueous Ionic Solvation of the Chloride Ion. J Phys Chem A 103(49):10300–10307

    Article  CAS  Google Scholar 

  120. Banks JL, Kaminski GA, Zhou RH, Mainz DT, Berne BJ, Friesner RA (1999) Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model. J Chem Phys 110(2):741–754

    Article  CAS  Google Scholar 

  121. Rick SW, Berne BJ (1996) Dynamical fluctuating charge force fields: The aqueous solvation of amides. J Am Chem Soc 118(3):672–679

    Article  CAS  Google Scholar 

  122. Toufar H, Baekelandt BG, Janssens GOA, Mortier WJ, Schoonheydt RA (1995) Investigation of supramolecular systems by a combination of the electronegativity equalization method and a Monte-Carlo simulation technique. J Phys Chem 99(38):13876–13885

    Article  CAS  Google Scholar 

  123. Perng BC, Newton MD, Raineri FO, Friedman HL (1996) Energetics of charge transfer reactions in solvents of dipolar and higher order multipolar character. 1. Theory. J Chem Phys 104(18):7153–7176

    Article  CAS  Google Scholar 

  124. Perng BC, Newton MD, Raineri FO, Friedman HL (1996) Energetics of charge transfer reactions in solvents of dipolar and higher order multipolar character. 2. Results. J Chem Phys 104(18):7177–7204

    Article  CAS  Google Scholar 

  125. Field MJ (1997) Hybrid quantum mechanical molecular mechanical fluctuating charge models for condensed phase simulations. Mol Phys 91(5):835–845

    Article  CAS  Google Scholar 

  126. Ribeiro MCC, Almeida LCJ (1999) Fluctuating charge model for polyatomic ionic systems: a test case with diatomic anions. J Chem Phys 110(23):11445–11448

    Article  CAS  Google Scholar 

  127. Iczkowski RP, Margrave JL (1961) Electronegativity. J Am Chem Soc 83(17):3547–3551

    Article  CAS  Google Scholar 

  128. Mulliken RS (1934) A new electroaffinity scale, together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2(11):782–793

    Article  CAS  Google Scholar 

  129. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  130. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68(8):3801–3807

    Article  CAS  Google Scholar 

  131. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  132. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quant Chem 10(2):325–340

    Article  CAS  Google Scholar 

  133. Weinhold F (1997) Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. J Mol Struct Theochem 398–399:181–197

    Article  Google Scholar 

  134. van der Vaart A, Merz KM (1999) The role of polarization and charge transfer in the solvation of biomolecules. J Am Chem Soc 121(39):9182–9190

    Article  CAS  Google Scholar 

  135. Korchowiec J, Uchimaru T (2000) New energy partitioning scheme based on the self-consistent charge and configuration method for subsystems: application to water dimer system. J Chem Phys 112(4):1623–1633

    Article  CAS  Google Scholar 

  136. Jeziorski B, Moszynski R, Szalewicz K (1994) Perturbation-theory approach to intermolecular potential-energy surfaces of Van-Der-Waals complexes. Chem Rev 94(7):1887–1930

    Article  CAS  Google Scholar 

  137. Chelli R, Procacci P, Righini R, Califano S (1999) Electrical response in chemical potential equalization schemes. J Chem Phys 111(18):8569–8575

    Article  CAS  Google Scholar 

  138. Stern HA, Kaminski GA, Banks JL, Zhou RH, Berne BJ, Friesner RA (1999) Fluctuating charge, polarizable dipole, and combined models: parameterization from ab initio quantum chemistry. J Phys Chem B 103(22):4730–4737

    Article  CAS  Google Scholar 

  139. Yang ZZ, Wang CS (1997) Atom-bond electronegativity equalization method. 1. Calculation of the charge distribution in large molecules. J Phys Chem A 101(35):6315–6321

    Article  CAS  Google Scholar 

  140. Wang CS, Li SM, Yang ZZ (1998) Calculation of molecular energies by atom-bond electronegativity equalization method. Theochem J Mol Struct 430, 191–199

    Article  CAS  Google Scholar 

  141. Wang CS, Yang ZZ (1999) Atom-bond electronegativity equalization method. II. Lone-pair electron model. J Chem Phys 110(13):6189–6197

    Article  CAS  Google Scholar 

  142. Cong Y, Yang ZZ (2000) General atom-bond electronegativity equalization method and its application in prediction of charge distributions in polypeptide. Chem Phys Lett 316(3–4):324–329

    Article  CAS  Google Scholar 

  143. Yang ZZ, Wang CS (2003) Atom-bond electronegativity equalization method and its applications based on density functional theory. J Theor Comput Chem 2(2):273–299

    Article  CAS  Google Scholar 

  144. Yang ZZ, Wu Y, Zhao DX (2004) Atom-bond electronegativity equalization method fused into molecular mechanics. I. A seven-site fluctuating charge and flexible body water potential function for water clusters. J Chem Phys 120(6):2541–2557

    Article  CAS  Google Scholar 

  145. Wu Y, Yang ZZ (2004) Atom-bond electronegativity equalization method fused into molecular mechanics. II. A seven-site fluctuating charge and flexible body water potential function for liquid water. J Phys Chem A 108(37):7563–7576

    Article  CAS  Google Scholar 

  146. van Duijnen PT, Swart M (1998) Molecular and atomic polarizabilities: Thole’s model revisited. J Phys Chem A 102(14):2399–2407

    Article  Google Scholar 

  147. Stillinger FH (1979) Dynamics and ensemble averages for the polarization models of molecular interactions. J Chem Phys 71(4):1647

    Article  CAS  Google Scholar 

  148. Wallqvist A, Berne BJ (1993) Effective potentials for liquid water using polarizable and nonpolarizable models. J Phys Chem 97(51):13841–13851

    Article  CAS  Google Scholar 

  149. Stillinger FH, David CW (1978) Polarization model for water and its ionic dissociation products. J Chem Phys 69(4):1473

    Article  CAS  Google Scholar 

  150. Kuwajima S, Warshel A (1990) Incorporating electric polarizabilities in water water interaction potentials. J Phys Chem 94(1):460–466

    Article  CAS  Google Scholar 

  151. Ojamae L, Shavitt I, Singer SJ (1998) Potential models for simulations of the solvated proton in water. J Chem Phys 109(13):5547–5564

    Article  CAS  Google Scholar 

  152. Ding YB, Bernardo DN, Kroghjespersen K, Levy RM (1995) Solvation free-energies of small amides and amines from molecular-dynamics free-energy perturbation simulations using pairwise additive and many-body polarizable potentials. J Phys Chem 99(29):11575–11583

    Article  CAS  Google Scholar 

  153. Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular-dynamics. J Chem Phys 97(3):1990–2001

    Article  CAS  Google Scholar 

  154. Tuckerman M, Berne BJ, Martyna GJ (1993) Reversible multiple time-scale molecular-dynamics – reply. J Chem Phys 99(3):2278–2279

    Article  CAS  Google Scholar 

  155. Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Explicit reversible integrators for extended systems dynamics. Mol Phys 87(5):1117–1157

    Article  CAS  Google Scholar 

  156. Pollock EL, Alder BJ (1977) Effective field of a dipole in polarizable fluids. Phys Rev Lett 39(5):299–302

    Article  CAS  Google Scholar 

  157. Chialvo AA, Cummings PT (1996) Engineering a simple polarizable model for the molecular simulation of water applicable over wide ranges of state conditions. J Chem Phys 105(18):8274–8281

    Article  CAS  Google Scholar 

  158. Dang LX, Chang TM (1997) Molecular dynamics study of water clusters, liquid, and liquid–vapor interface of water with many-body potentials. J Chem Phys 106(19):8149–8159

    Article  CAS  Google Scholar 

  159. Barnes P, Finney JL, Nicholas JD, Quinn JE (1979) Cooperative effects in simulated water. Nature 282(5738):459–464

    Article  CAS  Google Scholar 

  160. Chang TM, Peterson KA, Dang LX (1995) Molecular-dynamics simulations of liquid, interface, and ionic solvation of polarizable carbon-tetrachloride. J Chem Phys 103(17):7502–7513

    Article  CAS  Google Scholar 

  161. Toukmaji A, Sagui C, Board J, Darden T (2000) Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J Chem Phys 113(24):10913–10927

    Article  CAS  Google Scholar 

  162. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon Press, New York

    Google Scholar 

  163. Brodholt J, Sampoli M, Vallauri R (1995) Parameterizing polarizable intermolecular potentials for water with the ice 1 h phase. Mol Phys 85(1):81–90

    Article  CAS  Google Scholar 

  164. Svishchev IM, Kusalik PG, Wang J, Boyd RJ (1996) Polarizable point-charge model for water: results under normal and extreme conditions. J Chem Phys 105(11):4742–4750

    Article  Google Scholar 

  165. Wallqvist A, Ahlstrom P, Karlstrom G (1990) A new intermolecular energy calculation scheme – applications to potential surface and liquid properties of water. J Phys Chem 94(4):1649–1656

    Article  CAS  Google Scholar 

  166. Ruocco G, Sampoli M (1994) Computer-simulation of polarizable fluids – a consistent and fast way for dealing with polarizability and hyperpolarizability. Mol Phys 82(5):875–886

    Article  CAS  Google Scholar 

  167. Kaminski GA, Friesner RA, Zhou RH (2003) A computationally inexpensive modification of the point dipole electrostatic polarization model for molecular simulations. J Comput Chem 24(3):267–276

    Article  CAS  Google Scholar 

  168. Car R, Parrinello M(1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55(22):2471–2474

    Article  CAS  Google Scholar 

  169. van Belle D, Wodak SJ (1995) Extended Lagrangian formalism applied to temperature control and electronic polarization effects in molecular dynamics simulations. Comput Phys Commun 91(1–3):253–262

    Article  Google Scholar 

  170. Halley JW, Rustad JR, Rahman A (1993) A polarizable, dissociating molecular-dynamics model for liquid water. J Chem Phys 98(5):4110–4119

    Article  CAS  Google Scholar 

  171. Saboungi ML, Rahman A, Halley JW, Blander M (1988) Molecular-dynamics studies of complexing in binary molten-salts with polarizable anions – Max4. J Chem Phys 88(9):5818–5823

    Article  CAS  Google Scholar 

  172. Harder E, Kim BC, Friesner RA, Berne BJ (2005) Efficient simulation method for polarizable protein force fields: application to the simulation of BPTI in liquid. J Chem Theory Comput 1(1):169–180

    Article  CAS  Google Scholar 

  173. Kiyohara K, Gubbins KE, Panagiotopoulos AZ (1998) Phase coexistence properties of polarizable water models. Mol Phys 94(5):803–808

    Article  CAS  Google Scholar 

  174. Jedlovszky P, Vallauri R (1999) Temperature dependence of thermodynamic properties of a polarizable potential model of water. Mol Phys 97(11):1157–1163

    Article  CAS  Google Scholar 

  175. Mahoney MW, Jorgensen WL (2001) Rapid estimation of electronic degrees of freedom in Monte Carlo calculations for polarizable models of liquid water. J Chem Phys 114(21):9337–9349

    Article  CAS  Google Scholar 

  176. Goodfellow JM (1982) Cooperative effects in water-biomolecule crystal systems. Proc Natl Acad Sci USA 79(16):4977–4979

    Article  CAS  Google Scholar 

  177. Cabral BJC, Rivail JL, Bigot B (1987) A Monte-Carlo simulation study of a polarizable liquid – influence of the electrostatic induction on its thermodynamic and structural-properties. J Chem Phys 86(3):1467–1473

    Article  CAS  Google Scholar 

  178. Rullmann JAC, van Duijnen PT (1988) A polarizable water model for calculation of hydration energies. Mol Phys 63(3):451–475

    Article  CAS  Google Scholar 

  179. Cieplak P, Kollman P, Lybrand T (1990) A new water potential including polarization – application to gas-phase, liquid, and crystal properties of water. J Chem Phys 92(11):6755–6760

    Article  CAS  Google Scholar 

  180. Jedlovszky P, Vallauri R (2005) Liquid–vapor and liquid–liquid phase equilibria of the Brodholt-Sampoli-Vallauri polarizable water model. J Chem Phys 122(8):081101

    Article  CAS  Google Scholar 

  181. Valdez-Gonzales M, Sanit-Martin H, Hernandez-Cobos J, Ayala R, Sanchez-Marcos E, Ortega-Blake I (2007) Liquid methanol Monte Carlo simulations with a refined potential which includes polarizability, nonadditivity, and intramolecular relaxation. J Chem Phys 127(22):224507

    Article  CAS  Google Scholar 

  182. Nymand TM, Linse P (2000) Molecular dynamics simulations of polarizable water at different boundary conditions. J Chem Phys 112(14):6386–6395

    Article  CAS  Google Scholar 

  183. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik 369(3):253–287

    Article  Google Scholar 

  184. Darden T, Perera L, Li LP, Pedersen L (1999) New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Struct Fold Des 7(3):R55–R60

    Article  CAS  Google Scholar 

  185. Kutteh R, Nicholas JB (1995) Efficient dipole iteration in polarizable charged systems using the cell multipole method and application to polarizable water. Comput Phys Commun 86(3):227–235

    Article  CAS  Google Scholar 

  186. Kutteh R, Nicholas JB (1995) Implementing the cell multipole method for dipolar and charged dipolar systems. Comput Phys Commun 86(3):236–254

    Article  CAS  Google Scholar 

  187. Toukmaji AY, Board JA (1996) Ewald summation techniques in perspective: a survey. Comput Phys Commun 95(2–3):73–92

    Article  CAS  Google Scholar 

  188. Sandak B (2001) Multiscale fast summation of long-range charge and dipolar interactions. J Comput Chem 22(7):717–731

    Article  CAS  Google Scholar 

  189. Jacucci G, McDonald IR, Rahman A (1976) Effects of polarization on equilibrium and dynamic properties of ionic systems. Phys Rev A 13(4):1581–1592

    Article  CAS  Google Scholar 

  190. Sangster MJL, Dixon M (1976) Interionic potentials in alkali halides and their use in simulations of the molten salts. Adv Phys 25(3):247–342

    Article  CAS  Google Scholar 

  191. Dixon M, Sangster MJL (1975) Simulation of molten NaI including polarization effects. J Phys C Solid State Phys 8(1):L8–L11

    Article  CAS  Google Scholar 

  192. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  Google Scholar 

  193. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  194. Medeiros M, Costas ME (1997) Gibbs ensemble Monte Carlo simulation of the properties of water with a fluctuating charges model. J Chem Phys 107(6):2012–2019

    Article  CAS  Google Scholar 

  195. Campbell T, Kalia RK, Nakano A, Vashishta P, Ogata S, Rodgers S (1999) Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers. Phys Rev Lett 82(24):4866–4869

    Article  CAS  Google Scholar 

  196. Streitz FH, Mintmire JW (1994) Electrostatic potentials for metal-oxide surfaces and interfaces. Phys Rev B 50(16):11996–12003

    Article  CAS  Google Scholar 

  197. Keffer DJ, Mintmire JW (2000) Efficient parallel algorithms for molecular dynamics simulations using variable charge transfer electrostatic potentials. Int J Quant Chem 80(4–5):733–742

    Article  CAS  Google Scholar 

  198. Nakano A (1997) Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics. Comput Phys Commun 104(1–3):59–69

    Article  CAS  Google Scholar 

  199. English NJ (2005) Molecular dynamics simulations of liquid water using various long range electrostatics techniques. Mol Phys 103(14):1945–1960

    Article  CAS  Google Scholar 

  200. Gronbech-Jensen N (1997) Lekner summation of long range interactions in periodic systems. Int J Mod Phys C 8(6):1287–1297

    Article  Google Scholar 

  201. Lekner J (1989) Summation of dipolar fields in simulated liquid vapor interfaces. Physica A 157(2):826–838

    Article  CAS  Google Scholar 

  202. Lekner J (1991) Summation of coulomb fields in computer-simulated disordered-systems. Physica A 176(3):485–498

    Article  Google Scholar 

  203. Barker JA, Watts RO (1973) Monte Carlo studies of the dielectric properties of water-like models. Mol Phys 26(3):789–792

    Article  CAS  Google Scholar 

  204. Neumann M (1983) Dipole moment fluctuation formulas in computer simulations of polar systems. Mol Phys 50(4):841–858

    Article  CAS  Google Scholar 

  205. Neumann M (1985) The dielectric constant of water. Computer simulations with the MCY potential. J Chem Phys 82(12):5663–5672

    CAS  Google Scholar 

  206. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393

    Article  CAS  Google Scholar 

  207. Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45(14):1196–1199

    Article  CAS  Google Scholar 

  208. Bernardo DN, Ding YB, Kroghjespersen K, Levy RM (1995) Evaluating polarizable potentials on distributed-memory parallel computers – program-development and applications. J Comput Chem 16(9):1141–1152

    Article  CAS  Google Scholar 

  209. Lopes PEM, Lamoureux G, MacKerell AD, Polarizable Empirical Force Field for Nitrogen-containing Heteroaromatic Compounds Based on the Classical Drude Oscillator. Accepted for publication on J Comput Chem

    Google Scholar 

  210. Stern HA, Rittner F, Berne BJ, Friesner RA (2001) Combined fluctuating charge and polarizable dipole models: application to a five-site water potential function. J Chem Phys 115(5):2237–2251

    Article  CAS  Google Scholar 

  211. Kaminski GA, Stern HA, Berne BJ, Friesner RA, Cao YXX, Murphy RB, Zhou RH, Halgren TA (2002) Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests. J Comput Chem 23(16):1515–1531

    Article  CAS  Google Scholar 

  212. Foloppe N, MacKerell AD (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21(2):86–104

    Article  CAS  Google Scholar 

  213. Yin DX, Mackerell AD (1998) Combined ab initio empirical approach for optimization of Lennard-Jones parameters. J Comput Chem 19(3):334–348

    Article  CAS  Google Scholar 

  214. Patel S, Mackerell AD, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: II – Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem 25(12):1504–1514

    Article  CAS  Google Scholar 

  215. Patel S, Brooks CL (2005) Structure, thermodynamics, and liquid–vapor equilibrium of ethanolfrom molecular-dynamics simulations using nonadditive interactions. J Chem Phys 123(16):164502

    Article  CAS  Google Scholar 

  216. Patel S, Brooks CL (2005) A nonadditive methanol force field: bulk liquid and liquid–vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model. J Chem Phys 122(2)

    Google Scholar 

  217. Zhong Y, Warren GL, Patel S (2008) Thermodynamic and structural properties of methanol-water solutions using nonadditive interaction models. J Comput Chem 29(7):1142–1152

    Article  CAS  Google Scholar 

  218. Warren GL, Patel S (2007) Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. J Chem Phys 127(6):064509

    Article  CAS  Google Scholar 

  219. Warren GL, Patel S (2008) Comparison of the solvation structure of polarizable and nonpolarizable ions in bulk water and near the aqueous liquid–vapor interface. J Phys Chem C 112(19):7455–7467

    Article  CAS  Google Scholar 

  220. Patel S, Brooks CL (2006) Fluctuating charge force fields: recent developments and applications from small molecules to macromolecular biological systems. Mol Simul 32(3–4), 231–249

    Article  CAS  Google Scholar 

  221. Patel S, Brooks CL (2006) Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. J Chem Phys 124(20):204706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lopes, P.E., Harder, E., Roux, B., Mackerell, A.D. (2009). Formalisms for the Explicit Inclusion of Electronic Polarizability in Molecular Modeling and Dynamics Studies. In: York, D.M., Lee, TS. (eds) Multi-scale Quantum Models for Biocatalysis. Challenges and Advances in Computational Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9956-4_9

Download citation

Publish with us

Policies and ethics