Skip to main content

Quantum Mechanical Methods for Biomolecular Simulations

  • Chapter
Multi-scale Quantum Models for Biocatalysis

Abstract

We discuss quantum mechanical methods for the description of the potential energy surface and for the treatment of nuclear quantum effects in chemical and biological applications. Two novel electronic structure methods are described, including an electronic structure-based explicit polarization (X-Pol) force field and an effective Hamiltonian molecular orbital and valence bond (EH-MOVB) theory. In addition, we present two path integral techniques to treat nuclear quantum effects, which include an analytical pathintegral method based on Kleinert’s variational perturbation theory, and integrated pathintegral free-energy perturbation and umbrella sampling (PI-FEP/UM) simulation. Studies have shown that quantum mechanics can be applied to biocatalytic systems in a variety of ways and scales. We hope that the methods presented in this article can further expand the scope of quantum mechanical applications to biomolecular systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106(8):3188–3209

    Article  CAS  Google Scholar 

  2. Pu J, Gao J, Truhlar DG (2006) Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 106(8):3140–3169

    Article  CAS  Google Scholar 

  3. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: Analysis by modern rate theory and computer simulations. Science (Washington, DC) 303(5655):186–195

    Article  CAS  Google Scholar 

  4. Gao J (1997) Toward a molecular orbital derived empirical potential for liquid simulations. J Phys Chem B 101(4):657–663

    Article  CAS  Google Scholar 

  5. Gao J (1998) A molecular-orbital derived polarization potential for liquid water. J Chem Phys 109(6):2346–2354

    Article  CAS  Google Scholar 

  6. Xie W, Gao J (2007) Design of a next generation force field: the X-POL potential. J Chem Theory Comput 3(6):1890–1900

    Article  CAS  Google Scholar 

  7. Xie W, Song L, Truhlar DG, Gao J (2008) The variational explicit polarization potential and analytical first derivative of energy: towards a next generation force field. J Chem Phys 128(23):234108

    Article  Google Scholar 

  8. Xie W, Song L, Truhlar DG, Gao J (2008) Incorporation of QM/MM buffer zone in the variational double self-consistent field method. J Phys Chem B 112(45):14124–14131

    Article  CAS  Google Scholar 

  9. Mo Y, Gao J (2000) Ab initio QM/MM simulations with a molecular orbital-valence bond (MOVB) method: application to an SN2 reaction in water. J Comput Chem 21(16):1458–1469

    Article  CAS  Google Scholar 

  10. Mo Y, Gao J, (2000) An ab initio molecular orbital-valence bond (MOVB) method for simulating chemical reactions in solution. J Phys Chem A 104(13):3012–3020

    Article  CAS  Google Scholar 

  11. Song L, Gao J (2008) On the construction of diabatic and adiabatic potential energy surfaces based on ab initio valence bond theory. J Phys Chem A ASAP

    Google Scholar 

  12. Wong K-Y, Gao J (2007) An automated integration-free path-integral method based on Kleinert’s variational perturbation theory. J Chem Phys 127(21): 211103

    Article  Google Scholar 

  13. Wong K-Y, Gao J (2008) Systematic approach for computing zero-point energy, quantum partition function, and tunneling effect based on Kleinert’s variational perturbation theory. J Chem Theory Comput 4(9):1409–1422

    Article  CAS  Google Scholar 

  14. Jang S, Voth GA (2001) A relationship between centroid dynamics and path integral quantum transition state theory. J Chem Phys 112(8747–8757): Erratum: 114, 1944

    Article  Google Scholar 

  15. Feynman RP, Hibbs AR (1965) Quantum Mechanics and Path Integrals. McGraw-Hill: New York, p xiv, 365 p. For the applications in quantum statistics, see chapters 10 and 11; Corrections to the errata in the book: http://www.oberlin.edu/physics/dstyer/FeynmanHibbs/ and http://www.physik.fu-berlin.de/kleinert/Feynman-Hibbs/

  16. Bixon M, Lifson S (1967) Potential functions and conformations in cycloalkanes. Tetrahedron 23(2):769–784

    Article  CAS  Google Scholar 

  17. Levitt M (2001) The birth of computational structural biology. Nat Struct Biol 8(5):392–393

    Article  CAS  Google Scholar 

  18. Kohen A, Limbach H-H (2006) Isotope Effects in Chemistry and Biology. Taylor & Francis: Boca Raton, p xiv, 1074 p

    Google Scholar 

  19. Major DT, Gao J (2007) An integrated path integral and free-energy perturbation-umbrella sampling method for computing kinetic isotope effects of chemical reactions in solution and in enzymes. J Chem Theory Comput 3:949–960

    Article  CAS  Google Scholar 

  20. Gao J, Wong K-Y, Major DT (2008) Combined QM/MM and path integral simulations of kinetic isotope effects in the proton transfer reaction between nitroethane and acetate ion in water. J Comput Chem 29:514–522

    Article  CAS  Google Scholar 

  21. Kleinert H (2004) Path integrals in quantum mechanics, statistics, polymer physics, and financial markets. 3rd edition.; World Scientific: Singapore; River Edge, NJ, p xxvi, 1468 p. For the quantum mechanical integral equation, see Section 1.9; For the variational perturbation theory, see Chapters 3 and 5

    Google Scholar 

  22. Sprik M, Klein ML, Chandler D (1985) Phys. ReV. B: Condens. Matter Mater. Phys. 31:4234–4244

    CAS  Google Scholar 

  23. Hwang J-K, Warshel A (1996) J Am Chem Soc 118:11745–11751

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wong, KY. et al. (2009). Quantum Mechanical Methods for Biomolecular Simulations. In: York, D.M., Lee, TS. (eds) Multi-scale Quantum Models for Biocatalysis. Challenges and Advances in Computational Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9956-4_4

Download citation

Publish with us

Policies and ethics