Skip to main content

Unraveling the Mechanisms of Ribozyme Catalysis with Multiscale Simulations

  • Chapter
Multi-scale Quantum Models for Biocatalysis

Abstract

Description of a multiscale simulation strategy we have developed to attack problems of RNA catalysis is presented. Ribozyme systems give special challenges not present in typical protein systems, and consequently demand new methods. The main methodological components are herein summarized, including the assembly of the QCRNA database, parameterization of the AM1/d-PhoT Hamiltonian, and development of new semiempirical functional forms for improved charge-dependent response properties, methods for coupling many-body exchange, correlation and dispersion into the QM/MM interaction, and generalized methods for linear-scaling electrostatics, solvation and solvent boundary potentials. Results for a series of case studies ranging from noncatalytic reaction models that compare the effect of new DFT functionals, and on catalytic RNA systems including the hairpin, hammerhead and L1 ligase ribozymes are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gilbert W (1918) Nature 319:618.

    Article  Google Scholar 

  2. Scott WG (1996) Biochem Soc Trans 24:604.

    CAS  Google Scholar 

  3. Gesteland RF, Cech TR, Atkins JF (1999) The RNA World: The nature of modern RNA suggests a Prebiotic RNA, 2nd ed., Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  4. Yarus M (1999) Curr Opin Chem Biol 3:260.

    Article  CAS  Google Scholar 

  5. Chen X, Li N, Ellington AD (2007) Chem Biodivers 4:633.

    Article  CAS  Google Scholar 

  6. Lilley DM (2008) Ribozymes and RNA Catalysis, chap. The Hairpin and Varkud Satellite Ribozymes, 6–91, RSC Biomolecular Series, RSC Publishing, Cambridge.

    Google Scholar 

  7. Scott WG (2007) Curr Opin Struct Biol 13:280.

    Article  CAS  Google Scholar 

  8. Rubenstein M, Tsui R, Guinan P (2004) Drugs of the Future 29:893.

    Article  CAS  Google Scholar 

  9. Vaish NK, Dong F, Andrews L, Schweppe RE, Ahn NG, Blatt L, Seiwert SD (2002) Nature Biotech 20:810.

    CAS  Google Scholar 

  10. Breaker RR (2002) Curr Opin Biotechnol 13:31.

    Article  CAS  Google Scholar 

  11. Biopolymers (2007) Biopolymers 85:169.

    Article  CAS  Google Scholar 

  12. Gao J, Furlani TR (1995) IEEE Comput Sci Eng 2:24.

    CAS  Google Scholar 

  13. Gao J (1995) Rev Comput Chem 7:119.

    Google Scholar 

  14. Hawkins GD, Zhu T, Li J, Chambers CC, Giesen DJ, Liotard DA, Cramer CJ, Truhlar DG (1998) Combined quantum mechanical and molecular mechanical methods, 201–219, ACS Symposium Series 712, Oxford University Press, New York.

    Google Scholar 

  15. Monard G, Merz KM, Jr (1999) Acc Chem Res 32:904.

    Article  CAS  Google Scholar 

  16. Warshel A (2002) Acc Chem Res 35:385.

    Article  CAS  Google Scholar 

  17. Warshel A (2003) Annu Rev Biophys Biomol Struct 32:425.

    Article  CAS  Google Scholar 

  18. Senn HM, Thiel W (2007) Curr Opin Chem Biol 11:182.

    Article  CAS  Google Scholar 

  19. Norberg J, Nilsson L (2002) Acc Chem Res 35:465.

    Article  CAS  Google Scholar 

  20. Orozco M, Pérez A, Noy A, Luque FJ (2003) Chem Soc Rev 32:350.

    Article  CAS  Google Scholar 

  21. Orozco M, Noy A, Prez A (2008) Curr Opin Struct Biol 18:185.

    CAS  Google Scholar 

  22. TE Cheatham III (2004) Curr Opin Struct Biol 14:360.

    Article  CAS  Google Scholar 

  23. Chen S-J (2008) Annu Rev Biophys 37:197.

    Article  CAS  Google Scholar 

  24. Auffinger P, Hashem Y (2007) Curr Opin Struct Biol 17:325.

    Article  CAS  Google Scholar 

  25. Dewar MJ, Thiel W (1977) J Am Chem Soc 99:4899.

    Article  CAS  Google Scholar 

  26. Dewar MJ, Thiel W (1977) J Am Chem Soc 99:4907.

    Article  CAS  Google Scholar 

  27. Dewar MJS, Zoebisch E, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902.

    Article  CAS  Google Scholar 

  28. Stewart JJP (1989) J Comput Chem 10:209.

    Article  CAS  Google Scholar 

  29. Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391.

    Article  CAS  Google Scholar 

  30. Thiel W, Voityuk AA (1996) J Phys Chem 100:616.

    Article  CAS  Google Scholar 

  31. Giese TJ, Sherer EC, Cramer CJ, York DM (2005) J Chem Theory Comput 1:1275.

    Article  CAS  Google Scholar 

  32. Giese TJ, Gregersen BA, Liu Y, Nam K, Mayaan E, Moser A, Range K, O Nieto Faza, C Silva Lopez, A Rodriguez de Lera, Schaftenaar G, Lopez X, Lee T, Karypis G, York DM (2006) J Mol Graph Model 25:423.

    Google Scholar 

  33. Nam K, Cui Q, Gao J, York DM (2007) J Chem Theory Comput 3:486.

    Article  CAS  Google Scholar 

  34. QCRNA, http://theory.chem.umn.edu/Database/QCRNA.

  35. Range K, McGrath MJ, Lopez X, York DM (2004) J Am Chem Soc 126:1654.

    Article  CAS  Google Scholar 

  36. Mayaan E, Range K, York DM (2004) J Biol Inorg Chem 9:807.

    Article  CAS  Google Scholar 

  37. CS López, Faza ON, Gregersen BA, Lopez X, AR de Lera, York DM (2004) Chem Phys Chem 5:1045.

    Google Scholar 

  38. Range K, Riccardi D, Cui Q, Elstner M, York DM (2005) Phys Chem Chem Phys 7:3070.

    Article  CAS  Google Scholar 

  39. Liu Y, Gregersen BA, Lopez X, York DM (2005) J Phys Chem B 109:19987.

    Article  CAS  Google Scholar 

  40. Xu D, Guo H, Liu Y, York DM (2005) J Phys Chem B 109:13827.

    Article  CAS  Google Scholar 

  41. CS López, Faza ON, AR de Lera, York DM (2005) Chem Eur J 11:2081.

    Article  CAS  Google Scholar 

  42. Liu Y, Lopez X, York DM (2005) Chem Commun 31:3909.

    Article  CAS  Google Scholar 

  43. Liu Y, Gregersen BA, Hengge A, York DM (2006) Biochemistry 45:10043.

    Article  CAS  Google Scholar 

  44. Lopez X, Dejaegere A, Leclerc F, York DM, Karplus M (2006) J Phys Chem B 110:11525.

    Article  CAS  Google Scholar 

  45. Range K, CS López, Moser A, York DM (2006) J Phys Chem A 110:791.

    Article  CAS  Google Scholar 

  46. Mayaan E, Moser A, Mackerell AD Jr, York DM (2007) J Comput Chem 28:495.

    Article  CAS  Google Scholar 

  47. Jmol, http://www.jmol.org.

  48. Willighagen E, Howard M (2005) CDK News 2:17.

    Google Scholar 

  49. Schaftenaar G, Noordik JH, Molden, http://www.cmbi.ru.nl/molden/molden.html.

  50. Schaftenaar G, Noordik JH (2000) J Comput.-Aided Mol Des 14:123.

    Article  CAS  Google Scholar 

  51. Nam K, Gao J, York DM (2008) Multiscale simulation methods for nanomaterials, Ross RB, Sanat M (eds) Wiley, New York, pp 201–218.

    Google Scholar 

  52. Lee T-S, Silva-Lopez C, Martick M, Scott WG, York DM (2007) J Chem Theory Comput 3:325.

    Article  CAS  Google Scholar 

  53. Lee T-S, Silva Lopez C, Giambasu GM, Martick M, Scott WG, York DM (2008) J Am Chem Soc 130:3053.

    Article  CAS  Google Scholar 

  54. Nam K, Gao J, York DM (2008) J Am Chem Soc 130:4680.

    Article  CAS  Google Scholar 

  55. Nam K, Gao J, York D (2008) RNA 14:1501.

    Article  CAS  Google Scholar 

  56. Giese TJ, York DM (2005) J Chem Phys 123:164108.

    Article  CAS  Google Scholar 

  57. Matsuzawa N, Dixon DA (1992) J Phys Chem 96:6232.

    Article  CAS  Google Scholar 

  58. Giese TJ, York DM (2007) J Chem Phys 127:194101.

    Article  CAS  Google Scholar 

  59. Wheatley RJ, Price SL (1990) Mol Phys 69:507.

    Article  Google Scholar 

  60. Piquemal J, Cisneros G, Reinhardt P, Gresh N, Darden TA (2006) J Chem Phys 124:104101.

    Article  CAS  Google Scholar 

  61. Tang KT, Toennies JP (2003) J Chem Phys 118:4976.

    Article  CAS  Google Scholar 

  62. Tang KT, Toennies JP (1984) J Chem Phys 80:3726.

    Article  CAS  Google Scholar 

  63. Pellenq R, Nicholson D (1998) Mol Phys 95:549.

    Article  CAS  Google Scholar 

  64. Pellenq R, Nicholson D (1999) Mol Phys 96:1001.

    Article  Google Scholar 

  65. Yang W (1991) Phys Rev A 44:7823.

    Article  CAS  Google Scholar 

  66. Khandogin J, Hu A, York DM (2000) J Comput Chem 21:1562.

    Article  CAS  Google Scholar 

  67. Nam K, Gao J, York DM (2005) J Chem Theory Comput 1:2.

    Article  CAS  Google Scholar 

  68. Giese TJ, York DM (2008) J Comput Chem 29:1895.

    Article  CAS  Google Scholar 

  69. Watson MA, P Sałek, Macak P, Helgaker T (2004) J Chem Phys 121:2915.

    Article  CAS  Google Scholar 

  70. Pérez-Jordá JM, Yang W (1995) Chem Phys Lett 247:484.

    Article  Google Scholar 

  71. York DM, Karplus M (1999) J Phys Chem A 103:11060.

    Article  CAS  Google Scholar 

  72. Khandogin J, Gregersen BA, Thiel W, York DM (2005) J Phys Chem B 109:9799.

    Article  CAS  Google Scholar 

  73. Gregersen BA, Khandogin J, Thiel W, York DM (2005) J Phys Chem B 109:9810.

    Article  CAS  Google Scholar 

  74. Range K, Mayaan E, LJ Maher III, York DM (2005) Nucleic Acids Res 33:1257.

    Article  CAS  Google Scholar 

  75. Gregersen BA, York DM (2005) J Phys Chem B 109:536.

    Article  CAS  Google Scholar 

  76. Roux B, Beglov D, Im W (1999) Simulation and theory of electrostatic interations in solution, Pratt LR, Hummer G (eds) vol. 492 of Proceedings of the Santa Fe Workshop on Treatment of Electrostatic Interactions in Computer Simulations of Condensed Media, AIP Conference Proceedings, Melville, New York, pp 492–509.

    Google Scholar 

  77. Im W, Bernèche S, Roux B (2001) J Chem Phys 114:2924.

    Article  CAS  Google Scholar 

  78. Banavali NK, Im W, Roux B (2002) J Chem Phys 117:7381.

    Article  CAS  Google Scholar 

  79. Schaefer P, Riccardi D, Cui Q (2005) J Chem Phys 123:014905.

    Article  CAS  Google Scholar 

  80. Gregersen BA, York DM (2006) J Comput Chem 27:103.

    Article  CAS  Google Scholar 

  81. Cohen AJ, P Mori-Sánchez, Yang W (2008) Science 321:792.

    Article  CAS  Google Scholar 

  82. Becke AD (1988) Phys Rev A 38:3098.

    Article  CAS  Google Scholar 

  83. Becke AD (1993) J Chem Phys 98:5648.

    Article  CAS  Google Scholar 

  84. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785.

    Article  CAS  Google Scholar 

  85. Grimme S (2006) J Chem Phys 124:034108.

    Article  CAS  Google Scholar 

  86. Grimme S (2004) J Comput Chem 25:1463.

    Article  CAS  Google Scholar 

  87. Grimme S (2006) J Comput Chem 27:1787.

    Article  CAS  Google Scholar 

  88. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397.

    Article  CAS  Google Scholar 

  89. Becke AD, Johnson ER (2006) J Chem Phys 124:014104.

    Article  CAS  Google Scholar 

  90. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215.

    Article  CAS  Google Scholar 

  91. Gu J, Wang J, Leszczynski J, Xie Y, Schaefer HF III (2008) Chem Phys Lett 459:164.

    Article  CAS  Google Scholar 

  92. Cramer CJ, Gour JR, Kinal A, Wloch M, Piecuch P, Shahi ARM, Gagliardi L (2008) J Phys Chem A 112:3754.

    Article  CAS  Google Scholar 

  93. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157.

    Article  CAS  Google Scholar 

  94. M Roychowdhury-Saha, Burke DH (2006) RNA 12:1846.

    Article  CAS  Google Scholar 

  95. Thomas JM, Perrin DM (2008) J Am Chem Soc 130:15467.

    Article  CAS  Google Scholar 

  96. Perreault DM, Anslyn EV (1997) Angew Chem Int Ed 36:432.

    Article  Google Scholar 

  97. Hengge AC (2002) Acc Chem Res 35:105.

    Article  CAS  Google Scholar 

  98. Hengge AC, Cleland WW (1990) J Am Chem Soc 112:7421.

    Article  CAS  Google Scholar 

  99. Kirby AJ, Jencks WP (1965) J Am Chem Soc 87:3209.

    Article  CAS  Google Scholar 

  100. Catrina IE, Hengge AC (1999) J Am Chem Soc 121:2156.

    Article  CAS  Google Scholar 

  101. Takagi Y, Ikeda Y, Taira K (2004) Top Curr Chem 232:213.

    CAS  Google Scholar 

  102. Lönnberg T, Lönnberg H (2005) Curr Opin Chem Biol 9:665.

    Article  CAS  Google Scholar 

  103. Sigel RK, Pyle AM (2007) Chem Rev 2007:97.

    Article  CAS  Google Scholar 

  104. Scott WG (1999) Q Rev Biophys 32:241.

    Article  CAS  Google Scholar 

  105. Shih I-H, Been MD (2002) Annu Rev Biochem 71:887.

    Article  CAS  Google Scholar 

  106. Robertson MP, Scott WG (2007) Science 315:1549.

    Article  CAS  Google Scholar 

  107. Walter NG, Burke JM (1998) Curr Opin Chem Biol 2:24.

    Article  CAS  Google Scholar 

  108. Lilley DM (1999) Curr Opin Struct Biol 9:330.

    Article  CAS  Google Scholar 

  109. Doherty EA, Doudna JA (2001) Annu Rev Biophys Biomol Struct 30:457.

    Article  CAS  Google Scholar 

  110. Rupert PB, Massey AP, Sigurdsson ST, AR Ferré-D’Amaré (2002) Science 298:1421.

    Article  CAS  Google Scholar 

  111. Bevilacqua PC (2003) Biochemistry 42:2259.

    Article  CAS  Google Scholar 

  112. Fedor MJ, Williamson JR (2006) Nat Rev Mol Cell Biol 6:399.

    Article  CAS  Google Scholar 

  113. Nesbitt SM, Erlacher HA, Fedor MJ (1999) J Mol Biol 289:1009.

    Article  Google Scholar 

  114. Fedor MJ (2000) J Mol Biol 297:269.

    Article  CAS  Google Scholar 

  115. Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ (2005) J Mol Biol 349:989.

    Article  CAS  Google Scholar 

  116. Hertel KJ, Peracchi A, Uhlenbeck OC, Herschlag D (1997) Proc Natl Acad Sci USA 94:8497.

    Article  CAS  Google Scholar 

  117. Li Y, Breaker RR (1999) J Am Chem Soc 121:5364.

    Article  CAS  Google Scholar 

  118. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187.

    Article  CAS  Google Scholar 

  119. Foloppe N, MacKerell AD, Jr. (2000) J Comput Chem 21:86.

    Article  CAS  Google Scholar 

  120. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926.

    Article  CAS  Google Scholar 

  121. Gao J, Amara P, Alhambra C, Field MJ (1998) J Phys Chem A 102:4714.

    Article  CAS  Google Scholar 

  122. Torrie GM, Valleau JP (1977) J Comput Phys 23:187.

    Article  Google Scholar 

  123. Kumar S, Bouzida D, Swendsen R, Kollman P, Rosenberg J (1992) J Comput Chem 13:1011.

    Article  CAS  Google Scholar 

  124. AR Ferré-D’Amaré (2004) Biopolymers 73:71.

    Article  CAS  Google Scholar 

  125. Cottrell JW, Kuzmin YI, Fedor MJ (2007) J Biol Chem 282:13498.

    Article  CAS  Google Scholar 

  126. Martick M, Scott WG (2006) Cell 126:309.

    Article  CAS  Google Scholar 

  127. Martick M, Lee T-S, York DM, Scott WG (2008) Chem Biol 15:332.

    Article  CAS  Google Scholar 

  128. Scott WG (2007) Biol Chem 388:727.

    Article  CAS  Google Scholar 

  129. Ponomarev SY, Thayer KM, Beveridge DL (2004) Proc Natl Acad Sci USA 101:14771.

    Article  CAS  Google Scholar 

  130. Wang S, Karbstein K, Peracchi A, Beigelman L, Herschlag D (1999) Biochemistry 38:14363.

    Article  CAS  Google Scholar 

  131. Lambert D, Heckman JE, Burke JM (2006) Biochemistry 45:7140.

    Article  CAS  Google Scholar 

  132. Blount KF, Uhlenbeck OC (2005) Annu Rev Biophys Biomol Struct 34:415.

    Article  CAS  Google Scholar 

  133. Han J, Burke JM (2005) Biochemistry 44:7864.

    Article  CAS  Google Scholar 

  134. McKay DB (1996) RNA 2:395.

    CAS  Google Scholar 

  135. Wedekind JE, McKay DB (1998) Annu Rev Biophys Biomol Struct 27:475.

    Article  CAS  Google Scholar 

  136. M Roychowdhury-Saha, Burke DH (2007) RNA 13:841.

    Article  CAS  Google Scholar 

  137. Crothers D (2001) RNA, chap. RNA Conformational Dynamics, Elsevier Science & Technology, Amsterdam, pp 61–71.

    Google Scholar 

  138. Bunka DHJ, Stockley PG (2006) Nat Rev Microbiol 4:588.

    Article  CAS  Google Scholar 

  139. Schwalbe H, Buck J, Frtig B, Noeske J, Whnert J (2007) Angew Chem Int Ed 46:1212. URL http://dx.doi.org/10.1002/anie.200604163.

    Article  CAS  Google Scholar 

  140. Xia T (2008) Curr Opin Chem Biol 2:1.

    Google Scholar 

  141. Robertson MP, Ellington AD (1999) Nature Biotech 17:62.

    Article  CAS  Google Scholar 

  142. Robertson MP, Knudsen SM, Ellington AD (2004) RNA 10:114.

    Article  CAS  Google Scholar 

  143. Robertson MP, Ellington AD (2000) Nucleic Acids Res 28:1751.

    Article  CAS  Google Scholar 

  144. Robertson MP, Ellington AD (2001) Nature Biotech 19:650.

    Article  CAS  Google Scholar 

  145. Landweber LF, Pokrovskaya ID (1999) Proc Natl Acad Sci USA 96:173.

    Article  CAS  Google Scholar 

  146. Ekland EH, Szostak JW, Bartel DP (1995) Science 269:364.

    Article  CAS  Google Scholar 

  147. Rogers J, Joyce GF (1999) Nature 402:323.

    Article  CAS  Google Scholar 

  148. Jaeger L, Wright MC, Joyce GF (1999) Proc Natl Acad Sci USA 96:14712.

    Article  CAS  Google Scholar 

  149. Ikawa Y, Tsuda K, Matsumura S, Inoue T (2004) Proc Natl Acad Sci USA 101:13750.

    Article  CAS  Google Scholar 

  150. Duarte CM, Pyle AM (1998) J Mol Biol 284:1465.

    Article  CAS  Google Scholar 

  151. Gregersen BA, York DM (2005) J Chem Phys 122:194110.

    Article  CAS  Google Scholar 

  152. Wolfenden R, Ridgway C, Young G (1998) J Am Chem Soc 120:833.

    Article  CAS  Google Scholar 

  153. Glennon TM, Warshel A (1998) J Am Chem Soc 120:10234.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lee, TS. et al. (2009). Unraveling the Mechanisms of Ribozyme Catalysis with Multiscale Simulations. In: York, D.M., Lee, TS. (eds) Multi-scale Quantum Models for Biocatalysis. Challenges and Advances in Computational Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9956-4_14

Download citation

Publish with us

Policies and ethics