Skip to main content

Interpreting The Observed Substrate Selectivity And The Product Regioselectivity In Orf2-Catalyzed Prenylation From X-Ray Structures

  • Chapter
Multi-scale Quantum Models for Biocatalysis

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 7))

  • 866 Accesses

Abstract

The combined QM/MM based X-ray crystallography technique is described. Its relevant strengths and weaknesses relative to traditional refinement protocols are discussed. The method is illustrated by refining Orf2 protein–ligand complexes and comparing the QM/MM based method to CNS derived results. It is shown that in this instance the QM/MM based approach give superior results to traditional MM based refinements methods as implemented in CNS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banaszak LJ, (2000) Foundation of structural biology, Academic Press, San Diego

    Google Scholar 

  2. Lesk AM, (2001) Introduction to protein architecture: the structural biology of proteins,Oxford University Press, Oxford

    Google Scholar 

  3. Marti-Renom MA et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  CAS  Google Scholar 

  4. Bonneau R, Baker D (2001) Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct 30:173–189

    Article  CAS  Google Scholar 

  5. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  CAS  Google Scholar 

  6. Schueler-Furman O et al (2005) Progress on modeling of protein structures and interactions. Science 310(5748):638–642

    Article  CAS  Google Scholar 

  7. Skolnick J (2006) In quest of an empirical potential for protein structure prediction. Curr Opin Struct Biol 16(2):166–171

    Article  CAS  Google Scholar 

  8. Kuhlman B et al (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368

    Article  CAS  Google Scholar 

  9. Bradley P, Misura KMS, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868–1871

    Article  CAS  Google Scholar 

  10. Brunger AT (1988) Crystallographic refinement by simulated annealing. Application to a 2.8Å resolution structure of aspartate aminotransferase. J Mol Biol 203(3):803–816

    Article  CAS  Google Scholar 

  11. Adams PD et al (1997) Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc Natl Acad Sci USA 94(10):5018–5023

    Article  CAS  Google Scholar 

  12. Yu N, Yennawar H, Merz KM Jr (2005) Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics. Acta Crystallogr D Biol Crystallogr 61:322–332

    Article  Google Scholar 

  13. Yu N, Merz KM Jr (2004) Theoretical study of the electron density distributions of glycyl-L-threonine dihydrate. Molecular Physics 102(23–24):2545–2557

    Article  CAS  Google Scholar 

  14. Ryde U, Nilsson K (2003) Quantum chemistry can locally improve protein crystal structures. J Am Chem Soc 125(47):14232–14233

    Article  CAS  Google Scholar 

  15. Yu N et al (2006) Critical assessment of quantum mechanics based energy restraints in protein crystal structure refinement. Protein Sci 15(12):2773–2784

    Article  CAS  Google Scholar 

  16. Nilsson K et al (2004) The protonation status of compound II in myoglobin, studied by a combination of experimental data and quantum chemical calculations: quantum refinement. Biophys J 87(5):3437–3447

    Article  CAS  Google Scholar 

  17. Nilsson K, Ryde U (2004) Protonation status of metal-bound ligands can be determined by quantum refinement. J Inorg Biochem 98(9):1539–1546

    Article  CAS  Google Scholar 

  18. Yu N et al (2006) Assigning the protonation states of the key aspartates in beta-secretase using QM/MM X-ray structure refinement. J Chem Theory Comput 2(4):1057–1069

    Article  CAS  Google Scholar 

  19. Jack A, Levitt M (1978) Refinement of large structures by simultaneous minimization of energy and R factor. Acta Crystallogr A 34:931–935

    Article  Google Scholar 

  20. Brunger AT, Adams PD (2002) Molecular dynamics applied to X-ray structure refinement. Acc Chem Res 35(6):404–412

    Article  CAS  Google Scholar 

  21. Engh R, Huber R (1991) Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr A 47:392–400

    Article  Google Scholar 

  22. Brunger AT (1992) Free R-value – a novel statistical quantity for assessing the accuracy of crystal-structures. Nature 355(6359):472–475

    Article  CAS  Google Scholar 

  23. Read RJ (1986) Improved fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A 42:140–149

    Article  Google Scholar 

  24. Read RJ (1990) Structure-factor probabilities for related structures. Acta Crystallogr A 46:900–912

    Article  Google Scholar 

  25. Pannu NS, Read RJ (1996) Improved structure refinement through maximum likelihood. Acta Crystallogr A 52:659–668

    Article  Google Scholar 

  26. Adams PD et al (1997) Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc Natl Acad Sci USA 94(10):5018–5023

    Article  CAS  Google Scholar 

  27. Brunger AT, Adams PD (2002) Molecular dynamics applied to X-ray structure refinement. Accounts of Chemical Research 35(6):404–412

    Article  CAS  Google Scholar 

  28. Brunger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Acta Crystallogr D 54:905–921

    Article  CAS  Google Scholar 

  29. Brunger AT, Karplus M, Petsko GA (1989) Crystallographic refinement by simulated annealing – application to crambin. Acta Crystallogr A 45:50–61

    Article  Google Scholar 

  30. Warshel A, Levitt M, (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  31. Spurgeon SL, Porter JW (1981) In biosynthesis of isoprenoid compounds. In: Porter JW, Spurgeon SL (eds) John Wiley and Sons, New York, p 1

    Google Scholar 

  32. Qureshi N, Spurgeon SL (1981) In biosynthesis of isoprenoid compounds. In: Porter JW, Spurgeon SL (eds) John Wiley and Sons, New York, p 47

    Google Scholar 

  33. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16(5):565–574

    Article  CAS  Google Scholar 

  34. Piironen V et al (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80(7):939–966

    Article  CAS  Google Scholar 

  35. Santos FA, Rao VSN (1998) Inflammatory edema induced by 1,8-cineole in the hindpaw of rats: a model for screening antiallergic and anti-inflammatory compounds. Phytomedicine 5(2):115–119

    CAS  Google Scholar 

  36. Blanco-Colio LM et al (2003) Anti-inflammatory and immunomodulatory effects of statins. Kidney Int 63(1):12–23

    Article  CAS  Google Scholar 

  37. Grosser N et al (2004) The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic Biol Med 37(12):2064–2071

    Article  CAS  Google Scholar 

  38. Chowdhury SA et al (2005) Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res 25(3B):2055–2063

    CAS  Google Scholar 

  39. Jahangir T et al (2005) Alleviation of free radical mediated oxidative and genotoxic effects of cadmium by farnesol in Swiss albino mice. Redox Rep 10(6):303–310

    Article  CAS  Google Scholar 

  40. Soria-Mercado IE et al (2005) Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod 68(6):904–910

    Article  CAS  Google Scholar 

  41. Zhou YD et al (2005) Terpenoid tetrahydroisoquinoline alkaloids emetine, klugine, and isocephaeline inhibit the activation of hypoxia-inducible factor-1 in breast tumor cells. J Nat Prod 68(6):947–950

    Article  CAS  Google Scholar 

  42. Boucher K et al (2006) HMG-coa reductase inhibitors induce apoptosis in pericytes. Microvasc Res 71(2):91–102

    Article  CAS  Google Scholar 

  43. Hwang DR et al (2006) Synthesis and anti-viral activity of a series of sesquiterpene lactones and analogues in the subgenomic HCV replicon system. Bioorg Med Chem 14(1):83–91

    Article  CAS  Google Scholar 

  44. Jahangir T et al (2006) Farnesol prevents Fe-NTA-mediated renal oxidative stress and early tumour promotion markers in rats. Hum Exp Toxicol 25(5):235–242

    Article  CAS  Google Scholar 

  45. Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106(8):3412–3442

    Article  CAS  Google Scholar 

  46. Kuzuyama T, Noel JP, Richard SB (2005) Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435(7044):983–987

    Article  CAS  Google Scholar 

  47. Botta B et al (2005) Novel prenyltransferase enzymes as a tool for flavonoid prenylation. Trends Pharmacol Sci 26(12):606–608

    Article  CAS  Google Scholar 

  48. Koehl P Relaxed specificity in aromatic prenyltransferases. Nat Chem Biol 1(2):71–72

    Google Scholar 

  49. Taylor JS et al (2003) Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J 22(22):5963–5974

    Article  CAS  Google Scholar 

  50. Zhang H, Seabra MC, Deisenhofer J (2000) Crystal structure of Rab geranylgeranyltransferase at 2.0 angstrom resolution. Structure Fold Des 8(3):241–251

    Article  CAS  Google Scholar 

  51. Park HW et al (1997) Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science 275(5307):1800–1804

    Article  CAS  Google Scholar 

  52. Kleywegt G et al (2004) The uppsala electron-density server. Acta Crystallogr D Biol Crystallogr 60:2240–2249

    Article  Google Scholar 

  53. Yu N, Hayik SA, Wang B, Liao N, Reynolds CH, Merz KM Jr (2006) Assigning the protonation states of the key aspartates in beta-secretase using QM/MM X-ray structure refinement. J Chem Theory Comput (Web release, June 7)

    Google Scholar 

  54. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) AMBER 8

    Google Scholar 

  55. Yang W (1991) Direct calculation of electron-density in density-functional theory. Phys Rev Lett 66(11):1438–1441

    Article  CAS  Google Scholar 

  56. Yang W, Lee T (1995) A density-matrix divide-and-conquer approach for electronic-structure calculations of large molecules. J Chem Phys 103(13):5674–5678

    Article  CAS  Google Scholar 

  57. Dixon SL, Merz KM Jr (1996) Semiempirical molecular orbital calculations with linear system size scaling. J Chem Phys 104(17):6643–6649

    Article  CAS  Google Scholar 

  58. Lee T, York D, Yang W (1996) Linear-scaling semiempirical quantum calculations for macromolecules. J Chem Phys 105(7):2744–2750

    Article  CAS  Google Scholar 

  59. Dixon SL, Merz KM Jr (1997) Fast, accurate semiempirical molecular orbital calculations for macromolecules. J Chem Phys 107(3):879–893

    Article  CAS  Google Scholar 

  60. Stewart J (1989) Optimization of parameters for semiempirical methods. 1: method. J Comput Chem 10(2):209–220

    Article  CAS  Google Scholar 

  61. Stewart J (1989) Optimization of parameters for semiempirical methods. 2: applications. J Comput Chem 10(2):221–264

    Article  CAS  Google Scholar 

  62. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Comm 91:275–282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cui, G., Li, X., Yu, N., Merz, K.M. (2009). Interpreting The Observed Substrate Selectivity And The Product Regioselectivity In Orf2-Catalyzed Prenylation From X-Ray Structures. In: York, D.M., Lee, TS. (eds) Multi-scale Quantum Models for Biocatalysis. Challenges and Advances in Computational Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9956-4_13

Download citation

Publish with us

Policies and ethics