Skip to main content

Ab Initio Quantum Mechanical/Molecular Mechanical Studies of Histone Modifying Enzymes

  • Chapter
Multi-scale Quantum Models for Biocatalysis

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 7))

  • 875 Accesses

Abstract

Histone proteins that form the nucleosome core are subject to a variety of post-translational transformations. These histone modifications make up the histone code which extends the information in the genetic code and is emerging as an essential mechanism to regulate gene expression. In spite of a current flurry of significant advances in experimental studies, there has been little theoretical understanding regarding how enzymes generate or remove these modifications. Very recently, we have made excellent progresses in investigating two such important histone-modifying enzyme families: zinc-dependent histone deacetylases (HDACs) and histone lysine methyltransferases (HKMTs). Our studies on a histonedeacetylase- like protein HDLP suggested a novel catalytic mechanism. The simulations on HKMT SET7/9 have characterized the histone lysine methylation reaction and elucidated the origin of enzyme catalysis. Our computational approaches centered on the pseudobond ab initio quantum mechanical/molecular mechanical (QM/MM) method, which allows for accurate modeling of the chemistry at the reaction active site while properly including the effects of the protein environment

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  Google Scholar 

  2. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  Google Scholar 

  3. Iizuka M, Smith MM (2003) Functional consequences of histone modifications. Curr Opin Genet Dev 13:154–160

    Article  CAS  Google Scholar 

  4. Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    Article  CAS  Google Scholar 

  5. Khan AU, Krishnamurthy S (2005) Histone modifications as key regulators of transcription. Front Biosci 10:866–872

    Article  CAS  Google Scholar 

  6. Biel M, Wascholowski V, Giannis A (2005) Epigenetics – an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem-Int Edit 44:3186–3216

    Article  CAS  Google Scholar 

  7. Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291

    Article  CAS  Google Scholar 

  8. Fischle W, Wang YM, Allis CD (2003) Binary switches and modification cassettes in histone biology and beyond. Nature 425:475–479

    Article  CAS  Google Scholar 

  9. Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  CAS  Google Scholar 

  10. Hake SB, Xiao A, Allis CD (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 90:761–769

    Article  CAS  Google Scholar 

  11. Santos-rosa H, Caldas C (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41:2381–2402

    Article  CAS  Google Scholar 

  12. Warshel A, Levitt M (1976) Theoretic studies of enzymic reactions: dielectric electrostatic and steric stabilization if the carbonium ion in the reaction of lysozyme. J Mol Bio 103:227

    Article  CAS  Google Scholar 

  13. Singh UC, Kollman PA (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the ch_3 cl+ cl – exchange reaction and gas phase protonation of polyethers. J Comp Chem 7:718–730

    Article  CAS  Google Scholar 

  14. Field MJ, Bash PA, Karplus M (1990) A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J Comp Chem 11:700–733

    Article  CAS  Google Scholar 

  15. Gao J, Truhlar DG (2002) Quantum mechanical methods for enzyme kinetics. Annu Rev Phys Chem 53:467–505

    Article  CAS  Google Scholar 

  16. Gao JL, Ma SH, Major DT, Nam K, Pu JZ, Truhlar DG (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106:3188–3209

    Article  CAS  Google Scholar 

  17. Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210–3235

    Article  CAS  Google Scholar 

  18. Friesner RA, Guallar V (2005) Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu Rev Phys Chem 56:389–427

    Article  CAS  Google Scholar 

  19. Mulholland AJ (2005) Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discov Today 10:1393–1402

    Article  CAS  Google Scholar 

  20. Zhang Y (2006) Pseudobond ab initio QM/MM approach and its applications to enzyme reactions. Theor Chem Acc 116:43–50

    Article  CAS  Google Scholar 

  21. Riccardi D, Schaefer P, Yang Y, Yu HB, Ghosh N, Prat-resina X, Konig P, Li GH, Xu DG, Guo H, Elstner M, Cui Q (2006) Development of effective quantum mechanical/molecular mechanical (QM/MM) methods for complex biological processes. J Phys Chem B 110:6458–6469

    Google Scholar 

  22. Bruice TC (2006) Computational approaches: reaction trajectories, structures, and atomic motions: enzyme reactions and proficiency. Chem Rev 106:3119–3139

    Article  CAS  Google Scholar 

  23. Hammes-schiffer S (2004) Quantum-classical simulation methods for hydrogen transfer in enzymes: a case study of dihydrofolate reductase. Curr Opin Struct Biol 14:192–201

    Article  CAS  Google Scholar 

  24. Garcia-viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186–195

    Article  CAS  Google Scholar 

  25. Senn HM, Thiel W (2007) QM/MM methods for biological systems. Top Curr Chem 268:173–290

    Article  CAS  Google Scholar 

  26. Zhang Y, Lee TS, Yang W (1999) A pseudobond approach to combining quantum mechanical and molecular mechanical methods. J Chem Phys 110:46–54

    Article  CAS  Google Scholar 

  27. Zhang Y, Liu H, Yang W (2000) Free energy calculation on enzyme reactions with an efficient iterative procedure to determine minimum energy paths on a combined ab initio QM/MM potential energy surface. J Chem Phys 112:3483–3492

    Article  CAS  Google Scholar 

  28. Zhang Y, Liu H, Yang W (2002) Ab initio QM/MM and free energy calculations of enzyme reactions. In: Schlick T., Gan H. H., (ed) Methods for Macromolecular Modeling. Springer-Verlag; Berlin, pp 332–354

    Google Scholar 

  29. Zhang Y (2005) Improved pseudobonds for combined ab initio quantum mechanical/molecular mechanical methods. J Chem Phys 122:024114

    Article  Google Scholar 

  30. Liu H, Zhang Y, Yang W (2000) How is the active site of enolase organized to catalyze two different reaction steps? J Am Chem Soc 122:6560–6570

    Article  CAS  Google Scholar 

  31. Zhang Y, Kua J, McCammon JA (2002) Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc 124:10572–10577

    Article  CAS  Google Scholar 

  32. Zhang Y, Kua J, McCammon JA (2003) Influence of structural fluctuation on enzyme reaction energy barriers in combined quantum mechanical/molecular mechanical studies. J Phys Chem B 107:4459–4463

    Google Scholar 

  33. Cisneros GA, Liu H, Zhang Y, Yang W (2003) Ab initio QM/MM study shows there is no general acid in the reaction catalyzed by 4-oxalocrotonate tautornerase. J Am Chem Soc 125:10384–10393

    Article  CAS  Google Scholar 

  34. Cheng Y, Zhang Y, McCammon JA (2005) How does the camp-dependent protein kinase catalyze the phosphorylation reaction: an ab initio QM/MM study. J Am Chem Soc 127:1553–1562

    Article  CAS  Google Scholar 

  35. Cheng Y, Zhang Y, McCammon JA (2006) How does activation loop phosphorylation modulate catalytic activity in the camp-dependent protein kinase: a theoretical study. Protein Sci 15:672–683

    Article  CAS  Google Scholar 

  36. Poyner RR, Larsen TM, Wong SW, Reed GH (2002) Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase. Arch Biochem Biophys 401:155–163

    Article  CAS  Google Scholar 

  37. Cisneros GA, Wang M, Silinski P, Fitzgerald MC, Yang WT (2004) The protein backbone makes important contributions to 4-oxalocrotonate tautomerase enzyme catalysis: understanding from theory and experiment. Biochemistry 43:6885–6892

    Article  CAS  Google Scholar 

  38. Metanis N, Brik A, Dawson PE, Keinan E (2004) Electrostatic interactions dominate the catalytic contribution of arg39 in 4-oxalocrotonate tautomerase. J Am Chem Soc 126:12726–12727

    Article  CAS  Google Scholar 

  39. Corminboeuf C, Hu P, Tuckerman ME, Zhang Y (2006) Unexpected catalytic mechanism for histone deacetylase suggested by a density functional theory QM/MM study. J Am Chem Soc 128:4530–4531

    Article  CAS  Google Scholar 

  40. De ruijter AJM, Vangennip AH, Caron HN, Kemp S, Vankuilenburg ABP (2003) Histone deacetylases (hdacs): characterization of the classical hdac family. Biochem J 370:737–749

    Article  Google Scholar 

  41. Holbert MA, Marmorstein R (2005) Structure and activity of enzymes that remove histone modifications. Curr Opin Struct Biol 15:673–680

    Article  CAS  Google Scholar 

  42. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31

    Article  CAS  Google Scholar 

  43. Acharya MR, Sparreboom A, Venitz J, Figg WD (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 68:917–932

    Article  CAS  Google Scholar 

  44. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    Article  CAS  Google Scholar 

  45. Kelly WK, Marks PA (2005) Drug insight: histone deacetylase inhibitors - development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2:150–157

    Article  CAS  Google Scholar 

  46. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1:194–202

    Article  CAS  Google Scholar 

  47. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the tsa and saha inhibitors. Nature 401:188–193

    Article  CAS  Google Scholar 

  48. Kapustin GV, Fejer G, Gronlund JL, Mccafferty DG, Seto E, Etzkorn FA (2003) Phosphorus-based saha analogues as histone deacetylase inhibitors. Org Lett 5:3053–3056

    Article  CAS  Google Scholar 

  49. Hu P, Zhang Y (2006) Catalytic mechanism and product specificity of the histone lysine methyltransferase set7/9: An ab initio QM/MM-FE study with multiple initial structures. J Am Chem Soc 128:1272–1278

    Article  CAS  Google Scholar 

  50. Wang S, Hu P, Zhang Y (2007) Ab initio quantum mechanical/molecular mechanical molecular dynamics simulation of enzyme catalysis: the case of histone lysine methyltransferase set7/9. J Phys Chem B ASAP

    Google Scholar 

  51. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  CAS  Google Scholar 

  52. Schneider R, Bannister AJ, Kouzarides T (2002) Unsafe sets: histone lysine methyltransferases and cancer. Trends Biochem Sci 27:396–402

    Article  CAS  Google Scholar 

  53. Xiao B, Wilson JR, Gamblin SJ (2003) Set domains and histone methylation. Curr Opin Struct Biol 13:699–705

    Article  CAS  Google Scholar 

  54. Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomolec Struct 34:267–294

    Article  CAS  Google Scholar 

  55. Min J, Feng Q, Li Z, Zhang Y, Xu R (2003) Structure of the catalytic domain of human dot1l, a non-set domain nucleosomal histone methyltransferase. Cell 112:711–723

    Article  CAS  Google Scholar 

  56. Yeates TO (2002) Structures of set domain proteins: protein lysine methyltransferases make their mark. Cell 111:5–7

    Article  CAS  Google Scholar 

  57. Wilson JR, Jing C, Walker PA, Martin SR, Howell SA, Blackburn GM, Gamblin SJ, Xiao B (2002) Crystal structure and functional analysis of the histone methyltransferase set7/9. Cell 111:105–115

    Article  CAS  Google Scholar 

  58. Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, Howell S, Taylor IA, Blackburn GM, Gamblin SJ (2003) Structure and catalytic mechanism of the human histone methyltransferase set7/9. Nature 421:652–656

    Article  CAS  Google Scholar 

  59. Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, Lee JW, Cho Y (2003) Mechanism of histone lysine methyl transfer revealed by the structure of set7/9-adomet. EMBO J., 22:292–303

    Article  CAS  Google Scholar 

  60. Trievel RC, Beach BM, Dirk LMA, Houtz RL, Hurley JH (2002) Structure and catalytic mechanism of a set domain protein methyltransferase. Cell 111:91–103

    Article  CAS  Google Scholar 

  61. Takusagawa F, Fujioka M, Spies A, Schowen RL (1998) S-adenosylmethionine (adomet)-dependent methyltransferases. In: Sinnott M., (ed), Comprehensive biological catalysis: a mechanistic reference. Academic Press, San Diego, pp 1–30

    Google Scholar 

  62. Mildvan AS (1997) Mechanisms of signaling and related enzymes. Proteins 29:401–416

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingkai Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zhang, Y. (2009). Ab Initio Quantum Mechanical/Molecular Mechanical Studies of Histone Modifying Enzymes. In: York, D.M., Lee, TS. (eds) Multi-scale Quantum Models for Biocatalysis. Challenges and Advances in Computational Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9956-4_12

Download citation

Publish with us

Policies and ethics