Skip to main content

Abstract

Amylolytic enzymes act on starch and related oligo- and polysaccharides. The recent wealth of information on the DNA sequence, structural analysis and catalytic mechanism led to the extensive research on starch hydrolyzing enzymes which led the concept of the alpha amylase family. Amylolytic enzymes are extensively used in starch liquefaction, paper industries, food, pharmaceutical and sugar industries which demands a specific hydrolysis profile. To fulfill the industrial requirements, the primary concern is the formulation of a simple indigenous and cost effective system for producing high titers of amylases. One alternative low cost and feasible production method is the use of agro-industrial residues as fermentation substrates. These residues represent one of the best reservoirs of fixed carbon in nature. Considerable research has been carried out in the effective utilization of these residues in large scale production of enzymes. This chapter gives a brief overview on the wide range of naturally occurring agricultural by products explored so far for the production of amylolytic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arasaratnam V, Mylvaganam K, Balasubramaniam K (2001) Glucoamylase production by Aspergillus niger in solid state fermentation with paddy husk as support. J Food Sci Technol 38:334–338

    CAS  Google Scholar 

  • Balkan B, Ertan F (2007) Production of α-Amylase from Penicillium chrysogenum under solid-state fermentation by using some agricultural by-products. Food Technol Biotechnol 45(4):439–442

    CAS  Google Scholar 

  • Baysal Z, Uyar F, Aytekin C (2003) Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem 38:1665–1668

    Article  CAS  Google Scholar 

  • Bertoldo C, Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6:151–160

    Article  PubMed  CAS  Google Scholar 

  • Crueger W, Crueger A, (2000). Substrates for industrial fermentation. In: Crueger W, Crueger A.(Eds.) Biotechnology, A textbook of Industrial Microbiology, Panima Publisher Corporation, New Delhi

    Google Scholar 

  • Dendy AV, Dobraszczyk BJ (2001) Cereals and cereal products – Chemistry and technology. Aspen publication, Czech republic

    Google Scholar 

  • Dharani Aiyer PV (2004) Effect of C:N ratio on alpha amylase production by Bacillus licheniformis SPT 27. Afr J Biotechnol 3(10) 519–522

    CAS  Google Scholar 

  • Francis F, Sabu A, Nampoothiri KM et al. (2003) Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem Eng J 15:107–115

    CAS  Google Scholar 

  • Friedberg F (1983) On the primary structure of amylases. FEBS Lett 152:139–140

    Article  PubMed  CAS  Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM et al. (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens Bioresour Technol 99:4597–4602

    Article  PubMed  CAS  Google Scholar 

  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM et al. (2006) Solid culturing of bacillus amyloliquefaciens for alpha amylase production. Food Technol Biotechnol 44(2): 269–274

    CAS  Google Scholar 

  • Gomes I, Gomes J, Stenier W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour Technol 90:207–214

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez CF, Farina JI, de Figueroa LIC (2008) Optimized amylolytic enzymes production in Saccharomycopsis fibuligera DSM-70554 An approach to efficient cassava starch utilization. Enzyme Microb Technol 42:272–277

    Article  CAS  Google Scholar 

  • Hamilton LM, Fogarty WM, Kelly CT (1999) Purification and properties of the raw starch degrading alpha amylase of Bacillus sp. IMD-434. Biotechnol Lett 21:111–115

    Article  CAS  Google Scholar 

  • Haq I, Ashraf H, Iqbal J et al. (2003) Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresour Technol 87:57–61

    Article  Google Scholar 

  • Haq I, Ashraf H, Qadeer MA et al. (2005) Pearl millet, a source of alpha amylase production by Bacillus licheniformis. Bioresour Technol 96:1201–1204

    Article  Google Scholar 

  • Hernandez MS, Rodrıguez MR, Guerra NP (2006) Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J Food Eng 7:93–100

    Article  Google Scholar 

  • Jyothi AN, Sasikiran K, Nambisan B et al. (2005) Optimization of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum. Process Biochem 40:3576–3579

    Article  CAS  Google Scholar 

  • Krishna C, Chandrasekaran M (1996) Banana waste as substrate for α amylase production by Bacillus sublitis (CBTK 106) under solid state fermentation. Appl Microbiol Biotechnol 46:106–111

    Article  CAS  Google Scholar 

  • Kumar P, Satyanarayana T (2007) Economical glucoamylase production by alginate-immobilized Thermomucor indicae-seudaticae in cane molasses medium. Lett Appl Microbiol 45:392–397

    Article  PubMed  Google Scholar 

  • Kunamneni A, Singh S (2006) Improved high thermal stability of pullulanase from a newly isolated thermophilic Bacillus sp. AN-7. Enzyme Microb Technol 39:1399–1404

    Article  CAS  Google Scholar 

  • Kuriki T,Imanaka T (1999) The concept of the α-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng 87(5):557–565

    Article  PubMed  CAS  Google Scholar 

  • Mulimani VH, Patil GN, Ramalingam (2000) α-Amylase production by solid state fermentation: a new practical approach to biotechnology courses. Biochem Edu 28:161–163

    Article  CAS  Google Scholar 

  • Nakajima R, Imanaka T, Aiba S (1986) Comparison of amino acid sequences of eleven different α-amylases. Appl Microbiol Biotechnol 23:355–360

    Article  CAS  Google Scholar 

  • Nampoothiri KM, Pandey A (1996) Solid state fermentation for l-glutamic acid production using Brevibacterium sp. Biotechnol Lett 16 (2):199–204

    Article  Google Scholar 

  • Odibo FJC, Ob SKC (1990) Optimum culture conditions for the production of the extracellular pullulanse of Thermoactinomyces thalophilus. Biol Wastes 32:1 9–15

    Article  CAS  Google Scholar 

  • Pandey A (1995) Glucoamylase research: An overview. Starch 47:439–445

    Article  CAS  Google Scholar 

  • Pandey A, (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell W (2000a) New development in solid state fermentation: I. Bioprocess and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P (2000b) Biotechnological potential of agro-individual residues. II. Cassava bagasse. Bioresour Technol 74:81–87

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Rodriguez LJ et al. (2001) Solid-State Fermentation in Biotechnology. Asiatech, New Delhi

    Google Scholar 

  • Ramachandran S, Patel AK, Nampoothiri KM et al. (2004) Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz Arch Biol Technol 47(2): 309–317

    Article  CAS  Google Scholar 

  • Reddy RMP, Ramesh B, Mrudula S et al. (2003) Production of thermostable β-amylase by Clostridium thermosulfurogenes SV2 in solid-state fermentation: Optimization of nutrient levels using response surface methodology. Process Biochem 39:267–277

    Article  Google Scholar 

  • Selvakumar P, Ashakumary L, Pandey A (1998) Biosynthesis of glucoamylase from Aspergillus niger by solid state fermentation using tea waste as the basis of a solid substrate. Bioresour Technol 65:83–85

    Article  CAS  Google Scholar 

  • Selvakumar P, Pandey A (1999) Solid-state fermentation for the synthesis of inulinase from the strains of Staphylococcus sp. and Kluyveromycesmarxianus. Process Biochem 34(8):851–855

    Article  CAS  Google Scholar 

  • Shah MP, Reddy GV, Banerjee R, Babu PR et al. (2005) Microbial degradation of banana waste under solid state bioprocessing using two lignocellulolytic fungi (Phylosticta spp. MPS-001 and Aspergillus spp. MPS-002). Process Biochem 40:445–451

    Article  CAS  Google Scholar 

  • Shukla J, Kar R (2006) Potato peel as a solid state substrate for thermostable a-amylase production by thermophilic Bacillus isolates. World J Microb Biotechnol 22:417–422

    Article  CAS  Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM et al. (2006) α-amylases from microbial sources – An overview on recent developments. Food Technol Biotechnol 44 (2):173–184

    CAS  Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM et al. (2007) Alpha amylase production by Aspergillus oryzae employing solid state fermentation. J Sci Ind Res India 66:621–626

    CAS  Google Scholar 

  • Soni SK, Kaur A, J Kishore et al. (2003) A solid state fermentation based bacterial α-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch. Process Biochem 39:185–192

    Article  CAS  Google Scholar 

  • Swain MR, Ray RC (2007) Alpha-amylase production by Bacillus subtilis CM3 in solid state fermentation using cassava fibrous residue. J Basic Microbiol 47:417–425

    Article  PubMed  CAS  Google Scholar 

  • Tanyildizi MS, Ozer D, Elibol M (2007) Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochem Eng J 37:294–297

    Article  CAS  Google Scholar 

  • Tigue MA, Kelly CT, Doyle EM, et al. (1995) The alkaline amylase of the alkalophilic Bacillus sp.IMD 370. Enzyme Microb Technol 17:570–573

    Article  Google Scholar 

  • Uma Maheswar Rao JL, Satyanarayana T (2007) Improving production of hyperthermostable and high maltose-forming α-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its application. Bioresour Technol 98:345–352

    Article  Google Scholar 

  • Viswanathan P, Surlikar NR (2001) Production of α amylase with A. flavus on Amaranthus grains by solid state fermentation. J Basic Microbiol 1:57–64

    Article  Google Scholar 

  • Wang Q, Wang X, Wang X (2008) Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochem 43:280–286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gangadharan, D., Sivaramakrishnan, S. (2009). Amylolytic Enzymes. In: Singh nee’ Nigam, P., Pandey, A. (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9942-7_19

Download citation

Publish with us

Policies and ethics