Skip to main content

Polygons and the Lace Expansion

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 775))

The lace expansion was introduced by Brydges and Spencer in 1985 [7] to analyse weakly self-avoiding walks in dimensions d > 4. Subsequently it has been generalised and greatly extended, so that it now applies to a variety of problems of interest in probability theory, statistical physics, and combinatorics, including the strictly self-avoiding walk, lattice trees, lattice animals, percolation, oriented percolation, the contact process, random graphs, and the Ising model. A recent survey is [42].

In this chapter, we give an introduction to the lace expansion for self-avoiding walks, with emphasis on self-avoiding polygons. We focus on combinatorial rather than analytical aspects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aldous. Tree-based models for random distribution of mass. J. Stat. Phys., 73:625–641, (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. A. Bovier, J. Fröhlich, and U. Glaus. Branched polymers and dimensional reduction. In K. Osterwalder and R. Stora, editors, Critical Phenomena, Random Systems, Gauge Theories, Amsterdam, (1986). North-Holland.

    Google Scholar 

  3. D.C. Brydges and J.Z. Imbrie. Branched polymers and dimensional reduction. Ann. Math., 158:1019–1039, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  4. D.C. Brydges and J.Z. Imbrie. Dimensional reduction formulas for branched polymer correlation functions. J. Stat. Phys., 110:503–518, (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. D.C. Brydges and J.Z. Imbrie. End to end distance from the Green's function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys., 239:523–1547, (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. D.C. Brydges and J.Z. Imbrie. Green's function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys., 239:549–584, (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. D.C. Brydges and T. Spencer. Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys., 97:125–148, (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. N. Clisby, R. Liang, and G. Slade. Self-avoiding walk enumeration via the lace expansion. J. Phys. A: Math. Theor., 40:10973–11017, (2007).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Commun. Math. Phys., 193:69–104, (1998).

    Article  ADS  MathSciNet  Google Scholar 

  10. M.E. Fisher and D.S. Gaunt. Ising model and self-avoiding walks on hypercubical lattices and “high-density” expansions. Phys. Rev., 133:A224–A239, (1964).

    Article  ADS  Google Scholar 

  11. M.E. Fisher and R.R.P. Singh. Critical points, large-dimensionality expansions, and the Ising spin glass. In G.R. Grimmett and D.J.A. Welsh, editors, Disorder in Physical Systems. Clarendon Press, Oxford, (1990).

    Google Scholar 

  12. D.S. Gaunt. 1/d expansions for critical amplitudes. J. Phys. A: Math. Gen., 19:L149–L153, (1986).

    Article  ADS  MathSciNet  Google Scholar 

  13. P.R. Gerber and M.E. Fisher. Critical temperatures of classical n-vector models on hypercubic lattices. Phys. Rev. B, 10:4697–4703, (1974).

    Article  ADS  Google Scholar 

  14. A.J. Guttmann and S.G. Whittington. Two-dimensional lattice embeddings of connected graphs of cyclomatic index two. J. Phys. A: Math. Gen., 11:721–729, (1978).

    Article  ADS  MathSciNet  Google Scholar 

  15. A.J. Guttmann. Correction to scaling exponents and critical properties of the n-vector model with dimensionality > 4. J. Phys. A: Math. Gen., 14:233–239, (1981).

    Article  ADS  MathSciNet  Google Scholar 

  16. A.J. Guttmann. Asymptotic analysis of power-series expansions. In C. Domb and J.L. Lebowitz, editors, Phase Transitions and Critical Phenomena, Volume 13, pages 1–234. Academic Press, New York, (1989).

    Google Scholar 

  17. J.M. Hammersley. The number of polygons on a lattice. Proc. Camb. Phil. Soc., 57:516–523, (1961).

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Hara and G. Slade. On the upper critical dimension of lattice trees and lattice animals. J. Stat. Phys., 59:1469–1510, (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. T. Hara and G. Slade. The lace expansion for self-avoiding walk in five or more dimensions. Rev. Math. Phys., 4:235–327, (1992).

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Hara and G. Slade. The number and size of branched polymers in high dimensions. J. Stat. Phys., 67:1009–1038, (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. T. Hara and G. Slade. Self-avoiding walk in five or more dimensions. I. The critical behaviour. Commun. Math. Phys., 147:101–136, (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. T. Hara and G. Slade. The self-avoiding-walk and percolation critical points in high dimensions. Combin. Probab. Comput., 4:197–215, (1995).

    Article  MATH  MathSciNet  Google Scholar 

  23. R. van der Hofstad and G. Slade. A generalised inductive approach to the lace expansion. Probab. Theory Related Fields, 122:389–430, (2002).

    Article  MATH  MathSciNet  Google Scholar 

  24. R. van der Hofstad and G. Slade. The lace expansion on a tree with application to networks of self-avoiding walks. Adv. Appl. Math., 30:471–528, (2003).

    Article  MATH  Google Scholar 

  25. M. Holmes. Convergence of lattice trees to super-Brownian motion above the critical dimension. Electr. J. Prob., 13:671–755, (2008).

    MATH  Google Scholar 

  26. M. Holmes, A.A. Járai, A. Sakai, and G. Slade. High-dimensional graphical networks of self-avoiding walks. Canad. J. Math., 56:77–114, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  27. E.J. Janse van Rensburg. On the number of trees in f d. J. Phys. A: Math. Gen., 25:3523– 3528, (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. I. Jensen. Enumeration of self-avoiding walks on the square lattice. J. Phys. A: Math. Gen., 37:5503–5524, (2004).

    Article  MATH  ADS  Google Scholar 

  29. I. Jensen. Self-avoiding walks and polygons on the triangular lattice. J. Stat. Mech., P10008, (2004).

    Google Scholar 

  30. I. Jensen. Honeycomb lattice polygons and walks as a test of series analysis techniques. J. Phys.: Conf. Series, 42:163–178, (2006).

    Article  ADS  Google Scholar 

  31. R. Kenyon and P. Winkler. Branched polymers in 2 and 3 dimensions. To appear in Amer. Math. Monthly.

    Google Scholar 

  32. H. Kesten. On the number of self-avoiding walks. J. Math. Phys., 4:960–969, (1963).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. D.J. Klein. Rigorous results for branched polymer models with excluded volume. J. Chem. Phys., 75:5186–5189, (1981).

    Article  ADS  Google Scholar 

  34. G.F. Lawler, O. Schramm, and W. Werner. On the scaling limit of planar self-avoiding walk. In Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, pages 339–364, Proc. Sympos. Pure Math., 72, Part 2. Amer. Math. Soc., Providence, RI, (2004).

    Google Scholar 

  35. T.C. Lubensky and J. Isaacson. Statistics of lattice animals and dilute branched polymers. Phys. Rev., A20:2130–2146, (1979).

    ADS  Google Scholar 

  36. N. Madras. Bounds on the critical exponent of self-avoiding polygons. In R. Durrett and H. Kesten, editors, Random Walks, Brownian Motion and Interacting Particle Systems, Boston, (1991). Birkhaüser.

    Google Scholar 

  37. N. Madras. A rigorous bound on the critical exponent for the number of lattice trees, animals and polygons. J. Stat. Phys., 78:681–699, (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. A.M. Nemirovsky, K.F. Freed, T. Ishinabe, and J.F. Douglas. End-to-end distance of a single self-interacting self-avoiding polymer chain: d −1 expansion. Phys. Lett. A, 162:469–474, (1992).

    Article  ADS  Google Scholar 

  39. A.M. Nemirovsky, K.F. Freed, T. Ishinabe, and J.F. Douglas. Marriage of exact enumeration and 1/d expansion methods: Lattice model of dilute polymers. J. Stat. Phys., 67:1083–1108, (1992).

    Article  MATH  ADS  Google Scholar 

  40. G. Parisi and N. Sourlas. Critical behavior of branched polymers and the Lee—Yang edge singularity. Phys. Rev. Lett., 46:871–874, (1981).

    Article  ADS  MathSciNet  Google Scholar 

  41. E. Perkins. Super-Brownian motion and critical spatial stochastic systems. Canad. Math. Bull., 47:280–297, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  42. G. Slade. The Lace Expansion and its Applications. Springer, Berlin, (2006). Lecture Notes in Mathematics Vol. 1879. Ecole d'Eté de Probabilités de Saint—Flour XXXIV—2004.

    Google Scholar 

  43. H. Tasaki. Stochastic geometric methods in Statistical Physics and Field Theories. PhD thesis, University of Tokyo, (1986).

    Google Scholar 

  44. H. Tasaki and T. Hara. Critical behaviour in a system of branched polymers. Prog. Theor. Phys. Suppl., 92:14–25, (1987).

    Article  ADS  MathSciNet  Google Scholar 

  45. M.J. Velgakis, G.A. Baker, Jr., and J. Oitmaa. Integral approximants. Comput. Phys. Commun., 99:307–322, (1997).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Clisby, N., Slade, G. (2009). Polygons and the Lace Expansion. In: Guttman, A.J. (eds) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol 775. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9927-4_6

Download citation

Publish with us

Policies and ethics