Skip to main content

Lattice Polygons and Related Objects

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 775))

Self-avoiding lattice polygons, i.e. embeddings of simple closed curves in a lattice, have been studied for more than fifty years. They are interesting as models of ring polymers in solution in good solvents and they appear in graphical expansions in, for instance, the Ising problem. They have been counted exactly (see e.g. [17]) and studied by Monte Carlo methods (see e.g. [22]). We understand many of their prop-erties but rigorous results are scarce. In 1961 Hammersley [11] showed that they grow exponentially at the same rate as self-avoiding walks—a result which was by no means obvious at the time—but we still know very little about the sub-dominant asymptotic behaviour, except in dimensions higher than four where lace expansion techniques are useful.

This chapter will review some of the results which have been established rigor-ously. Apart from results about the numbers of polygons we also discuss counting polygons by both perimeter and area, which gives an interesting model of vesicles and how they respond to an osmotic force. This is closely related to the problem of self-avoiding surfaces. In three dimensions polygons can be knotted, and we in-vestigate what is known rigorously about knot probabilities. There are many open questions in this area and we mention some of these. We then turn to polygons with a geometrical constraint and consider polygons confined to a wedge or to a slit or slab. The main interest has focussed on whether the constraint changes the exponential growth rate of the number of polygons. Finally we give a brief account of some results on lattice trees and lattice animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Banavar, A. Maritan and A. Stella: Critical behaviour of 2-dimensional vesicles in the deflated regime Phys. Rev. A 43, 5752–5754 (1991)

    Article  ADS  Google Scholar 

  2. J. L. Cardy: Exact scaling functions for self-avoiding walks and branched polymers J. Phys. A: Math. Gen. 34, L665–L672 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. N. Clisby, R. Liang and G. Slade: Self-avoiding walk enumeration via the lace expansion J. Phys. A: Math. Theor. 40, 10973–11017 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. M. Delbruck: Knotting problems in biology, in Mathematical Problems in the Biological Sciences, edited by R. E. Bellman, American Mathematical Society, Providence (1962)

    Google Scholar 

  5. Y. Diao: Minimal knotted polygons on the cubic lattice J. Knot Theory Ramifications 2, 413–425 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. M. E. Fisher: Fractal and nonfractal shapes in two-dimensional vesicles Physica D 38, 112–118 (1989)

    Article  ADS  Google Scholar 

  7. M. E. Fisher, A. J. Guttmann and S. G. Whittington: Two-dimensional lattice vesicles and polygons J. Phys. A: Math. Gen. 24, 3095–3106 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  8. H. L. Frisch and E. Wasserman: Chemical topology J. Am. Chem. Soc. 83, 3789–3795 (1961)

    Article  Google Scholar 

  9. A. J. Guttmann, I. Jensen, L. H. Wong and I. Enting: Punctured polygons and polyominoes on the square lattice J. Phys. A: Math. Gen. 33, 1735–1764 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. A. J. Guttmann, I. Jensen and A. L. Owczarek: Polygonal polyominoes on the square lattice J. Phys. A: Math. Gen. 34, 3721o–3733 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. M. Hammersley: The number of polygons on a lattice Proc. Camb. Phil. Soc. 57, 516–523 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  12. J. M. Hammersley and D. J. A. Welsh: Further results on the rate of convergence to the connective constant of the hypercubic lattice Quart. J. Math. Oxford 18, 108–110 (1962)

    Article  MathSciNet  Google Scholar 

  13. J. M. Hammersley and S. G. Whittington: Self-avoiding walks in wedges J. Phys. A: Math. Gen. 18, 101–111 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  14. E. J. Janse van Rensburg: On the number of trees in Zd J. Phys. A: Math. Gen. 25, 3523–3528 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. E. J. Janse van Rensburg: Surfaces in the hypercubic lattice J. Phys. A: Math. Gen. 25, 3529–3547 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. E. J. Janse van Rensburg and S. G. Whittington: Self-avoiding surfaces with knotted bound-aries J. Phys. A: Math. Gen. 23, 2495–2505 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. I. Jensen: A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice J. Phys. A: Math. Gen. 36, 5731–5745 (2003)

    Article  ADS  Google Scholar 

  18. H. Kesten: On the number of self-avoiding walks J. Math. Phys. 4, 960–969 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. N. Madras: A rigorous bound on the critical exponent for the number of lattice trees, animals and polygons J. Stat. Physics 78681–699 (1995) 2 Lattice Polygons and Related Objects

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. N. Madras: A pattern theorem for lattice clusters Ann. Comb. 3, 357–384 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. N. Madras: Enumeration bounds via an isoperimetric-type inequality J. Physics: Conf. Series 42, 213–220 (2006)

    Article  ADS  Google Scholar 

  22. N. Madras, A. Orlitsky and L. A. Shepp: Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length J. Stat. Phys. 58, 159–183 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Madras and G. Slade: The Self-Avoiding Walk, Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  24. N. Madras, C. E. Soteros and S. G. Whittington: Statistics of lattice animals J. Phys. A: Math. Gen. 21, 4617–4635 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. N. Pippenger: Knots in random walks Discrete Appl. Math. 25, 273–278 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Prellberg and A. L. Owczarek: On the asymptotics of the finite perimeter partition function of two-dimensional lattice vesicles Commun. Math. Phys. 201, 493–505 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. C. Richard: Scaling behaviour of two-dimensional polygon models J. Stat. Phys. 108, 459–493 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. C. Richard, A. J. Guttmann and I. Jensen: Scaling functions and universal amplitude combinations for self-avoiding polygons J. Phys. A: Math. Gen. 34, L495–L501 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. C. Richard, I. Jensen and A. J. Guttmann: Scaling prediction for self-avoiding polygons revisited J. Stat. Mech.: Theor. Exp. P08007 (2004)

    Google Scholar 

  30. C. E. Soteros, D. W. Sumners and S. G. Whittington: Entanglement complexity of graphs in Z3 Math. Proc. Camb. Phil. Soc. 111, 75–91 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. C. E. Soteros, D. W. Sumners and S. G. Whittington: Linking of random p-spheres in Zd J. Knot Theory Ramifications 8, 49–70 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. C. E. Soteros and S. G. Whittington: Polygons and stars in a slit geometry J. Phys. A: Math. Gen. 21, L857–L861 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  33. C. E. Soteros and S. G. Whittington: Lattice models of branched polymers: Effects of geometrical constraints J. Phys. A: Math. Gen. 22, 5259–5270 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. D. W. Sumners and S. G. Whittington: Knots in self-avoiding walks J. Phys. A: Math. Gen. 21, 1689–1694 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Whittington, S.G. (2009). Lattice Polygons and Related Objects. In: Guttman, A.J. (eds) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol 775. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9927-4_2

Download citation

Publish with us

Policies and ethics