Skip to main content

Warm Photoionized Plasmas Created by Soft X-Ray Laser Irradiation of Solid Targets

  • Conference paper
X-Ray Lasers 2008

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 130))

  • 833 Accesses

Abstract

We report results of the study of warm plasmas generated by focusing 46.9 nm soft x-ray laser pulses of nanosecond duration onto Si, Cr and Ag targets. The absorption is dominated by single photon photoionization, resulting in plasmas that are significantly different from those created by visible lasers. Spectra from the soft x-ray laser-created plasmas agree with 1 ½ D simulations in showing that the Si plasmas are significantly colder and less ionized than the Cr and Ag plasmas, confirming that, in contrast to plasmas created by optical lasers, the plasma properties are largely dependent on the absorption coefficient of the target material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Lee et al., “Finite temperature dense matter studies on next-generation light sources”, JOSA B, 20, 770–778, 2003.

    Article  ADS  Google Scholar 

  2. M. Fajardo, et al., “Hydrodynamic simulation of XUV laser-produced plasmas”, The European Physical Journal D, 29, 69–75, 2004.

    Article  ADS  Google Scholar 

  3. J. J. Rocca, et al., “Demonstration of a discharge pumped table-top soft-x-ray laser”, Phys. Rev. Lett., 73, 002192, 1994.

    Article  ADS  Google Scholar 

  4. B. R. Benware, et al., “Focusing of a tabletop soft-x-ray laser beam and laser ablation”, Optics Letters, 24, Issue 23, pp. 1714–1716, 1999.

    Article  ADS  Google Scholar 

  5. W. Ackermann, et al., “Operation of a free-electron laser from the extreme ultraviolet to the water window” Nature Photonics 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  6. G. Vaschenko, et al., “Nanometer scale ablation with a table-top soft x-ray laser”, Optics Letters, 31, 3615–3617, 2006.

    Article  ADS  Google Scholar 

  7. M. Grisham, et al., “Damage to extreme-ultraviolet Sc/Si multilayer mirrors exposed to intense 46.9-nm laser pulses,” Optics Letters 29, 620–622, 2004.

    Article  ADS  Google Scholar 

  8. L. Juha, et al., “XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses,” Journal of Electron Spectroscopy and Related Phenomena 144, 929–932, 2005.

    Article  Google Scholar 

  9. Michal Bittner, et al., “Material ablation induced by focused 21.2-nm radiation from Ne-like Zn x-ray laser”, Proceedings of SPIE 5777, 965–969, 2005.

    Article  ADS  Google Scholar 

  10. T. Mocek, et al., “Focusing a multimillijoule soft x-ray laser at 21 nm”, Applied Physics Letters, 89, 051501, 2006

    Article  ADS  Google Scholar 

  11. M. Berrill, et al., “Warm photoionized plasmas created by soft-x-ray laser irradiation of solid targets”, JOSA B, 25, pp B32–B38, 2008.

    Article  ADS  Google Scholar 

  12. B.R. Benware, et al., “Demonstration of a high average power tabletop soft x-ray laser”, Phys. Rev. Lett., 81, 5804, 1998.

    Article  ADS  Google Scholar 

  13. Yu. A. Uspenskii, et al., “High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50nm”,Optics Letters 23, 771–773, 1998.

    Article  ADS  Google Scholar 

  14. M. A. Berrill, A Computer Model to Simulate Laser Created Plasmas Used for the Generation of Extreme Ultraviolet Light, MS thesis, Colorado State Univ., 2006.

    Google Scholar 

  15. Y.T. Lee and R.M. More, “An electron conductivity model for dense plasmas”, Physics of Fluids, 27, pp. 1273–1285, 1984.

    Article  MATH  ADS  Google Scholar 

  16. Edward D. Palik, Handbook of Optical Constants of Solids, Academic Press, 1998.

    Google Scholar 

  17. M. F. Hu, “Indirect X-Ray Line-Formation Processes in Iron L-shell Ions”, The Astrophysical Journal, 582, 1241–1250, 2003.

    Article  ADS  Google Scholar 

  18. R.F. Reilman, S.T. Manson, “Photoabsorption Cross Sections for Positive Atomic Ions With Z ⁥ 30”, The Astrophysical Journal Supplement Series, 40, 815, 1979.

    Article  ADS  Google Scholar 

  19. NIST Atomic Spectra Database, http://physics.nist.gov/PhysRefData/ASD

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Berrill, M., Brizuela, F., Langdon, B., Bravo, H., Menoni, C.S., Rocca, J.J. (2009). Warm Photoionized Plasmas Created by Soft X-Ray Laser Irradiation of Solid Targets. In: Lewis, C.L.S., Riley, D. (eds) X-Ray Lasers 2008. Springer Proceedings in Physics, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9924-3_44

Download citation

Publish with us

Policies and ethics