Skip to main content

Influence of the number of atomic levels on the modelling of collisional X-ray lasers

  • Conference paper
X-Ray Lasers 2008

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 130))

  • 833 Accesses

Abstract

The number of atomic excited levels considered in codes modelling X-ray lasers is generally very limited. A few dozens or even two or three are considered while thousands times more do exist. We compute populations, gain and spectra with tens of thousands of levels out of equilibrium to model a Zinc Ne-like X-ray laser. The maximum gain, its thermodynamic conditions as well as the transverse spectrum compare well with the experiment. The gain is marginally reduced for stationary plasmas when the number of levels increases. But the radiative losses are strongly enhanced for thick plasmas. For transient schemes, some neighbouring levels are strongly coupled with the lasing levels and will modify the solution of the Maxwell Bloch equations in case of seeding with high harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanc S. P. L. and Sauerbrey R.: ‘Spectral, temporal, and spatial characteristics of plasma-induced spectral blue shifting and its application to femtosecond pulse measurement’, J. Opt. Soc. Am. B, 13, 72–88, 1996

    Article  ADS  Google Scholar 

  2. Pert, G. J.: ‘Algorithms for the calculation of Ionization in rapidly Changing Plasmas’, J. Comput. Phys., 27, 241–155, 1978

    Article  MATH  ADS  Google Scholar 

  3. Larroche, O., Ros D., Klisnick A., Sureau A., Möller C. and Guennou H.: ‘Maxwell-Bloch modelling of X-ray-laser-signal buildup in single- and doublepass configurations’, Phys. Rev. A, 62, 043815, 2000

    Article  ADS  Google Scholar 

  4. Robillart B. et al.: ‘Modelling of an ultra-short x-ray laser pulse amplification through an optical-field-ionised gas using a Maxwell-Bloch treatment’, This publication

    Google Scholar 

  5. Rocca, J. J., Wang Y., Larotonda M., Luther B., Berrill M., Alessi D., Weith A., Marconi M., Patel D., Menoni C. S., Shlyaptsev V. N., Dunn J., Liu Y. and Attwood D. T.: ‘Advances in high repetition soft X-ray lasers: lasing down to 10.9 nm and high brightness operation of a seeded soft X-ray amplifier using a solid target’ P 149–159 in Proceedings X-Ray Lasers 2006, Springer Berlin, 2007

    Chapter  Google Scholar 

  6. Dubau, J., Zabaydullin O., Möller C. and Benredjem D.: ‘Copper neon-like x-ray laser modelling including hyperfine structure levels’ P 347–354 in Proceedings X-Ray Lasers 2004, Institute of Physics Publishing, 2005

    Google Scholar 

  7. Aggarwal K. M. and Keenan F. P.: ‘Effective collision strengths for transitions in Ni XIX’, Astron. Astrophys., 488, 365–374, 2008

    Article  ADS  Google Scholar 

  8. Ankudinov A. L., Zabinsky S. I. And Rehr J. J.: ‘Single configuration Dirac-Fock atom code’, Comput. Phys. Comm., 98, 359–364, 1996

    Article  ADS  Google Scholar 

  9. Bar-Shalom A., Klapisch M. and Oreg J.: ‘HULLAC, an integrated computer package for atomic processes in plasmas’, J. Quant. Spectrosc. Radiat. Transfer, 71, 169–188, 2001 ; Busquet M., Bar-ShalomA., Klapisch M. and Oreg J.: ‘An improved version of the HULLAC code’, Journal de Physique IV, 133, 979–975, 2006

    Article  ADS  Google Scholar 

  10. F. de Gaufridy de Dortan: SCRIC, un code pour calculer l'absorption et l'emission detaillees de plasmas hors equilibre inhomogenes et etendus, CEA Report no 6115, Editor CEA, 2006

    Google Scholar 

  11. Rus B., Mocek T., Prag A. R., Kozlova M., Jamelot G., Carillon A., Ros D., Joyeux D. and Phalippou D.: ‘Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification’, Phys. Rev. A 66, 2002, 063806

    Google Scholar 

  12. Nejdl, J., Rus B., Kuba J., Mocek T., Kozlova M., Polan J. and Homer P.: ‘Electron temperature measurements of model Ne-like X-ray lasers plasmas from resonnance KeV spectra’ P113–119 in Proceedings X-Ray Lasers 2006, Springer Berlin, 2007

    Chapter  Google Scholar 

  13. Demir, A., Akman E., Bilikmen S., Demir P., Ince S., Kacar E., Yurdanur E. and Yaltkaya S.: ‘Longitudinally pumped Ne-like titanium X-ray laser simulation with a post-processor code coupled to EHYBRID’ P341–346 in Proceedings X-Ray Lasers 2006, Springer Berlin, 2007

    Chapter  Google Scholar 

  14. Sureau A.& Holden PB.‘From amplification of spontaneous emission to saturation in x-ray lasers: a Maxwell Bloch treatment’, Phys. Rev. A, 52, 3110–3125, 1995

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

de Dortan, F. et al. (2009). Influence of the number of atomic levels on the modelling of collisional X-ray lasers. In: Lewis, C.L.S., Riley, D. (eds) X-Ray Lasers 2008. Springer Proceedings in Physics, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9924-3_26

Download citation

Publish with us

Policies and ethics