Skip to main content

Advances in Understanding the Anomalous Dispersion of Plasmas in the X-Ray Regime

  • Conference paper
X-Ray Lasers 2008

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 130))

Abstract

Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main computational tool has been the average atom code AVATOMKG that enables us to calculate the index of refraction for any plasma at any wavelength. In the last year we have improved this code to take into account many-atomic collisions. This allows the code to converge better at low frequencies.

In this paper we present our search for plasmas with strong anomalous dispersion that could be used in X-ray laser interferometer experiments to help understand this phenomena. We discuss the calculations of anomalous dispersion in Na vapor and Ne plasmas near 47 nm where we predict large effects. We also discuss higher Z plasmas such as Ce and Yb plasmas that look very interesting near 47 nm. With the advent of the FLASH X-ray free electron laser in Germany and the LCLS X-FEL coming online at Stanford in another year we use the average atom code to explore plasmas at higher X-ray energy to identify potential experiments for the future. In particular we look near the K shell lines of near solid carbon plasmas and predict strong effects. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. J. Tallents, J. Phys. D. 17, 721 (1984).

    Article  ADS  Google Scholar 

  2. H. R. Griem, Principles of Plasma Spectroscopy, (Cambridge University Press, Cambridge, 1997) p. 9

    Google Scholar 

  3. L. B. Da Silva et al., Phys. Rev. Lett. 74, 3991 (1995).

    Article  ADS  Google Scholar 

  4. H. Tang et al., Appl. Phys. B 78, 975 (2004).

    Article  ADS  Google Scholar 

  5. J. Filevich et al., Phys. Rev. Lett. 94, 035005 (2005).

    Article  ADS  Google Scholar 

  6. J. Filevich et al., J. Quant. Spectrosc. Radiat. Transfer 99, 165–174 (2006).

    Article  ADS  Google Scholar 

  7. J. Filevich at al., Opt. Lett 25, 356 (2000).

    Article  ADS  Google Scholar 

  8. D. Descamps et al., Opt. Lett. 25, 135 (2000).

    Article  ADS  Google Scholar 

  9. A. Meseck et al., Nucl. Inst. And Meth. A 528, 577 (2004).

    Article  ADS  Google Scholar 

  10. J. Filevich et al., Phys. Rev. E 74, 016404 (2006).

    Article  ADS  Google Scholar 

  11. J. Filevich et al., Laser and Particle Beams 25, 47 (2007).

    Article  ADS  Google Scholar 

  12. J. Nilsen et al., “Understanding the anomalous dispersion of doubly-ionized carbon plasmas near 47 nm,” HEDP (in press 2008) DOI:10.1016/j.hedp.2008.05.003

    Google Scholar 

  13. J. Nilsen and J. H. Scofield, Opt. Lett. 29, 2677 (2004).

    Article  ADS  Google Scholar 

  14. J. Nilsen and W. R. Johnson, Applied Optics 44, 7295 (2005).

    Article  ADS  Google Scholar 

  15. J. Nilsen, W. R. Johnson, C. A. Iglesias, and J. H. Scofield, J. Quant. Spectrosc. Radiat. Transfer 99, 425–438 (2006).

    Article  ADS  Google Scholar 

  16. W. R. Johnson, C. Guet, and G. F. Bertsch, J. Quant. Spectrosc. Radiat. Transfer 99, 327–340 (2006).

    Article  ADS  Google Scholar 

  17. D. A. Liberman, JQSRT 27, 335 (1982).

    ADS  Google Scholar 

  18. J. J. Rocca et al., Phys. Rev. Lett. 73, 2192–2195 (1994).

    Article  ADS  Google Scholar 

  19. B. L. Henke, E. M. Gullikson, and J. C. Davis, ADNDT 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon, New York, 1984) pp. 280–283

    Google Scholar 

  21. W. Persson, Phys. Scr. 3, 133 (1971).

    Article  ADS  Google Scholar 

  22. T. Lundstrom and L. Minnhagen, Phys. Scr. 5, 243 (1972).

    Article  ADS  Google Scholar 

  23. I. P. Grant et al., Comput. Phys. Commun. 21, 207 (1980).

    Article  ADS  Google Scholar 

  24. NIST web site at http://physics.nist.gov/PhysRefData/ASD/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Nilsen, J., Cheng, K.T., Johnson, W.R. (2009). Advances in Understanding the Anomalous Dispersion of Plasmas in the X-Ray Regime. In: Lewis, C.L.S., Riley, D. (eds) X-Ray Lasers 2008. Springer Proceedings in Physics, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9924-3_24

Download citation

Publish with us

Policies and ethics