Advances in Understanding the Anomalous Dispersion of Plasmas in the X-Ray Regime

  • Joseph Nilsen
  • K. T. Cheng
  • Walter R. Johnson
Part of the Springer Proceedings in Physics book series (SPPHY, volume 130)


Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main computational tool has been the average atom code AVATOMKG that enables us to calculate the index of refraction for any plasma at any wavelength. In the last year we have improved this code to take into account many-atomic collisions. This allows the code to converge better at low frequencies.

In this paper we present our search for plasmas with strong anomalous dispersion that could be used in X-ray laser interferometer experiments to help understand this phenomena. We discuss the calculations of anomalous dispersion in Na vapor and Ne plasmas near 47 nm where we predict large effects. We also discuss higher Z plasmas such as Ce and Yb plasmas that look very interesting near 47 nm. With the advent of the FLASH X-ray free electron laser in Germany and the LCLS X-FEL coming online at Stanford in another year we use the average atom code to explore plasmas at higher X-ray energy to identify potential experiments for the future. In particular we look near the K shell lines of near solid carbon plasmas and predict strong effects. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.


Oscillator Strength Optical Constant Anomalous Dispersion Fringe Shift Ground State Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. Tallents, J. Phys. D. 17, 721 (1984).CrossRefADSGoogle Scholar
  2. 2.
    H. R. Griem, Principles of Plasma Spectroscopy, (Cambridge University Press, Cambridge, 1997) p. 9Google Scholar
  3. 3.
    L. B. Da Silva et al., Phys. Rev. Lett. 74, 3991 (1995).CrossRefADSGoogle Scholar
  4. 4.
    H. Tang et al., Appl. Phys. B 78, 975 (2004).CrossRefADSGoogle Scholar
  5. 5.
    J. Filevich et al., Phys. Rev. Lett. 94, 035005 (2005).CrossRefADSGoogle Scholar
  6. 6.
    J. Filevich et al., J. Quant. Spectrosc. Radiat. Transfer 99, 165–174 (2006).CrossRefADSGoogle Scholar
  7. 7.
    J. Filevich at al., Opt. Lett 25, 356 (2000).CrossRefADSGoogle Scholar
  8. 8.
    D. Descamps et al., Opt. Lett. 25, 135 (2000).CrossRefADSGoogle Scholar
  9. 9.
    A. Meseck et al., Nucl. Inst. And Meth. A 528, 577 (2004).CrossRefADSGoogle Scholar
  10. 10.
    J. Filevich et al., Phys. Rev. E 74, 016404 (2006).CrossRefADSGoogle Scholar
  11. 11.
    J. Filevich et al., Laser and Particle Beams 25, 47 (2007).CrossRefADSGoogle Scholar
  12. 12.
    J. Nilsen et al., “Understanding the anomalous dispersion of doubly-ionized carbon plasmas near 47 nm,” HEDP (in press 2008) DOI:10.1016/j.hedp.2008.05.003Google Scholar
  13. 13.
    J. Nilsen and J. H. Scofield, Opt. Lett. 29, 2677 (2004).CrossRefADSGoogle Scholar
  14. 14.
    J. Nilsen and W. R. Johnson, Applied Optics 44, 7295 (2005).CrossRefADSGoogle Scholar
  15. 15.
    J. Nilsen, W. R. Johnson, C. A. Iglesias, and J. H. Scofield, J. Quant. Spectrosc. Radiat. Transfer 99, 425–438 (2006).CrossRefADSGoogle Scholar
  16. 16.
    W. R. Johnson, C. Guet, and G. F. Bertsch, J. Quant. Spectrosc. Radiat. Transfer 99, 327–340 (2006).CrossRefADSGoogle Scholar
  17. 17.
    D. A. Liberman, JQSRT 27, 335 (1982).ADSGoogle Scholar
  18. 18.
    J. J. Rocca et al., Phys. Rev. Lett. 73, 2192–2195 (1994).CrossRefADSGoogle Scholar
  19. 19.
    B. L. Henke, E. M. Gullikson, and J. C. Davis, ADNDT 54, 181–342 (1993).CrossRefADSGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon, New York, 1984) pp. 280–283Google Scholar
  21. 21.
    W. Persson, Phys. Scr. 3, 133 (1971).CrossRefADSGoogle Scholar
  22. 22.
    T. Lundstrom and L. Minnhagen, Phys. Scr. 5, 243 (1972).CrossRefADSGoogle Scholar
  23. 23.
    I. P. Grant et al., Comput. Phys. Commun. 21, 207 (1980).CrossRefADSGoogle Scholar
  24. 24.

Copyright information

© Springer 2009

Authors and Affiliations

  • Joseph Nilsen
    • 1
  • K. T. Cheng
    • 1
  • Walter R. Johnson
    • 2
  1. 1.Lawrence Livermore National LaboratoryLivermore
  2. 2.University of Notre DameNotre Dame

Personalised recommendations