Skip to main content

Toward Ultraintense Compact RBS Pump for Recombination 3.4 nm Laser via OFI

  • Conference paper
X-Ray Lasers 2008

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 130))

  • 834 Accesses

Abstract

In our presentation we overview progress we made in developing a new ultrashort and ultraintensive laser system based on Raman backscattering (RBS) amplifier /compressor from time of 10th XRL Conference in Berlin to present time of 11th XRL Conference in Belfast. One of the main objectives of RBS laser system development is to use it for pumping of recombination X-ray laser in transition to ground state of CVI ions at 3.4 nm. Using elaborate computer code the processes of Optical Field Ionization, electron energy distribution, and recombination were calculated. It was shown that in very earlier stage of recombination, when electron energy distribution is strongly non-Maxwellian, high gain in transition from the first excited level n=2 to ground level m=1 can be generated. Adding large amount of hydrogen gas into initial gas containing carbon atoms (e.g. methane, CH4) the calculated gain has reached values up to 150–200 cm−2 Taking into account this very encouraging result, we have proceed with arrangement of experimental setup. We will present the observation of plasma channels and measurements of electron density distribution required for generation of gain at 3.4 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Menoni, C. et al., ”Nano-Scale Imaging With Tabletop Soft X-Ray Laser: Sub-38 nm Resolution”, Proc. 10th Intern. Conference on X-Ray Lasers, p.417 (Berlin, 2006)

    Google Scholar 

  2. Grava, J. et al., “Soft X-Ray Laser Interferometry of Colliding Plasmas”, ibid, p471

    Google Scholar 

  3. Capeluto, M. et al., “Tabletop Nanopaterning Using Soft X-Ray Laser”, ibid, p.491

    Google Scholar 

  4. Menoni, C. et al. This Conference

    Google Scholar 

  5. Avitzour, Y., Suckewer, S. and Valeo, E, Phys. Rev. E. 69 046409 (2004)

    Article  ADS  Google Scholar 

  6. Avitzour, Y., Ph.D. Thesis “Numerical Modeling of Recombination X-Ray Lasers in Transition to Ground State”, Princeton University (2006).

    Google Scholar 

  7. Avitzour, Y., Suckewer, S., JOSA B 24 819 (2007)

    Article  ADS  Google Scholar 

  8. Ren, J., Cheng, W., Li, S. andSuckewer, S., Nature Physics 3, 732–736 (2007)

    Article  ADS  Google Scholar 

  9. Ren, J., Li, S., Morozov, A., Suckewer, S., Yampolsky, N.A. et al., Phys. Plasmas 15, 056702 (2008)

    Article  ADS  Google Scholar 

  10. Malkin, V.M., Shvets, G. and Fisch, N.J., Phys. Rev. Lett. 82, 4448(1999); also Malkin, V.M., Shvets, G., and Fisch, N. J., Phys. Rev. Lett. 84, 1208 (2000)

    Article  ADS  Google Scholar 

  11. Shvets, G., Fisch, N.J., Pukhov, A. and Meyer-ter-Vehn, J., Phys. Rev. Lett 81, 48792 (1998); also V. M. Malkin and N. J. Fisch, Physics of Plasmas 8, 4598 (2001).

    Article  Google Scholar 

  12. Strickland, D. and Mourou, G., Opt. Commun. 56 219 (1985)

    Article  ADS  Google Scholar 

  13. Dubietis, A., Jonusauskas, G. and Piskarskas, A., Opt. Commun. 88 437–440 (1992)

    Article  ADS  Google Scholar 

  14. Ross, I., Matousek, P., Towrie, A., Langley, M., Collier, J., Opt. Commun. 144, 125 (1997)

    Article  ADS  Google Scholar 

  15. Ross, I., Collier, J., Matousek, P., Danson, C. et al., Appl. Opt. 39 2422 (2000)

    Article  ADS  Google Scholar 

  16. Osvay, K., Kurdi, G., Klebniczki, J., Csatari, M. et al., Appl. Phys. B 74, 1639 (2002); also Osvay, K. et al., Appl. Phys. Lett. 80, 1704 (2002)

    Article  Google Scholar 

  17. Stuart, B.C., Feit, M.D., Herman, S. et al., J. Opt. Soc. Am. B 13, 459 (1996)

    Article  ADS  Google Scholar 

  18. Cheng, W., Avitzour, Y., Ping, Y., Suckewer, S., Fisch, N., Hur, M., Wurtele, J., Phys. Rev.Lett. 94, 045003(2005); also Ping, Y. et al., Phys. Rev. Lett. 92, 175007 (2004).

    Article  ADS  Google Scholar 

  19. Keenan, R., Dunn, J. Shlyaptsev, V., Smith, R.F., Patel P. and Price, D., SPIE 5197, 213 (2003); also Keenan, R., Dunn, J., Price, D., Patel, P., Smith, R.F., Shlyaptsev, V., Phys. Rev. Lett., 94103901(2005)

    Article  ADS  Google Scholar 

  20. Keldysh, LV., Soviet Phys. JETP 20 1307 (1965)

    MathSciNet  Google Scholar 

  21. Perelomov, A.M, Popov, V.S.and Terent'ev, MV., Soviet Phys.JETP 23 924 (1965)

    ADS  Google Scholar 

  22. Burnett, N.H. and Corkum, P.B., JOSA B 6 1995 (1989)

    Article  Google Scholar 

  23. Durfee, C.G. and Milchberg, H.M., Phys. Rev. Lett. 71, 2409 (1993)

    Article  ADS  Google Scholar 

  24. Durfee, C.G. Lynch, J., Milchberg, H.M., Phys.Rev.E. 51 2368 (1995)

    Article  ADS  Google Scholar 

  25. Milchberg, H.M., Durfee, C.G., and McIlrath, T.J., Phys.Rev.Lett.75, 2494 (1995); alsoT. R. Clark and H. M. Milchberg, Phys. Rev. Lett. 78, 2373 (1997)

    Article  ADS  Google Scholar 

  26. Sheng, H., Kim, K.Y., Kumarappan, V., Layer, B.D., Milchberg, H.M., Phys.Rev. E.72 036411 (2005); also Kumarappan, V., Kim, K.Y., Milchberg, H.M., Phys.Rev.Lett. 94 205004 (2005)

    Article  ADS  Google Scholar 

  27. Milchberg, H.M., Durfee, CG., Lynch, J., JOSA B, 12 731 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Suckewer, S. et al. (2009). Toward Ultraintense Compact RBS Pump for Recombination 3.4 nm Laser via OFI. In: Lewis, C.L.S., Riley, D. (eds) X-Ray Lasers 2008. Springer Proceedings in Physics, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9924-3_20

Download citation

Publish with us

Policies and ethics