Skip to main content

Structural Study Of Multi-Component Glasses By The Reverse Monte Carlo Simulation Technique

  • Conference paper
Nanostructured Materials for Advanced Technological Applications

Using the example of amorphous Ge2Sb2Te5 it is shown on how the local order at the level of pair distribution functions, coordination numbers and most probable interatomic distances can be revealed by combining the information obtained by different experimental techniques, when the measured data are modeled simultaneously by the reverse Monte-Carlo simulation technique (RMC). Special attention is paid to the information content of individual datasets. The capability of the new RMC implementation to assess the reliability of model structures is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Debye, Annalen der Physik IV. 46, 809 (1915).

    Article  CAS  Google Scholar 

  2. W. H. Zachariassen, J. Am. Chem. Soc. 54, 3841 (1932).

    Google Scholar 

  3. B. E. Warren, J. Chem. Phys. 2, 551 (1934).

    Article  CAS  Google Scholar 

  4. A. Eisenstein and N. S. Gingrich, Phys. Rev. 58, 307 (1940).

    Article  ADS  CAS  Google Scholar 

  5. J. E. Enderby, D. M. North, and P. A. Egelstaff, Phil. Mag. 14, 961 (1966).

    Article  ADS  CAS  Google Scholar 

  6. C. Kunz, J. Phys.: Condens. Matter 13, 7499 (2001).

    Article  ADS  CAS  Google Scholar 

  7. T. E. Faber and J. M. Ziman, Phil. Mag. 11, 153 (1965).

    Article  ADS  CAS  Google Scholar 

  8. D. A. Keen, J. Appl. Cryst. 34, 172 (2001).

    Article  CAS  Google Scholar 

  9. B. -K. Teo, EXAFS: Basic Principles and Data Analysis (Springer, New York, 1986).

    Google Scholar 

  10. J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).

    Article  ADS  CAS  Google Scholar 

  11. A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B 58, 7565 (1998).

    Article  CAS  Google Scholar 

  12. FEFF project homepage: http://leonardo.phys.washington.edu/feff/

  13. R. L. McGreevy and L. Pusztai, Mol. Simulat. 1, 359 (1988).

    Article  Google Scholar 

  14. R. L. McGreevy J. Phys.: Condens. Matter 13, R877 (2001).

    Article  ADS  CAS  Google Scholar 

  15. O. Gereben, P. Jóvári, L. Temleitner, L. Pusztai, J. Optoel. Adv. Mater. 9, 3021–3027 (2007). The RMC++ code is available at http://www.szfki.hu/~nphys/rmc++/down- loads.html

  16. M. D. Rechtin, A. L. Renninger, B. L. Averbach, J. Non-Cryst. Solids 15, 74 (1974).

    Article  ADS  CAS  Google Scholar 

  17. J. Feinleib, J. de Neufville, S. C. Moss, and S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971).

    Article  ADS  CAS  Google Scholar 

  18. N. Yamada and T. Matsunaga, J. Appl. Phys. 88, 7020 (2000).

    Article  ADS  CAS  Google Scholar 

  19. P. Jóvári, I. Kaban, J. Steiner, B. Beuneu, A. Schöps, A. Webb, Phys. Rev. B 77, 035202 (2008).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. JÓvÁri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

JÓvÁri, P., Kaban, I. (2009). Structural Study Of Multi-Component Glasses By The Reverse Monte Carlo Simulation Technique. In: Reithmaier, J.P., Petkov, P., Kulisch, W., Popov, C. (eds) Nanostructured Materials for Advanced Technological Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9916-8_11

Download citation

Publish with us

Policies and ethics