Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 14))

  • 2153 Accesses

Abstract

Recent developments in the construction of airfoils and rotorblades are characterized by an increasing interest in the application of so-called smart structures for active flow control. These are characterized by an interplay of sensors, actuators, real-time controlling data processing systems and the use of new materials e.g. shape alloys with the aim to increase manoeuvrability, reduce drag and radiated sound. The optimal use of such devices obviously requires a detailed insight into the flow phenomena to be controlled and in particular their sensitivity to external disturbances. In this connection locally separated boundary layer flows are of special interest. Asymptotic analysis of boundary layer separation in the limit of large Reynolds number Re→ ∞ has shown that in a number of cases which are of importance from a practical point of view solutions of the resulting interaction equations describing two-dimensional steady flows exist up to a limiting value Γ c of the relevant controlling parameter Γ only while two branches of solutions exist in a regime Γ < Γ c . The present study aims at a better understanding of near critical flows ǀ Γ — ǀ c ǀ → 0 and in particular the changes of the flow behaviour associated with the passage of Γ through Γ c .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam, M. & Sandham, N.D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28.

    Article  MATH  ADS  Google Scholar 

  2. Braun, S. & Kluwick, A. 2002 The effect of three-dimensional obstacles on marginally separated laminar boundary layer flows. J. Fluid Mech. 460, 57–82.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Braun, S. & Kluwick, A. 2003 Analysis of a bifurcation problem in marginally separated laminar wall jets and boundary layers. Acta Mech. 161, 195–211.

    MATH  Google Scholar 

  4. Braun, S. & Kluwick, A. 2004 Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction. J. Fluid Mech. 514, 121–152.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Braun, S. & Kluwick, A. 2005 Blow-up and control of marginally separated boundary layer flows. In New Developments and Applications in Rapid Fluid Flows (Eds. J.S.B. Gajjar & F.T. Smith). Phil. Trans. R. Soc. Lond. A 363, 1057–1067.

    Google Scholar 

  6. Budd, C.J., Chen, J., Huang, W. & Russell, R.D. 1996 Moving mesh methods with applications to blow-up problems for PDEs. In Numerical Analysis 1995: Proceedings of 1995 Biennial Conference on Numerical Analysis (Eds. D.F. Griffiths & G.A. Watson). Pitman Research Notes in Mathematics, Longman Scientific and Technical, pp. 1–17.

    Google Scholar 

  7. Elliott, J.W. & Smith, F.T. 1987 Dynamic stall due to unsteady marginal separation. J. Fluid Mech. 179, 489–512.

    Article  MATH  ADS  Google Scholar 

  8. Fisher, R.A. 1937 The wave of advance of advantageous genes. Ann. Eugenics 7, 355–369.

    Google Scholar 

  9. Galaktionov, V.A., Herrero M.A. & Velázquez, J.J.L. 1991 The space structure near a blow-up point for semilinear heat equations: a formal approach. USSR Comput. Math. Math. Physics, 31 (3), 399–411.

    Google Scholar 

  10. Gittler, Ph. & Kluwick, A. 1987 Triple-deck solutions for supersonic flows past flared cylinders. J. Fluid Mech. 179, 469–487.

    Article  ADS  Google Scholar 

  11. Hocking, L.M., Stewartson, K., Stuart, J.T. & Brown, S.N. 1972 A nonlinear instability burst in plane parallel flow. J. Fluid Mech. 51, 705–735.

    Article  MATH  ADS  Google Scholar 

  12. Huang, W., Ren, Y. & Russell, R.D. 1994 Moving mesh methods based on moving mesh partial differential equations. J. Comput. Phys. 113, 279–290.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Huang, W., Ren, Y. & Russell, R.D. 1994 Moving mesh partial differential equations (MM-PDEs) based upon the equidistribution principle. SIAM J. Numer. Anal. 31, 709–730.

    Article  MATH  MathSciNet  Google Scholar 

  14. Korolev, G.L. 1990 Contribution to the theory of thin-profile trailing edge separation. Izv. Akad. Nauk SSSR: Mekh. Zhidk. Gaza 4, 55–59 (Engl. transl. Fluid Dyn. 24 (4), 534–537).

    Google Scholar 

  15. Korolev, G.L. 1992 Non-uniqueness of separated flow past nearly flat corners. Izv. Akad. Nauk SSSR: Mekh. Zhidk. Gaza 3, 178–180 (Engl. transl. Fluid Dyn. 27 (3), 442–444).

    MathSciNet  ADS  Google Scholar 

  16. Leighton, W. 1949 Bounds for the solutions of a second-order linear differential equation. Proc. Natl. Acad. Sci. USA 35, 190–191.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Ruban, A.I. 1981 Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Izv. Akad. Nauk SSSR: Mekh. Zhidk. Gaza 1, 42–51 (Engl. transl. Fluid Dyn. 17 (1), 33–41).

    MathSciNet  Google Scholar 

  18. Ryzhov, O.S. & Smith, F.T. 1984 Short-length instabilities, breakdown and initial value problems in dynamic stall. Mathematika 31, 163–177.

    Article  MATH  MathSciNet  Google Scholar 

  19. Smith, F.T. 1982 Concerning dynamic stall. Aeron. Quart. 33, 331–352.

    Google Scholar 

  20. Stewartson, K., Smith, F.T. & Kaups, K. 1982 Marginal separation. Stud. in Appl. Math. 67, 45–61.

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Part of this work was supported by the Austrian Science Fund FWF (project number WK W008) which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kluwick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Kluwick, A., Braun, S., Cox, E.A. (2009). Near Critical Phenomena in Laminar Boundary Layers. In: Braza, M., Hourigan, K. (eds) IUTAM Symposium on Unsteady Separated Flows and their Control. IUTAM Bookseries, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9898-7_8

Download citation

Publish with us

Policies and ethics